52 COMPUTER GRAPHICS
David Dobkin and Seth Teller

INTRODUCTION

Computer graphics has often been cited as a prime application area for the tech-
niques of computational geometry. The histories of the two fields have a great deal
of overlap, with similar methods (e.g., sweep-line and area subdivision algorithms)
arising independently in each. Both fields have often focused on similar problems,
although with different computational models. For example, hidden surface removal
(visible surface identification) is a fundamental problem in both fields. At the same
time, as the fields have matured, they have brought different requirements to simi-
lar problems. The body of this chapter contains an updated version of our chapter
in an earlier edition of this Handbook [DT04] in which we aimed to highlight both
similarities and differences between the fields.

Computational geometry is fundamentally concerned with the efficient quanti-
tative representation and manipulation of ideal geometric entities to produce exact
results. Computer graphics shares these goals, in part. However, graphics practi-
tioners also model the interaction of objects with light and with each other, and
the media through which these effects propagate. Moreover, graphics researchers
and practitioners: (1) typically use finite precision (rather than exact) representa-
tions for geometry; (2) rarely formulate closed-form solutions to problems, instead
employing sampling strategies and numerical methods; (3) often design into their
algorithms explicit tradeoffs between running time and solution quality; (4) often
analyze algorithm performance by defining as primitive operations those that have
been implemented in particular hardware architectures rather than by measuring
asymptotic behavior; and (5) implement most algorithms they propose.

The relationship described above has faded over the years. At the present time,
the overlap between computer graphics and computational geometry has retreated
from many of the synergies of the past. The availability of fast hardware driven
by the introduction of graphics processing units (GPUs) that provide high speed
computation at low cost has encouraged computer graphics practitioners to seek
solutions that are engineering based rather than more scientifically driven. At the
same time, the basic science underlying computational geometry continues to grow
providing a firm basis for understanding basic processes. Adding to this divide is
the unfortunate split between theoretical and practical considerations that arise
when handling the very large data sets that are becoming common in the computer
graphics arena. In the past, it was hoped that the asymptotic nature of many
algorithms in computational geometry would bear fruit as the number of elements
being processed in a computer graphics scene grew large. Unfortunately, other
considerations have been more significant in the handling of large scenes. The gain
in asymptotic behavior of many algorithms is overwhelmed by the additional cost
in data movement required for their implementation.

Recognizing that the divide between computational geometry and computer
graphics is wide at the moment, this chapter has been updated from the earlier

1377

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1378 D. Dobkin and S. Teller

edition but new material has not been added. This decision was made in the hope
that as processing power and memory sizes of more conventional CPUs become
dominant in the future, there will arise a time when computer graphics practitioners
will again need a firmer scientific basis on which to develop future results. When this
day arrives, the ideas covered in this chapter could provide a productive landscape
from which this new collaboration can develop.

52.1 RELATIONSHIP TO COMPUTATIONAL GEOMETRY

In this section we elaborate these five contacts and contrasts.

GEOMETRY VS. RADIOMETRY AND PSYCHOPHYSICS

One fundamental computational process in graphics is rendering: the synthesis
of realistic images of physical objects. This is done through the application of a
simulation process to quantitative models of light, materials, and transmission me-
dia to predict (i.e., synthesize) appearance. Of course, this process must account
for the shapes of and spatial relationships among objects and the viewer, as must
computational geometric algorithms. In graphics, however, objects are imbued
further with material properties, such as reflectance (in its simplest form, color),
refractive index, opacity, and (for light sources) emissivity. Moreover, physically
justifiable graphics algorithms must model radiometry: quantitative representa-
tions of light sources and the electromagnetic radiation they emit (with associated
attributes of intensity, wavelength, polarization, phase, etc.), and the psychophysi-
cal aspects of the human visual system. Thus rendering is a kind of radiometrically
and psychophysically “weighted” counterpart to computational geometry problems
involving interactions among objects.

CONTINUOUS IDEAL VS. DISCRETE REPRESENTATIONS

Computational geometry is largely concerned with ideal objects (points, lines, cir-
cles, spheres, hyperplanes, polyhedra), continuous representations (effectively infi-
nite precision arithmetic), and exact combinatorial and algebraic results. Graphics
algorithms (and their implementations) model such objects as well, but do so in
a discrete, finite-precision computational model. For example, most graphics al-
gorithms use a floating-point or fixed-point coordinate representation. Thus, one
can think of many computer graphics computations as occurring on a (2D or 3D)
sample grid. However, a practical difficulty is that the grid spacing is not con-
stant, causing certain geometric predicates (e.g., sidedness) to change under simple
transformations such as scaling or translation (see Chapter 45).

An analogy can be made between this distinct choice of coordinates, and the
way in which geometric objects—infinite collections of points—are represented by
geometers and graphics researchers. Both might represent a sphere similarly—say,
by a center and radius. However, an algorithm to render the sphere must select a
finite set of sample points on its surface. These sample points typically arise from
the placement of a synthetic camera and from the locations of display elements on
a two-dimensional display device, for example pixels on a computer monitor or ink

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1379

dots on a page in a computer printer. The colors computed at these (zero-area)
sample points, through some radiometric computation, then serve as an assignment
to the discrete value of each (finite-area) display element.

CLOSED-FORM VS. NUMERICAL SOLUTION METHODS

Rarely does a problem in graphics demand a closed-form solution. Instead, graphi-
cists typically rely on numerical algorithms to estimate solution values in an it-
erative fashion. Numerical algorithms are chosen by reason of efficiency, or of
simplicity. Often, these are antagonistic goals. Aside from the usual dangers of
quantization into finite-precision arithmetic (Chapter 45), other types of error may
arise from numerical algorithms. First, using a point-sampled value to represent a
finite-area function’s value leads to discretization errors—differences between the
reconstructed (interpolated) function, which may be piecewise-constant, piecewise-
linear, piecewise-polynomial, etc., and the piecewise-continuous (but unknown) true
function. These errors may be exacerbated by a poor choice of sampling points,
by a poor piecewise function representation or basis, or by neglect of boundaries
along which the true function or its derivative have strong discontinuities. Also,
numerical algorithms may suffer bias and converge to incorrect solutions (e.g., due
to the misweighting, or omission, of significant contributions).

TRADING SOLUTION QUALITY FOR COMPUTATION TIME

Many graphics algorithms recognize sources of error and seek to bound them by vari-
ous means. Moreover, for efficiency’s sake an algorithm might deliberately introduce
error. For example, during rendering, objects might be crudely approximated to
speed the geometric computations involved. Alternatively, in a more general illumi-
nation computation, many instances of combinatorial interactions (e.g., reflections)
between scene elements might be ignored except when they have a significant effect
on the computed image or radiometric values. Graphics practitioners have long
sought to exploit this intuitive tradeoff between solution quality and computation
time.

THEORY VS. PRACTICE

Graphics algorithms, while often designed with theoretical concerns in mind, are
typically intended to be of practical use. Thus, while computational geometers and
computer graphicists have a substantial overlap of interest in geometry, graphi-
cists develop computational strategies that can feasibly be implemented on modern
machines. These strategies change as the nature of the machines changes. For
example, the rise of high speed specialized hardware has caused graphics processes
to change overnight. Within computational geometry, it is rare to see such drastic
changes in the set of primitive operations against which an algorithm is evaluated.
Also, while computational geometric algorithms often assume “generic” inputs, in
practice geometric degeneracies do occur, and inputs to graphics algorithms are at
times highly degenerate (for example, comprised entirely of isothetic rectangles).
Thus, algorithmic strategies are shaped not only by challenging inputs that
arise in practice, but also by the technologies available at the time the algorithm is

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1380 D. Dobkin and S. Teller

proposed. The relative bandwidths of CPU, bus, memory, network connections, and
tertiary storage have major implications for graphics algorithms involving interac-
tion or large amounts of simulation data, or both. For example, in the 1980s the
decreasing cost of memory, and the need for robust processing of general datasets,
brought about a fundamental shift in most practitioners’ choice of computational
techniques for resolving visibility (from combinatorial, object-space algorithms to
brute force, screen-space algorithms). The increasing power of general-purpose pro-
cessors, the emergence of sophisticated, robust visibility algorithms, and the wide
availability of dedicated, programmable low-level graphics hardware have brought
about yet another fundamental shift in recent decades.

TOWARD A MORE FRUITFUL OVERLAP

Given such substantial overlap, there is potential for fruitful collaboration between
geometers and graphicists [CAAT96]. One mechanism for spurring such collabora-
tion is the careful posing of models and open problems to both communities. To
that end, these are interspersed throughout the remainder of this chapter.

52.2 GRAPHICS AS A COMPUTATIONAL PROCESS

This section gives an overview of three fundamental graphics operations: acquisition
of some representation of model data, its associated attributes and illumination
sources; rendering, or simulating the appearance of static scenes; and simulating
the behavior of dynamic scenes either in isolation or under the influence of user
interaction.

GLOSSARY

Rendering problem: Given quantitative descriptions of surfaces and their prop-
erties, light sources, and the media in which all these are embedded, rendering is
the application of a computational model to predict appearance; that is, render-
ing is the synthesis of images from simulation data. Rendering typically involves
for each surface a wvisibility computation followed by a shading computation.

Visibility: Determining which pairs of a set of objects in a scene share an unob-
structed line of sight.

Shading: The determination of radiometric values on a surface (eventually inter-
preted as colors) as viewed by the observer.

Simulation: The representation of a natural process by a computation.

Psychophysics: The study of the human visual system’s response to electromag-
netic stimuli.

REPRESENTATION: GEOMETRY, LIGHT, AND FORCES

Every computational process requires some representation in a form amenable to
simulation. In graphics, the quantities to be represented span shape, appearance,

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1381

and illumination. In simulation or interactive settings, forces must also be repre-
sented; these may arise from the environment, from interactions among objects, or
from the user’s actions.

The graphics practitioner’s choice of representation has significant implications.
For example, how is the data comprising the representation to be acquired? For ef-
ficient manipulation or increased spatial or temporal coherence, the representation
might have to include, or be amenable to, spatial indexing. A number of intrinsic
(winged-edge, quad-edge, facet-edge, etc.) and extrinsic (quadtree, octree, k-d tree,
BSP tree, B-rep, CSG, etc.) data structures have been developed to represent geo-
metric data. Continuous, implicit functions have been used to model shape, as have
discretized volumetric representations, in which data types or densities are associ-
ated with spatial “voxels.” A subfield of modeling, Solid Modeling (Chapter 57),
represents shape, mass, material, and connectivity properties of objects, so that,
for example, complex object assemblies may be defined for use in Computer-Aided
Machining environments. Some of these data structures can be adaptively subdi-
vided, and made persistent (that is, made to exist in memory and in nonvolatile
storage; see Chapter 38), so that models with wide-scale variations, or simply enor-
mous data size, may be handled. None of these data structures is universal; each
has been brought to bear in specific circumstances, depending on the nature of
the data (manifold vs. nonmanifold, polyhedral vs. curved, etc.) and the prob-
lem at hand. We forego here a detailed discussion of representational issues; see
Chapters 56 and 57.

The data structures alluded to above represent “macroscopic” properties of
scene geometry—shape, gross structure, etc. Representing material properties, in-
cluding reflectance over each surface, and possibly surface microstructure (such as
roughness) and substructure (as with layers of skin or other tissue), is another fun-
damental concern of graphics. For each material, computer graphics researchers
craft and employ quantitative descriptions of the interaction of radiant energy
and/or physical forces with objects having these properties. Examples include
human-made objects such as machine parts, furniture, and buildings; organic ob-
jects such as flora and fauna; naturally occurring objects such as molecules, terrains,
and galaxies; and wholly synthetic objects and materials. Analogously, suitable rep-
resentations of radiant energy and physical forces also must be crafted in order that
the simulation process can model such effects as erosion [DPH96].

ACQUISITION

In practice, algorithms require input. Realistic scene generation can demand com-
plex geometric and radiometric models—for example, of scene geometry and re-
flectance properties, respectively. Nongeometric scene generation methods can use
sparse or dense collections of images of real scenes. Geometric and image inputs
must arise from some source; this model acquisition problem is a core prob-
lem in graphics. Models may be generated by a human designer (for example,
using Computer-Aided Design packages), generated procedurally (for example, by
applying recursive rules), or constructed by machine-aided manipulation of im-
age data (for example, generating 3D topographical maps of terrestrial or extra-
terrestrial terrain from multiple photographs), or other machine-sensing methods
(e.g., [CLI6G]). Methods for largely automatic (i.e., minimally human-assisted) ac-
quisition of large-scale geometric models have arisen in the past decade. For ex-

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1382 D. Dobkin and S. Teller

ample, Google StreetView [GSV16] acquisition combined with methods of image
stitching (e.g., [Szel0]) developed in the computer vision community have largely
automated the acquisition task.

RENDERING

We partition the simulation process of rendering into wvisibility and shading sub-
components, which are treated in separate subsections below.

For static scenes, and with more difficulty when conditions change with time,
rendering can be factored into geometrically and radiometrically view-independent
tasks (such as spatial partitioning for surface intervisibility, and the computation of
diffuse illumination) and their view-dependent counterparts (culling and specular il-
lumination, respectively). View-independent tasks can be cast as precomputations,
while at least some view-dependent tasks cannot occur until the instantaneous
viewpoint is known. These distinctions have been blurred by the development of
data structures that organize lazily-computed, view-dependent information for use
in interactive settings [TBDIG].

INTERACTION (SIMULATION OF DYNAMICS)

Graphics brings to bear a wide variety of simulation processes to predict behav-
ior. For example, one might detect collisions to simulate a pair of tumbling dice,
or simulate frictional forces in order to provide haptic (touch) feedback through a
mechanical device to a researcher manipulating a virtual object [LMC94|. Increas-
ingly, graphics researchers are incorporating spatialized sounds into simulations as
well. These physically-based simulations are integral to many graphics applications.
However, the generation of synthetic imagery is the most fundamental operation in
graphics. The next section describes this “rendering” problem.

When datasets become extremely large, some kind of hierarchical, persistent
spatial database is required for efficient storage and access to the data [FKST96],
and simplification algorithms are necessary to store and display complex objects
with varying fidelity (see, e.g., [CVM™96, [HDD™92|).

We first discuss algorithmic aspects of model acquisition, a fundamental first
step in graphics (Section . We next introduce rendering, with its intertwined
operations of visibility determination, shading, and sampling (Section . We
then pose several challenges for the future, listing problems of current or future
interest in computer graphics on which computational geometry may have a sub-
stantial impact (Section [52.5). Finally, we list further references (Section [52.6)).

52.3 ACQUISITION

Model acquisition is fundamental in achieving realistic, complex simulations. In
some cases, the required model information may be “authored” manually, for exam-
ple by a human user operating a computer-aided design application. Clearly manual
authoring can produce only a limited amount of data. For more complex inputs,
simulation designers have crafted “procedural” models, in which code is written to

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1383

generate model geometry and attributes. However, such models often have limited
expressiveness. To achieve both complexity and expressiveness, practitioners em-
ploy sensors such as cameras and range scanners to “capture” representations of
real-world objects.

GLOSSARY

Model capture: Acquiring a data representation of a real-world object’s shape,
appearance, or other properties.

GEOMETRY CAPTURE

In crafting a geometry capture method, the graphics practitioner must choose a
sensor, for example a (passive) camera or multi-baseline stereo camera configura-
tion, or an (active) laser range-finder. Regardless of sensor choice, data fusion from
several sensors requires intrinsic and extrinsic sensor calibration and registration of
multiple sensor observations. The fundamental algorithmic challenges here include
handling noisy data, and solving the data association problem, i.e., determining
which features match or correspond across sensor observations. When the device
output (e.g., a point cloud) is not immediately useful as a geometric model, an in-
termediate step is required to infer geometric structure from the unorganized input
[HDD™92, [AB99]. These problems are particularly challenging in an interactive
context, for example when merging range scans acquired at video rate [RHHL02].
A decade ago, the data size became enormous in the “Digital Michelangelo” project
[ILPCT00] or in GIS (geographical information systems) applied over large land ar-
eas (see Chapter 59). More recently, the scanning provided by projects such as
Google Earth (estimated at over 20 petabytes of information) [Mas12] has added
many orders of magnitude to the complexity of problems that arise in the capture
of geometry. At the same time, the availability of (relatively) high speed processing
in handheld devices coupled with bandwidth that allows these devices to download
from servers with little latency has facilitated the rapid display of captured images
in a variety of contexts.

One thrust common to both computer graphics and computer vision includes
attempts to recover 3D geometry from many cameras situated outside or within
the object or scene of interest. These “volumetric stereo” algorithms must face
representational issues: a voxel data structure grows in size as the cube of the
scene’s linear dimension, whereas a boundary representation is more efficient but
requires additional a priori information.

Another class of challenges arises from hybrids of procedural and data-driven
methods. For example, there exist powerful “grammars” that produce complex
synthetic flora using recursive elaboration of simple shapes [MP96]. These meth-
ods have a high “amplification factor” in the sense that they can produce complex
geometry from a small number of parameters. However, they are notoriously diffi-
cult to invert; that is, given a set of observations of a tree, it is apparently difficult
to recover an L-system (a particular string rewriting system) that reproduces the
tree.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1384 D. Dobkin and S. Teller

APPEARANCE CAPTURE

Another aspect of capture arises in the process of acquiring texture properties or
other “appearance” attributes of geometric models. A number of powerful procedu-
ral methods exist for texture generation [Per85] and 3D volumetric effects such as
smoke, fire, and clouds [SF95]. Researchers are challenged to make these methods
data-driven, i.e., to find the procedural parameters that reproduce observations.

Recently, appearance capture approaches have emerged that attempt to avoid
explicit geometry capture. These “image-based” modeling techniques [MB95] gather
typically dense collections of images of the object or scene of interest, then use the
acquired data to reconstruct images from novel viewpoints (i.e., viewpoints not
occupied by the camera). Outstanding challenges for developers of these meth-
ods include: crafting effective sampling and reconstruction strategies; achieving
effective storage and compression of the input images, which are often highly re-
dundant; and achieving classical graphics effects such as re-illumination under novel
lighting conditions when the underlying object geometry is unknown or only ap-
proximately known. Acquisition strategies are also needed when capturing mate-
rials with complex appearance due to, for example, subsurface effects (e.g., veined
marble) [LPCT00].

MOTION CAPTURE

Capturing geometry and appearance of static scenes populated by rigid bodies is
challenging. Yet this problem can itself be generalized in two ways. First, scenes
may be dynamic, i.e., dependent on the passage of time. Second, scene objects may
be articulated, i.e., composed of a number of rigid or deformable subobjects, linked
through a series of geometric transformations. Although the dimensionality of the
observed data may be immense, the actual number of degrees of freedom can be
significantly lower; the computational challenge lies in discovering and representing
the reduced dimensions efficiently and without an unacceptable loss of fidelity to
the original motion. Thus motion capture yields a host of problems: segmenting
objects from one another and from outlier data; inference of object substructure
and degrees of freedom; and scaling up to complex articulated assemblies. Some
of these problems have been addressed in Computer Vision (see also Chapter 54),
although in graphics the same problems arise when processing 3D range (in contrast
to 2D image) data.

OPEN PROBLEMS

Given the existence of the ultra-large data sets that have been developed in the
computer graphics and computer vision communities, find the proper mathematical
framework in the computational geometry community through which to evaluate
the relative performance of competing algorithms for a variety of tasks. Even a
partial solution to this problem will require a thorough understanding of current
hardware as well as a reasonable projection of future hardwares.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1385

52.4 RENDERING

Rendering is the process through which a computer image of a model (acquired
or otherwise) is created. To render an image that is perceived by the human vi-
sual system as being accurate is often considered to be the fundamental problem
of computer graphics (photorealistic rendering). To do so requires visibility com-
putations to determine which portions of objects are not obscured. Also required
are shading computations to model the photometry of the situation. Because the
resultant image will be sampled on a discrete grid, we must also consider techniques
for minimizing sampling artifacts from the resultant image.

GLOSSARY

Visibility computation: The determination of whether some set of surfaces, or
sample points, is visible to a synthetic observer.

Shading computation: The determination of radiometric values on the surface
(eventually interpreted as colors) as viewed by the observer.

Pixel: A picture element, for example on a raster display.

Viewport: A 2D array of pixels, typically comprising a rectangular region on a
computer display.

View frustum: A truncated rectangular pyramid, representing the synthetic ob-
server’s field of view, with the synthetic eyepoint at the apex of the pyramid. The
truncation is typically accomplished using near and far clipping planes, analo-
gous to the “left, right, top, and bottom” planes that define the rectangular field
of view. (If the synthetic eyepoint is placed at infinity, the frustum becomes a
rectangular parallelepiped.) Only those portions of the scene geometry that fall
inside the view frustum are rendered.

Rasterization: The transformation of a continuous scene description, through
discretization and sampling, into a discrete set of pixels on a display device.

Ray casting: A hidden-surface algorithm in which, for each pixel of an image, a
ray is cast from the synthetic eyepoint through the center of the pixel [App68].
The ray is parameterized by a variable ¢ such that ¢ = 0 is the eyepoint, and
t > 0 indexes points along the ray increasingly distant from the eye. The first
intersection found with a surface in the scene (i.e., the intersection with minimum
positive t) locates the visible surface along the ray. The corresponding pixel is
assigned the intrinsic color of the surface, or some computed value.

Depth-buffering: (also z-buffering) An algorithm that resolves visibility by stor-
ing a discrete depth (initialized to some large value) at each pixel [Cat74]. Only
when a rendered surface fragment’s depth is less than that stored at the pixel
can the fragment’s color replace that currently stored at the pixel.

Irradiance: Total power per unit area impinging on a surface element. Units:
POWER PER RECEIVER AREA.

BRDF': The Bidirectional Reflectance Distribution Function, which maps incident
radiation (at general position and angle of incidence) to reflected exiting radia-
tion (at general position and angle of exiting). Unitless, in [0, 1].

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1386 D. Dobkin and S. Teller

BTDF: The Bidirectional Transmission Distribution Function, which maps inci-
dent radiation (at general position and angle of incidence) to transmitted exiting
radiation (at general position and angle of exiting). Analogous to the BRDF.

Radiance: The fundamental quantity in image synthesis, which is conserved along
a ray traveling through a nondispersive medium, and is therefore “the quantity
that should be associated with a ray in ray tracing” [CW93|. Units: POWER PER
SOURCE AREA PER RECEIVER STERADIAN.

Radiosity: A global illumination algorithm for ideal diffuse environments. Ra-
diosity algorithms compute shading estimates that depend only on the surface
normal and the size and position of all other surfaces and light sources, and that
are independent of view direction. Also: a physical quantity, with units POWER
PER SOURCE AREA.

Ray tracing: An image synthesis algorithm in which ray casting is followed, at
each surface, by a recursive shading operation involving a spherical /hemispherical
integral of irradiance at each surface point. Ray tracing algorithms are best
suited to scenes with small light sources and specular surfaces.

Hybrid algorithm: A global illumination algorithm that models both diffuse and
specular interactions (e.g., [SP89]).

VISIBILITY

LOCAL VISIBILITY COMPUTATIONS

Given a scene composed of modeling primitives (e.g., polygons, or spheres), and a
viewing frustum defining an eyepoint, a view direction, and field of view, the visi-
bility operation determines which scene points or fragments are visible—connected
to the eyepoint by a line segment that meets the closure of no other primitive. The
visibility computation is global in nature, in the sense that the determination of
visibility along a single ray may involve all primitives in the scene. Typically, how-
ever, visibility computations can be organized to involve coherent subsets of the
model geometry.

In practice, algorithms for visible surface identification operate under severe
constraints. First, available memory may be limited. Second, the computation
time allowed may be a fraction of a second—short enough to achieve interactive
refresh rates under changes in viewing parameters (for example, the location or
viewing direction of the observer). Third, visibility algorithms must be simple
enough to be practical, but robust enough to apply to highly degenerate scenes
that arise in practice.

The advent of machine rendering techniques brought about a cascade of screen-
space and object-space combinatorial hidden-surface algorithms, famously surveyed
and synthesized in [SSS74]. However, a memory-intensive screen-space technique—
depth-buffering—soon won out due to its simplicity and the decreasing cost of
memory. In depth-buffering, specialized hardware performs visible surface deter-
mination independently at each pixel. Each polygon to be rendered is rasterized,
producing a collection of pixel coordinates and an associated depth for each. A
polygon fragment is allowed to “write” its color into a pixel only if the depth of
the fragment at hand is less than the depth stored at the pixel (all pixel depths
are initialized to some large value). Thus, in a complex scene each pixel might be

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1387

written many times to produce the final image, wasting computation and memory
bandwidth. This is known as the overdraw problem.

Four decades of spectacular improvement in graphics hardware have ensued,
and high-end graphics workstations now contain hundreds of increasingly complex
processors that clip, illuminate, rasterize, and texture billions of polygons per sec-
ond. This capability increase has naturally led users to produce ever more complex
geometric models, which suffer from increasing overdraw. Object simplification
algorithms, which represent complex geometric assemblages with simpler shapes,
do little to reduce overdraw. Thus, visible-surface identification (hidden-surface
elimination) algorithms have again come to the fore (Section 33.8.1).

GLOBAL VISIBILITY COMPUTATIONS

Real-time systems perform visibility computations from an instantaneous synthetic
viewpoint along rays associated with one or more samples at each pixel of some
viewport. However, visibility computations also arise in the context of global illu-
mination algorithms, which attempt to identify all significant light transport among
point and area emitters and reflectors, in order to simulate realistic visual effects
such as diffuse and specular interreflection and refraction. A class of global visibility
algorithms has arisen for these problems. For example, in radiosity computations, a
fundamental operation is determining area-area visibility in the presence of block-
ers; that is, the identification of those (area) surface elements visible to a given
element, and for those partially visible, all tertiary elements causing (or potentially
causing) occlusion [HW91l, [HSAIT].

CONSERVATIVE ALGORITHMS

Graphics algorithms often employ quadrature techniques in their innermost loops—
for example, estimating the energy arriving at one surface from another by casting
multiple rays and determining an energy contribution along each. Thus, any effi-
ciency gains in this frequent process (e.g., omission of energy sources known not to
contribute energy at the receiver, or omission of objects known not to be blockers)
will significantly improve overall system performance. Similarly, occlusion culling
algorithms (omission of objects known not to contribute pixels to the rendered
image) can significantly reduce overdraw. Both techniques are examples of con-
servative algorithms, which overestimate some geometric set by combinatorial
means, then perform a final sampling-based operation that produces a (discrete)
solution or quadrature. Of course, the success of conservative algorithms in practice
depends on two assumptions: first, that through a relatively simple computation, a
usefully tight bound can be attained on whatever set would have been computed by
a more sophisticated (e.g., exact) algorithm; and second, that the aggregate time
of the conservative algorithm and the sampling pass is less than that of an exact
algorithm for input sizes encountered in practice.

This idea can be illustrated as follows. Suppose the task is to render a scene of
n polygons. If visible fragments must be rendered ezactly, any correct algorithm
must expend at least kn? time, since n polygons (e.g., two slightly misaligned combs,
each with n/2 teeth) can cause O(n?) visible fragments to arise. But a conservative
algorithm might simply render all n polygons, incurring some overdraw (to be
resolved by a depth-buffer) at each pixel, but expending only time linear in the size
of the input.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1388 D. Dobkin and S. Teller

This highlights an important difference between computational geometry and
computer graphics. Standard computational geometry cost measures would show
that the O(n?) algorithm is optimal in an output-sensitive model (Section 33.8.1).
In computer graphics, hardware considerations motivate a fundamentally different
approach: rendering a (judiciously chosen) superset of those polygons that will
contribute to the final image. A major open problem is to unify these approaches
by finding a cost function that effectively models such considerations (see below).

HARDWARE TRENDS

In previous decades, several hybrid object-space/screen-space visibility algorithms
emerged (e.g., [GKMO93]). As general-purpose processors became faster, such hy-
brid algorithms became more widely used. In certain situations, these algorithms
operated entirely in object space, without relying on special-purpose graphics hard-
ware [CT96]. In the past decade, the arrival of high powered graphics processing
units (GPUs) from companies such as nVidia have allowed programming to occur
at the level of programmable shaders at the vertex, geometry and pixel level. These
shaders tend to be largely driven by hardware considerations but give hybrid solu-
tions. Vertex shaders operate at the level of the vertex and can do the calculations
necessary to properly light the vertex and, as necessary transform the neighborhood
of the vertex. Geometry shaders operate at the level of the geometric primitive,
typically the triangle, and can perform calculations at this level. Vertices and ge-
ometries are then scan-converted to provide information for the pixel shader which
operates solely in image space and provides a rendering of the scene.

SHADING

Through sampling and visibility operations, a visible surface point or fragment is
identified. This point or fragment is then shaded according to a local or global illu-
mination algorithm. Given scene light sources and material reflection and transmis-
sion properties, and the propagative media comprising and surrounding the scene
objects, the shading operation determines the color and intensity of the incident
and exiting radiation at the point to be shaded. Shading computations can be char-
acterized further as view-independent (modeling only purely diffuse interactions,
or directional interactions with no dependence on the instantaneous eye position)
or view-dependent.

Most graphics workstations perform a local shading operation in hardware,
which, given a point light source, a surface point, and an eye position, evaluates
the energy reaching the eye via a single reflection from the surface. This local op-
eration is implemented in the software and hardware offered by most workstations.
However, this simple model cannot produce realistic lighting cues such as shadows,
reflection, and refraction. These require more extensive, global computations as
described below.

SHADING AS RECURSIVE WEIGHTED INTEGRATION

Most generally, the shading operation computes the energy leaving a differential
surface element in a specified differential direction. This energy depends on the
surface’s emittance and on the product of the surface’s reflectance with the total
energy incident from all other surfaces. This relation is known as the Rendering
Equation [Kaj86], which states intuitively that each surface fragment’s appearance,

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1389

as viewed from a given direction, depends on any light it emits, plus any light (gath-
ered from other objects in the scene) that it reflects in the direction of the observer.
Thus, shading can be cast as a recursive integration; to shade a surface fragment
F, shade all fragments visible to F', then sum those fragments’ illumination upon
F (appropriately weighted by the BRDF or BTDF) with any direct illumination
of F'. Effects such as diffuse illumination, motion blur, Fresnel effects, etc., can be
simulated by supersampling in space, time, and wavelength, respectively, and then
averaging [CPC84].

Of course, a base case for the recursion must be defined. Classical ray tracers
truncate the integration when a certain recursion depth is reached. If this maximum
depth is set to 1, ray casting (the determination of visibility for eye rays only)
results. More common is to use a small constant greater than one, which leads
to “Whitted” or “classical” ray tracing [Whi80]. For efficiency, practitioners also
employ a thresholding technique: when multiple reflections cause the weight with
which a particular contribution will contribute to the shading at the root to drop
below a specified threshold, the recursion ceases. These termination conditions can,
under some conditions, cause important energy-bearing paths to be overlooked. For
example, a bright light source (such as the sun) filtering through many parts of a
house to reach an interior space may be incorrectly discounted by this condition.

In recent years, a hardware trend has developed in support of “programmable
shading,” in which a (typically short, straight-line) program can be downloaded
into graphics hardware for application to every vertex, polygon or pixel processed[l]
This trend has spurred research into, for example, ways to “factor” complex shading
calculations into suitable components for mapping to hardware.

ALIASING

From a purely physical standpoint, the amount of energy leaving a surface in a
particular direction is the product of the spherical integral of incoming energy
and the bidirectional reflectance (and transmittance, as appropriate) in the exiting
direction. From a psychophysical standpoint, the perceived color is an inner product
of the energy distribution incident on the retina with the retina’s spectral response
function. We do not explore psychophysical considerations further here.

Global illumination algorithms perform an integration of irradiance at each
point to be shaded. Ray tracing and radiosity are examples of global illumination
algorithms. Since no closed-form solutions for global illumination are known for
general scenes, practitioners employ sampling strategies. Graphics algorithms typ-
ically attempt “reconstruction” of some illumination function (e.g., irradiance, or
radiance), given some set of samples of the function’s values and possibly other
information, for example about light source positions, etc. However, such recon-
struction is subject to error for two reasons.

First, the well-known phenomenon of aliasing occurs when insufficient samples
are taken to find all high-frequency terms in a sampled signal. In image processing,
samples arise from measurements, and reconstruction error arises from samples
that are too widely spaced. However, in graphics, the sample values arise from a
simulation process, for example, the evaluation of a local illumination equation, or
the numerical integration of irradiance. Thus, reconstruction error can arise from
simulation errors in generating the samples. This second type of error is called
biasing.

L Current manufacturers include NVIDIA http://nvidia.com/ and AMD http://amd.com/.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

http://nvidia.com/
http://amd.com/

1390 D. Dobkin and S. Teller

For example, classical ray tracers [Whi80] may suffer from biasing in three ways.
First, at each shaded point, they compute irradiance only: from direct illumination
by point lights; along the reflected direction; and along the refracted direction.
Significant “indirect” illumination that occurs along any direction other than these
is not accounted for. Thus, indirect reflection and focusing effects are missed.
Classical ray tracers also suffer biasing by truncating the depth of the recursive ray
tree at some finite depth d; thus, they cannot find significant paths of energy from
light source to eye of length greater than d. Third, classical ray tracers truncate
ray trees when their weight falls below some threshold. This can fail to account
for large radiance contributions due to bright sources illuminating surfaces of low
reflectance.

SAMPLING

Sampling patterns can arise from a regular grid (e.g., pixels in a viewport) but
these lead to a stair-stepping kind of aliasing. One solution is to supersample
(i.e., take multiple samples per pixel) and average the results. However, one must
take care to supersample in a way that does not align with the scene geometry or
some underlying attribute (e.g., texture) in a periodic, spatially varying fashion;
otherwise aliasing (including Moiré patterns) will result.

DISCREPANCY

The quality of sampling patterns can be evaluated with a measure known as dis-
crepancy (Chapter 47). For example, if we are sampling in a pixel, features inter-
acting with the pixel can be modeled by line segments (representing parts of edges
of features) crossing the pixel. These segments divide the pixel into two regions.
A good sampling strategy will ensure that the proportion of sample points in each
region approximates the proportion of pixel area in that region. The difference
between these quantities is the discrepancy of the point set with respect to the line
segment. We define the discrepancy of a set of samples (in this case) as the maxi-
mum discrepancy with respect to all line segments. Other measures of discrepancy
are possible, as described below. See also Chapter 13.

Sampling patterns are used to solve integral equations. The advantage of using
a low-discrepancy set is that the solution will be more accurately approximated,
resulting in a better image. These differences are expressed in solution convergence
rates as a function of the number of samples. For example, truly random sampling
has a discrepancy that grows as O(N~2) where N is the number of samples. There
are other sampling patterns (e.g., the Hammersley points) that have discrepancies
growing as O(N ! logk_1 N). Sometimes one wishes to combine values obtained by
different sampling methods [VG95]. The search for good sampling patterns, given
a fixed number of samples, is often done by running an optimization process which
aims to find sets of ever-decreasing discrepancy. A crucial part of any such process
is the ability to quickly compute the discrepancy of a set of samples.

COMPUTING THE DISCREPANCY

There are two common questions that arise in the study of discrepancy: first, given
fixed N, how to construct a good sampling pattern in the model described above;
second, how to construct a good sampling pattern in an alternative model.

For concreteness, consider the problem of finding low discrepancy patterns in

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1391

the unit square, modeling an individual pixel. As stated above, the geometry of
objects is modeled by edges that intersect the pixel dividing it into two regions,
one where the object exists and one where it does not. An ideal sampling method
would sample the regions in proportion to their relative areas.

We model this as a discrepancy problem as follows. Let S be a sample set of
points in the unit square. For a line [(actually, a segment arising from a polygon
boundary in the scene being rendered), define the two regions St and S~ into
which [divides S. Ideally, we want a sampling pattern that has the same fraction of
samples in the region ST as the area of S*. Thus, in the region S, the discrepancy
with respect to [is

[£(S MST)/8(S) — Area(ST)|,

where #(-) denotes the cardinality operator. The discrepancy of the sample set
S with respect to a line [is defined as the larger of the discrepancies in the two
regions. The discrepancy of set S is then the maximum, over all lines I, of the
discrepancy of S with respect to [.

Finding the discrepancy in this setting is an interesting computational geometry
problem. First, we observe that we do not need to consider all lines. Rather, we
need consider only those lines that pass through two points of S, plus a few lines
derived from boundary conditions. This suggests the O(n?) algorithm of computing
the discrepancy of each of the O(n?) lines separately. This can be improved to
O(n?logn) by considering the fan of lines with a common vertex (i.e., one of the
sample points) together. This can be further improved by appealing to duality.
The traversal of this fan of lines is merely a walk in the arrangement of lines in
dual space that are the duals of the sample points. This observation allows us
to use techniques similar to those in Chapter 28 to derive an algorithm that runs
asymptotically as O(n?). Full details are given in [DEMO93].

There are other discrepancy models that arise naturally. A second obvious can-
didate is to measure the discrepancy of sample sets in the unit square with respect
to axis-oriented rectangles. Here we can achieve a discrepancy of O(n?logn), again
using geometric methods. We use a combination of techniques, appealing to the
incremental construction of 2D convex hulls to solve a basic problem, then using
the sweep paradigm to extend this incrementally to a solution of the more general
problem. The sweep is easier in the case in which the rectangle is anchored with
one vertex at the origin, yielding an algorithm with running time O(n log? n).

The model given above can be generalized to compute bichromatic discrep-
ancy. In this case, we have sample points that are colored either black or red. We
can now define the discrepancy of a region as the difference between its number of
red and black points. Alternatively, we can look for regions (of the allowable type)
that are most nearly monochromatic in red while their complements are nearly
monochromatic in black. This latter model has application in computational learn-
ing theory. For example, red points may represent situations in which a concept
is true, black situations where it is false. The minimum discrepancy rectangle is
now a classifier of the concept. This is a popular technique for computer-assisted
medical diagnosis.

The relevance of these algorithms to computational geometry is that they will
lead to faster algorithms for testing the “goodness” of sampling patterns, and thus
eventually more efficient algorithms with bounded sampling error. Also, algorithms
for computing the discrepancy relative to a particular set system are directly related
to the system’s VC-dimension (see Section 47.1).

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1392 D. Dobkin and S. Teller

OPEN PROBLEMS

An enormous literature of adaptive, backward, forward, distribution, etc. ray trac-
ers has evolved to address sampling and bias errors. However, the fundamental
issues can be stated simply. (Each of the problems below assumes a geometric
model consisting of n polygons.)

A related inverse problem arises in machine vision, now being adopted by
computer graphics practitioners as a method for acquiring large-scale geometric
models from imagery.

The problems below are open for both the unit cube and unit ball in all dimen-
sions.

1. The set of visible fragments can have complexity Q(n?) in the worst case.
However, the complexity is lower for many scenes. If k is the number of
edge incidences (vertices) in the projected visible scene, the set of visible
fragments can be computed in optimal output-sensitive O(nk/2log n) time
[SO92]. Although specialized results have been obtained, optimality has not
been reached in many cases. See Table 33.8.1.

2. Give a spatial partitioning and ray casting algorithm that runs in amortized
nearly-constant time (that is, has only a weak asymptotic dependence on
total scene complexity). Identify a useful “density” parameter of the scene
(e.g., the largest number of simultaneously visible polygons), and express the
amortized cost of a ray cast in terms of this parameter.

3. Give an output-sensitive algorithm which, for specified viewing parameters,
determines the set of “contributing” polygons—i.e., those which contribute
their color to at least one viewport pixel.

4. Give an output-sensitive algorithm which, for specified viewing parameters,
approximates the visible set to within e. That is, produce a superset of the
visible polygons of size (alternatively, total projected area) at most (1 + ¢)
times the size (resp., projected area) of the true set. Is the lower bound for this
problem asymptotically smaller than that for the exact visibility problem?

5. For machine-dependent parameters A and B describing the transform (per-
vertex) and fill (per-pixel) costs of some rendering architecture, give an al-
gorithm to compute a superset S of the visible polygon set minimizing the
rendering cost on the specified architecture.

6. In a local illumination computation, identify those polygons (or a superset)
visible from the synthetic observer, and construct, for each visible polygon
P, an efficient function V(p) that returns 1 iff point p € P is visible from the
viewpoint.

7. In a global illumination computation, identify all pairs (or a superset) of in-
tervisible polygons, and for each such pair P,), construct an efficient function
V(p,q) that returns 1 iff point p € P is visible from point ¢ € Q.

8. Image-based rendering [MB95]: Given a 3D model, generate a minimal
set of images of the model such that for all subsequent query viewpoints, the
correct image can be recovered by combination of the sample images.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1393

9. Given a geometric model M, a collection of light sources L, a synthetic view-
point E, and a threshold e, identify all optical paths to E bearing radiance
greater than e.

10. Given a geometric model M, a collection of light sources L, and a threshold
€, identify all optical paths bearing radiance greater than e.

11. An observation of a real object comprises the product of irradiance and re-
flection (BRDF). How can one deduce the BRDF from such observations?

12. Given N, generate a minimum-discrepancy pattern of N samples.

13. Given a low-discrepancy pattern of K points, generate a low (or lower) dis-
crepancy pattern of K + 1 points.

52,5 FURTHER CHALLENGES

We have described several core problems of computer graphics and illustrated the
impact of computational geometry. We have only scratched the surface of a highly
fruitful interaction; the possibilities are expanding, as we describe below. These
computer graphics problems all build on the combinatorial framework of compu-
tational geometry and so have been, and continue to be, ripe candidates for ap-
plication of computational geometry techniques. Numerous other problems remain
whose combinatorial aspects are perhaps less obvious, but for which interaction
may be equally fruitful.

INDEX AND SEARCH

The proliferation of geometric models leads to a problem analogous to that in
document storage: how to index models so that they can be efficiently found later.
In particular, we might wish to define the Google of 3D models. Searching by name
is of limited utility, since in many cases a model’s author may not have named it
suggestively, or as expected by the seeker. Searching by attributes or appearance
is likely to be more fruitful or at the least, a necessary adjunct to searching by
name. Perhaps the most successful search mechanisms to date are those relying on
geometric “shape signatures” of objects, along with name and attribute metadata
where available [FMK™03|. One promising class of signatures related to the medial
axis transform is the “shock graph” [LKOI]. A first step toward building such a
system appears in [OFCD02].

TRANSMISSION AND LEVEL OF DETAIL

Fast network connectivity is not yet universally deployed, and the number and
size of available models is growing inexorably with time. Thus in many contexts
it is important to store, transmit, and display geometric information efficiently.
A variety of techniques have been developed for “progressive” [Hop97] or “multi-
resolution” geometry representation [GSS99], as well as for automated level-of-detail
generation from source objects |[GHI7]. For specific model classes, e.g., terrain,

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1394 D. Dobkin and S. Teller

efficient algorithms have been developed for varying the fidelity of the display across
the field of view [BD9§|. Finally, some practitioners have proposed techniques to
choose levels of detail, within some time rendering budget, to optimize some image
quality criterion [FKST96].

OPEN PROBLEM

Robust simplification. Cheng et al. [CDP04] recently gave a method for computing
levels of details that preserve the genus of the original surface. Combine their
techniques with techniques for robust computation to derive a robust and efficient
scheme for simplification that can be easily implemented. See Chapter 45.

INTERACTION

In addition to off-line or batch computations, graphics practitioners develop on-line
computations which involve a user in an interactive loop with input and output (dis-
play) stages, such as scientific visualization. For responsiveness, such applications
may have to produce many outputs per second: rendering applications typically
must maintain 30Hz or faster, whereas haptic or force-feedback applications may
operate at 10KHz. Modern applications must also cope with large datasets, only
parts of which may be memory-resident at any moment. Thus effective techniques
for indexing, searching, and transmitting model data are required. For out-of-core
data, predictive fetching strategies are required to avoid high-latency “hiccups” in
the user’s display.

Beyond seeing and feeling virtual representations of an object, new “3D print-
ing” techniques have emerged for rapid prototyping applications that create real,
physical models of objects. Computational geometry algorithms are required to
plan the slicing or deposition steps needed. Also, “augmented reality” (AR) meth-
ods attempt to provide synthetically generated image overlays onto real scenes, for
example using head-mounted displays or hand-held projectors. AR methods re-
quire good, low-latency 6-DOF tracking of the user’s head or device position and
orientation in extended environments.

An exciting new class of “pervasive computing” and “mobile computing” ap-
plications attempts to move computation away from the desktop and out into the
extended work, home, or outdoor environment. These applications are by nature
integrative, encompassing geometric and functional models, position and orienta-
tion tracking, proximity data structures, ad hoc networks, and distributed self-
calibration algorithms [PMBTO0I].

OPEN PROBLEM

Collision detection and force feedback. Imagine that every object has an associated
motion, and that some objects (e.g., virtual probes) are interactively controlled.
Suppose further that when pairs of objects intersect, there is a reaction (due, e.g.,
to conservation of momentum). Here we wish to render frames and generate haptic
feedback while accounting for such physical considerations. Are there suitable data
structures and algorithms within computational geometry to model and solve this
problem (e.g., [LMC94| [MC95])?

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1395

DYNAMICS

When simulations include objects that affect each other through force exchange
or collision, they must efficiently identify the actual interactions. Usually there is
significant temporal coherence, i.e., the set of objects near a given object changes
slowly over time. A number of techniques have been proposed to track moving
objects in a spatial index or closest-pair geometric data structure in order to detect
collisions efficiently [MC95| [LMC94l BGH99]. The “object” of interest may be the
geometric representation of a user, for example of a finger or hand probing a virtual
scene. Recently, some authors have proposed synthesizing sound information to
accompany the visual simulation outputs [OSG02].

We have focused this chapter on problems in which the parameters are static;
that is, the geometry is unchanging, and nothing is moving (except perhaps the
synthetic viewpoint). Now, we briefly describe situations where this is not the case
and deeper analysis is required. In these situations it is likely that computational
geometry can have a tremendous impact; we sketch some possibilities here.

Each of the static assumptions above may be relaxed, either alone or in com-
bination. For example, objects may evolve with time; we may be interested in
transient rather than steady-state solutions; material properties may change over
time; object motions may have to be computed and resolved; etc. It is a challenge
to determine how techniques of computational geometry can be modified to address
state-of-the-art and future computer graphics tasks in dynamic environments.

Among the issues we have not addressed where these considerations are impor-
tant are the following.

MODEL CHANGES OVER TIME

In a realistic model, even unmoving objects change over time, for example becoming
dirty or scratched. In some environments, objects rust or suffer other corrosive
effects. Sophisticated geometric representations and algorithms are necessary to
capture and model such phenomena [DPH96]. See Chapter 53.

INVERSE PROCESSES

Much of what we have described is a feed-forward process in which one specifies
a model and a simulation process and computes a result. Of equal importance
in design contexts is to specify a result and a simulation process, and compute
a set of initial conditions that would produce the desired result. For example,
one might wish to specify the appearance of a stage, and deduce the intensities of
scores or hundreds of illuminating light sources that would result in this appearance
[SDSA93]. Or, one might wish to solve an inverse kinematics problem in which an
object with multiple parts and numerous degrees of freedom is specified. Given
initial and final states, one must compute a smooth, minimal energy path between
the states, typically in an underconstrained framework. This is a common problem
in robotics (see Section 50.1). However, the configurations encountered in graphics
tend to have very high complexity. For example, convincingly simulating the motion
of a human figure requires processing kinematic models with hundreds of degrees
of freedom.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1396 D. Dobkin and S. Teller

EXTERNAL MEMORY ALGORITHMS

Computational geometry assumes a realm in which all data can be stored in RAM
and accessed at no cost (or unit cost per word). Increasingly often, this is not
the case in practice. For example, many large databases cannot be stored in main
memory. Only a small subset of the model contributes to each generated image,
and algorithms for efficiently identifying this subset, and maintaining it under small
changes of the viewpoint or model, form an active research area in computer graph-
ics. Given that motion in virtual environments is usually smooth, and that hard
real-time constraints preclude the use of purely reactive, synchronous techniques,
such algorithms must be predictive and asynchronous in nature [FKST96]. Achiev-
ing efficient algorithms for appropriately shuttling data between secondary (and
tertiary) storage and main memory is an interesting challenge for computational
geometry.

52.6 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys:

[Dob92]: A survey article on computational geometry and computer graphics.
[Dor94]: Survey of object-space hidden-surface removal algorithms.

[Yao92| [LP84]: Surveys of computational geometry.

[CCSDO3]: Survey of visibility for walkthroughs.

RELATED CHAPTERS

Chapter 13: Geometric discrepancy theory and uniform distribution
Chapter 16: Subdivisions and triangulations of polytopes

Chapter 30: Polygons

Chapter 33: Visibility

Chapter 39: Collision and proximity queries

Chapter 41: Ray shooting and lines in space

Chapter 50: Algorithmic motion planning

Chapter 56: Splines and geometric modeling

Chapter 45: Robust geometric computation

Chapter 57: Solid modeling

REFERENCES

[AB99] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput.
Geom., 22:481-504, 1999.

[App68] A. Appel. Some techniques for shading machine renderings of solids. In Proc. Spring

Joint Computer Conference, pages 37-45, ACM Press, 1968.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 52: Computer graphics 1397

[BD9g] M. de Berg and K. Dobrindt. On levels of detail in terrains. Graphical Models Image
Proc., 60:1-12, 1998.

[BGH99] J. Basch, L.J. Guibas, and J. Hershberger. Data structures for mobile data. J.
Algorithms, 31:1-28, 1999.

[CAAT96] B. Chazelle, N. Amenta, Te. Asano, G. Barequet, M. Bern, J.-D. Boissonnat,
J.F. Canny, K.L. Clarkson, D.P. Dobkin, B.R. Donald, S. Drysdale, H. Edels-
brunner, D. Eppstein, A.R. Forrest, S.J. Fortune, K.Y. Goldberg, M.T. Goodrich,
L.J. Guibas, P. Hanrahan, C.M. Hoffmann, D.P. Huttenlocher, H. Imai, D.G. Kirk-
patrick, D.T. Lee, K. Mehlhorn, V.J. Milenkovic, J.S.B. Mitchell, M.H. Overmars,
R. Pollack, R. Seidel, M. Sharir, J. Snoeyink, G.T. Toussaint, S. Teller, H. Voel-
cker, E. Welzl, and C.K. Yap. Application Challenges to Computational Geometry:
CG Impact Task Force Report. Tech. Rep. TR-521-96, Princeton CS Dept., 1996.
https://www.cs.princeton.edu/research/techreps/TR-521-96

[CatT4] E.E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces.
Ph.D. thesis, Univ. Utah, TR UTEC-CSc-74-133, 1974.

[CCSDO03] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand. A survey of visibility for
walkthrough applications. IEFE. Trans. Visualization Comput. Graphics, 9:412-431,
2003.

[CDP04] S.-W. Cheng, T.K. Dey, and S.-H. Poon. Hierarchy of surface models and irreducible
triangulation. Comput. Geom., 27:135-150, 2004.

[CL96] B. Curless and M. Levoy. A volumetric method for building complex models from
range images. In Proc. 23rd ACM Conf. SIGGRAPH, pages 303-312, 1996.

[CPC84] R.L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. SIGGRAPH Comput.
Graph., 18:137-145, 1984.

[CT96] S. Coorg and S. Teller. Temporally coherent conservative visibility. Comput. Geom.
12,105-124, 1999.

[CVMT96] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P.K. Agarwal, F.P. Brooks,
Jr., and W.V. Wright. Simplification envelopes. In Proc. 23rd ACM Conf. SIG-
GRAPH, pages 119-128, 1996.

[CW93] M.F. Cohen and J.R. Wallace. Radiosity and Realistic Image Synthesis. Academic
Press, Cambridge, 1993.

[DEM93] D.P. Dobkin, D. Eppstein, and D.P. Mitchell. Computing the discrepancy with ap-
plications to supersampling patterns. In Proc. 9th Sympos. Comput. Geom., pages
47-52, ACM Press, 1993.

[Dob92] D.P. Dobkin. Computational geometry and computer graphics. Proc. IEEE, 80:1400—
1411, 1992.

[Dor94] S.E. Dorward. A survey of object-space hidden surface removal. Internat. J. Comput.
Geom. Appl., 4:325-362, 1994.

[DPH96] J. Dorsey, H. Pedersen, and P. Hanrahan. Flow and changes in appearance. In Proc.
23rd ACM Conf. SIGGRAPH, pages 411-420, 1996.

[DT04] D.P. Dobkin and S. Teller. Computer graphics. In J.E. Goodman and J. O’Rourke,
editors, CRC Handbook of Discrete and Computational Geometry, 2nd edition, CRC
Press, Boca Raton, 2004.

[FKST96] T. Funkhouser, D. Khorramabadi, C. Séquin, and S. Teller. The UCB system for
interactive visualization of large architectural models. Presence, 5:13-44, 1996.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

https://www.cs.princeton.edu/research/techreps/TR-521-96

1398 D. Dobkin and S. Teller

[FMK'03] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D.P. Dobkin, and
D. Jacobs. A search engine for 3D models. ACM Trans. Graph., 22:83-105, 2003.

[GH97] M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics. In
Proc. 24th ACM Conf. SIGGRAPH, pages 209-216, 1997.

[GKM93] N. Greene, M. Kass, and G.L. Miller. Hierarchical Z-buffer visibility. In Proc. 20th
ACM Conf. SIGGRAPH, pages 231-238, 1993.

[GSS99] I. Guskov, W. Sweldens, and P. Schroder. Multiresolution signal processing for meshes.
In Proc. 26th ACM Conf. SIGGRAPH, pages 325-334, 1999.

[GSV16] Understand Google Street View, https://www.google.com/maps/streetview/
understand/, retrieved February 7, 2016.

[HDD"92] H. Hoppe, T.D. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. In Proc. 19th ACM Conf. SIGGRAPH, pages
71-78, 1992.

[Hop97] H. Hoppe. View-dependent refinement of progressive meshes. In Proc. 24th ACM
Conf. SIGGRAPH, pages 189-198, 1997.

[HSA91] P. Hanrahan, D. Salzman, and L.J. Aupperle. A rapid hierarchical radiosity algorithm.
In Proc. 18th ACM Conf. SIGGRAPH, pages 197-206, 1991.

[HW9I1] E. Haines and J.R. Wallace. Shaft culling for efficient ray-traced radiosity. In Proc. 2nd
Eurographics Workshop Rendering, pages 122—-138, 1991.

[Kaj86] J.T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20:143-150, 1986.

[LKO1] F.F. Leymarie and B.B. Kimia. The shock scaffold for representing 3D shape. In Proc.

4th Internat. Workshop Visual Form, pages 216—229. Springer-Verlag, Berlin, 2001.

[LMC94] M.C. Lin, D. Manocha, and J.F. Canny. Fast contact determination in dynamic
environments. In Proc. Internat. Conf. Robot. Autom., pages 602-609, 1994.

[LP84] D.T. Lee and F.P. Preparata. Computational geometry: A survey. IEEE Trans.
Comput., 33:1072-1101, 1984.

[LPCT00] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital Michelangelo
project: 3D scanning of large statues. In Proc. 27th ACM Conf. SIGGRAPH, pages
131-144, 2000.

[Mas12] Machable. 11 Fascinating Facts About Google Maps, http://mashable.com/2012/
08/22/google-maps-facts/#0Czys4bUBkqO, retrieved February 3, 2016.

[MB95] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system.
In Proc. 22nd ACM Conf. SIGGRAPH 95, pages 3946, 1995.
[MC95] B. Mirtich and J.F. Canny. Impulse-based simulation of rigid bodies. In 1995 Sympos.

Interactive 3D Graphics, pages 181-188, 1995.

[MP96] R. Mech and P. Prusinkiewicz. Visual models of plants interacting with their environ-
ment. In Proc. 23rd ACM Conf. SIGGRAPH, pages 397-410, 1996.

[OFCDO02] R. Osada, T. Funkhouser, B. Chazelle, and D.P. Dobkin. Shape distributions. ACM
Trans. Graph., 21:807-832, 2002.

[0SGO02] J. O’Brien, C. Shen, and C. Gatchalian. Natural phenomena: Synthesizing sounds
from rigid-body simulations. Proc. ACM SIGGRAPH Sympos. Computer Animation,
2002.

[Per85] K. Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19:287-296, 1985.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

https://www.google.com/maps/streetview/understand/
https://www.google.com/maps/streetview/understand/
http://mashable.com/2012/08/22/google-maps-facts/#OCzys4bUBkqO
http://mashable.com/2012/08/22/google-maps-facts/#OCzys4bUBkqO

Chapter 52: Computer graphics 1399

[PMBTO01] N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The cricket compass for context-
aware mobile applications. In Proc. 7th ACM Conf. Mobile Comput. Network, pages
1-14, 2001.

[RHHLO2] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D model acquisition. In
Proc. 29th ACM Conf. SIGGRAPH, pages 438-446, 2002.

[SDSA93] C. Schoeneman, J. Dorsey, B. Smits, and J. Arvo. Painting with light. Proc. 20th
ACM Conf. SIGGRAPH, pages 143-146, 1993.

[SF95] J. Stam and E. Fiume. Depicting fire and other gaseous phenomena using diffusion
processes. In Proc. 22nd ACM Conf. SIGGRAPH, pages 129-136, 1995.

[SO92] M. Sharir and M.H. Overmars. A simple output-sensitive algorithm for hidden surface
removal. ACM Trans. Graph., 11:1-11, 1992.

[SP89] F.X. Sillion and C. Puech. A general two-pass method integrating specular and diffuse
reflection. SIGGRAPH Comput. Graph., 23:335—-344, 1989.

[SSST74] LLE. Sutherland, R.F. Sproull, and R.A. Schumacker. A characterization of ten hidden-

surface algorithms. ACM Comput. Surv., 6:1-55, 1974.
[Szel0] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, Berlin, 2010.

[TBDY6] S. Teller, K. Bala, and J. Dorsey. Conservative radiance envelopes for ray tracing. In
Proc. Tth Eurographics Workshop Rendering, pages 105-114, 1996.

[VGI5] E. Veach and L.J. Guibas. Optimally combining sampling techniques for Monte Carlo
rendering. In Proc. 22nd ACM Conf. SIGGRAPH, pages 419-428, 1995.

[Whi80] T. Whitted. An improved illumination model for shading display. Commun. ACM,
23:343-349, 1980.

[Yao92] F.F. Yao. Computational geometry. In Algorithms and Complezity, Handbook of
Theoretical Computer Science, volume A, Elsevier, Amsterdam, pages 343-389, 1992.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Téth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

