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INTRODUCTION

Robotics is concerned with the generation of computer-controlled motions of phys-
ical objects in a wide variety of settings. Because physical objects define spatial
distributions in 3-space, geometric representations and computations play an im-
portant role in robotics. As a result the field is a significant source of practical
problems for computational geometry. There are substantial differences, however,
in the ways researchers in robotics and in computational geometry address related
problems. Robotics researchers are primarily interested in developing methods that
work well in practice and can be combined into integrated systems. They often
pay less attention than researchers in computational geometry to the underlying
combinatorial and complexity issues (the focus of Chapter 50). This difference in
approach will become clear in the present chapter.

We start this chapter with part manipulation (Section 51.1), which is a
frequently-performed operation in industrial robotics concerned with the physi-
cal rearrangement of multiple parts, in preparation for further automated steps.
Next, we consider the problem of assembly sequencing (Section 51.2), where mul-
tiple parts need to be assembled into a target shape. A significant part of this
chapter is devoted to motion planning (Section 51.3), which is concerned with find-
ing a collision-free path for a robot operating in an environment cluttered with
obstacles. We put special emphasis on sampling-based techniques for dealing with
the problem. We then review various extensions of this problem in Section 51.4.
The three final and brief sections are dedicated to software for the implementation
of sampling-based motion-planning algorithms, applications of motion planning be-
yond robotics and bibliographic sources.

GLOSSARY

Workspace W: A subset of 2D or 3D physical space: W ⊂ Rk (k = 2 or 3).

Body: Rigid physical object modeled as a compact manifold with boundary
B ⊂ Rk (k = 2 or 3). B’s boundary is assumed piecewise-smooth. We will use
the terms “body,” “physical object,” and “part” interchangeably.

Robot: A collection of bodies capable of generating their own motions.

Configuration: Any mathematical specification of the position and orientation
of every body composing a robot, relative to a fixed coordinate system. The
configuration of a single body is also called a placement or a pose.

Configuration space C: Set of all configurations of a robot. For almost any
robot, this set is a smooth manifold. We will always denote the configuration
space of a robot by C and its dimension by m. Given a robot A, we will let A(q)
denote the subset of the workspace occupied by A at configuration q.
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Number of degrees of freedom: The dimension m of C. In the following we
will abbreviate “degree of freedom” by dof.

51.1 PART MANIPULATION

Part manipulation is one of the most frequently performed operations in industrial
robotics: parts are grasped from conveyor belts, they are oriented prior to feeding
assembly workcells, and they are immobilized for machining operations.

GLOSSARY

Wrench: A pair [f ,p×f ], where p denotes a point in the boundary of a body B,
represented by its coordinate vector in a frame attached to B, f designates a
force applied to B at p, and × is the vector cross-product. If f is a unit vector,
the wrench is said to be a unit wrench.

Finger: A tool that can apply a wrench.

Grasp: A set of unit wrenches wi = [f i,pi×f i], i = 1, . . . , p, defined on a body
B, each created by a finger in contact with the boundary, ∂B, of B. For each
wi, if the contact is frictionless, f i is normal to ∂B at pi; otherwise, it can span
the friction cone defined by the Coulomb law.

Force-closure grasp: A grasp {wi}i=1,...,p such that, for any arbitrary
wrench w, there exists a set of real values {f1, . . . , fp} achieving Σpi=1fiwi = −w.
In other words, a force-closure grasp can resist any external wrenches applied
to B. If contacts are nonsticky, we require that fi ≥ 0 for all i = 1, . . . , p, and
the grasp is called positive. In this section we only consider positive grasps.

Form-closure grasp: A positive force-closure grasp in which all finger-body
contacts are frictionless.

51.1.1 GRASPING

Grasp analysis and synthesis has been an active research area over the last decade
and has contributed to the development of robotic hands and grasping mechanisms.
A comprehensive review of robot grasping foundations can be found at [LMS14,
Chapter 2].

SIZE OF A FORM/FORCE CLOSURE GRASP

The following results are shown in [MLP90, MSS87]:

Bodies with rotational symmetry (e.g., disks in 2-space, spheres and cylinders
in 3-space) admit no form-closure grasps.

All other bodies admit a form-closure grasp with at most four fingers in 2-space
and twelve fingers in 3-space.

All polyhedral bodies have a form-closure grasp with seven fingers.

With frictional finger-body contacts, all bodies admit a force-closure grasp that
consists of three fingers in 2-space and four fingers in 3-space.
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TESTING FOR FORM/FORCE CLOSURE

A necessary and sufficient condition for force closure in 2-space (resp. 3-space)
is that the finger wrenches span three (resp. six) dimensions and that a strictly
positive linear combination of them be zero. Said otherwise, the null wrench (the
origin) should lie in the interior of the convex hull H of the finger wrenches [MSS87].
This condition provides an effective test for deciding in constant time whether a
given grasp achieves force closure. A related quantitative measure of the quality of
a grasp (one among several metrics proposed) is the radius of the maximum ball
centered at the origin and contained in the convex hull H [KMY92].

SYNTHESIZING FORM/FORCE CLOSURE GRASPS

Most research has concentrated on computing grasps with two to four nonsticky
fingers. Optimization techniques and elementary Euclidean geometry are used
in [MLP90] to derive an algorithm computing a single force-closure grasp of a
polygonal or polyhedral part. This algorithm is linear in the part complexity.
Other linear-time techniques using results from combinatorial geometry (Steinitz’s
theorem) are presented in [MSS87, Mis95]. Optimal force-closure grasps are syn-
thesized in [FC92] by maximizing the set of external wrenches that can be balanced
by the contact wrenches.

Finding the maximal regions on a body where fingers can be positioned inde-
pendently while achieving force closure makes it possible to accommodate errors
in finger placement. Geometric algorithms for constructing such regions are pro-
posed in [Ngu88] for grasping polygons with two fingers (with friction) and four
fingers (without friction), and for grasping polyhedra with three fingers (with fric-
tional contact capable of generating torques) and seven fingers (without friction).
Curved obstacles have also been studied [PSS+97]. The latter paper contains a good
overview of work on the effect of curvature at contact points on grasp planning.

DEXTROUS GRASPING

Reorienting a part by moving fingers on the part’s surface is often considered to
lie in the broader realm of grasping. Finger gait algorithms [Rus99] and nonholo-
nomic rolling contacts [HGL+97] for fingertips have been explored. A more general
approach relying on extrinsic resources to the hand is considered in [DRP+14].

51.1.2 CAGING

The problem of caging is concerned with surrounding an object by the fingers of a
robotic hand such that the object may be able to move locally, but cannot escape
the cage. This problem was first introduced in [RB99] with the motivation of
simplifying the challenging task of grasping an object by first caging it. The relation
between caging and grasping is studied in [RMF12]. This work characterizes caging
configurations from which the object can be grasped without breaking the cage.

An important parameter of caging is the number of fingers involved in the con-
struction of the cage—caging of complex objects typically requires more fingers than
simple ones, and is also more complex to compute. Two-finger cagings were studied
in [RB99, PS06, PS11, ABR12] for a polygonal object, and in [PS11, ARB14] for a
polytope; three-finger cagings were the concern of [DB98, ETRP07, VS08, ARB15];

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1346 D. Halperin, L. Kavraki, and K. Solovey

more complex settings are studied in [PVS08, RMF12]. Caging was also used in the
context of manipulation (see Section 51.4.2), where several robots cage the object
in order to manipulate it [SRP02, FHK08].

51.1.3 FIXTURING

Most manufacturing operations require fixtures to hold parts. To avoid the custom
design of fixtures for each part, modular reconfigurable fixtures are often used. A
typical modular fixture consists of a workholding surface, usually a plane, that has
a lattice of holes where locators, clamps, and edge fixtures can be placed. Locators
are simple round pins, while clamps apply pressure on the part.

Contacts between fixture elements and parts are generally assumed to be fric-
tionless. In modular fixturing, contact locations are restricted by the lattice of
holes, and form closure cannot always be achieved. In particular, when three lo-
cators and one clamp are used on a workholding plane, there exist polygons of
arbitrary size for which no fixture design can be achieved [ZG96]. But if parts are
restricted to be rectilinear, a fixture can always be found as long as all edges have
length at least four lattice units [Mis91]. Algorithms for computing all placements
of (frictionless) point fingers that put a polygonal part in form closure and all place-
ments of point fingers that achieve “2nd-order immobility” [RB98] of a polygonal
part are presented in [SWO00].

When the fixturing kit consists of a latticed workholding plane, three locators,
and one clamp, the algorithm in [BG96] finds all possible placements of a given
part on the workholding surface where form closure can be achieved, along with the
corresponding positions of the locators and the clamp. The algorithm in [ORSW95]
computes the form-closure fixtures of input polygonal parts using a kit containing
one edge fixture, one locator, and one clamp.

An algorithm for fixturing an assembly of parts that are not rigidly fastened
together is proposed in [Mat95]. A large number of fixturing contacts are first
scattered at random on the external boundary of the assembly. Redundant contacts
are then pruned until the stability of the assembly is no longer guaranteed.

Fixturing is also studied for more complex parts such as sheet metal with
holes [GGB+04], deformable parts that are modeled as linearly-elastic poly-
gons [GG05] and polygonal chains [CSG+07, RS12].

51.1.4 PART FEEDING

Part feeders account for a large fraction of the cost of a robotic assembly workcell. A
typical feeder must bring parts at subsecond rates with high reliability. The problem
of part-feeder design is formalized in [Nat89] in terms of a set of functions—called
transfer functions—which map configurations to configurations. The goal is
then to find a composition of these functions that maps each configuration to a
unique final configuration (or a small set of final configurations). Given k transfer
functions and n possible configurations, the shortest composition that will result in
the smallest number of final configurations can be found in O(kn4) [Nat89]. If the
transfer functions are all monotone, the complexity is reduced to O(kn2) [Epp90].

Part feeding often relies on nonprehensile manipulation . Nonprehensile
manipulation exploits task mechanics to achieve a goal state without grasping and
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frequently allows accomplishing complex feeding tasks with few dofs. It may also
enable a robot to move parts that are too large or heavy to be grasped and lifted.

Pushing is one form of nonprehensile manipulation. Work on pushing originated
in [Mas82] where a simple rule is established to qualitatively determine the motion
of a pushed object. This rule makes use of the position of the center of friction
of the object on the supporting surface. Given a part we can compute its push
transfer function. The push function, pα : S1 → S1, when given an orientation θ
returns the orientation of the part pα(θ) after it has been pushed from direction
α by a fence orthogonal to the push direction. With a sequence of different push
operations it is possible to uniquely orient a part. The push function has been used
in several nonprehensile manipulation algorithms:

A planning algorithm for a robot that tilts a tray containing a planar part of
known shape to orient it to a desired orientation [EM88]. This algorithm was
extended to the polyhedral case in [EMJ93].

An algorithm to compute the design of a sequence of curved fences along a
conveyor belt to reorient a given polygonal part [WGPB96]. See also [BGOS98].

An algorithm that computes a sequence of motions of a single articulated fence
on a conveyor belt that achieves a goal orientation of an object [AHLM00].

A frictionless parallel-jaw gripper was used in [Gol93] to orient polygonal parts.
For any part P having an n-sided convex hull, there exists a sequence of 2n − 1
squeezes achieving a single orientation of P (up to symmetries of the convex hull).
This sequence is computed in O(n2) time [CI95]. The result has been generalized to
planar parts having a piecewise algebraic convex hull [RG95]. It was shown [SG00]
that one could design plans whose length depends on a parameter that describes the
part’s shape (called geometric eccentricity in [SG00]) rather than on the description
of the combinatorial complexity of the part. For the parallel-jaw gripper we can
define the squeeze transfer function. In [MGEF02] another transfer function is
defined: the roll function. With this function a part is rolled between the jaws by
making one jaw slide in the tangential direction. Using a combination of squeeze and
roll primitives a polygonal part can be oriented without changing the orientation
of the gripper.

Distributed manipulation systems provide another form of nonprehensile ma-
nipulation. These systems induce motions on objects through the application of
many external forces. The part-orienting algorithm for the parallel-jaw gripper
has been adapted for arrays of microelectromechanical actuators which—due to
their tiny size—can generate almost continuous fields [BDM99]. Algorithms that
position and orient parts based on identifying a finite number (depending on the
number of vertices of the part) of distinct equilibrium configurations were also
given in [BDM99, BDH99]. Subsequent work showed that using a carefully se-
lected actuators field, it is possible to position and orient parts in two stable equi-
librium configurations [Kav97]. Finally, a long standing conjecture was proved,
namely that there exists a field that can uniquely position and orient parts in
a single step [BDKL00]. In fact, two different such fields were fully analyzed in
[LK01b, SK01]. On the macroscopic scale it was shown that in-plane vibration
can be used for closed-loop manipulation of objects using vision systems for feed-
back [RMC00], that arrays of controllable airjets can manipulate paper [YRB00],
and that foot-sized discrete actuator arrays can handle heavier objects under var-
ious manipulation strategies [LMC01]. The work [BBDG00] describes a sensorless
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technique for manipulating objects using vibrations.
Some research is devoted to the design of a vibratory bowl feeder, which consists

of a bowl filled with parts surrounded by a helical metal track. Vibrations cause the
parts to advance along the track, where they encounter a sequence of mechanisms,
such as traps [ACH01, BGOS01] or blades [GGS06], which are designed to discard
parts in improper orientations. Eventually, only parts that are oriented in the
desired position reach to the top of the bowl.

OPEN PROBLEMS

A major open practical problem is to predict feeder throughputs to evaluate alter-
native feeder designs, given the geometry of the parts to be manipulated. In relation
to this problem, simulation algorithms have been proposed to predict the pose of a
part dropped on a surface [MZG+96, ME02, PS15, Vár14]. In distributed manip-
ulation, an open problem is to analyze the effect of discrete arrays of actuators on
the positioning and orientation of parts [LMC01, LK01b].

51.2 ASSEMBLY SEQUENCING

Most mechanical products consist of multiple parts. The goal of assembly sequenc-
ing is to compute both an order in which parts can be assembled and the corre-
sponding required movements of the parts.

GLOSSARY

Assembly: Collection of bodies in some given relative placements.

Subassembly: Subset of the bodies composing an assembly A in their relative
positions and orientations in A.

Separated subassemblies: Subassemblies that are arbitrarily far apart from
one another.

Hand: A tool that can hold an arbitrary number of bodies in fixed relative
placements.

Assembly operation: A motion that merges s pairwise-separated subassemblies
(s ≥ 2) into a new subassembly; each subassembly moves as a single body. No
overlapping between bodies is allowed during the operation. The parameter s
is called the number of hands of the operation. We call the reverse of an
assembly operation assembly partitioning.

Assembly sequence: A total ordering on assembly operations that merge the
separated parts composing an assembly into this assembly. The maximum, over
all the operations in the sequence, of the number of hands required by an oper-
ation is called the number of hands of the sequence.

Monotone assembly sequence: A sequence in which no operation brings a
body to an intermediate placement (relative to other bodies), before another
operation transfers it to its final placement.
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NUMBER OF HANDS IN ASSEMBLY

Every assembly of convex polygons in the plane has a two-handed assembly sequence
of translations. In the worst case, s hands are necessary and sufficient for assemblies
of s star-shaped polygons/polyhedra [Nat88].

There exists an assembly of six tetrahedra without a two-handed assembly
sequence of translations, but with a three-handed sequence of translations. Every
assembly of five or fewer convex polyhedra admits a two-handed assembly sequence
of translations. There exists an assembly of thirty convex polyhedra that cannot
be assembled with two hands [SS94].

COMPLEXITY OF ASSEMBLY SEQUENCING

When arbitrary sequences are allowed, assembly sequencing is PSPACE-hard. The
problem remains PSPACE-hard even when the bodies are polygons, each with a
constant number of vertices [Nat88].

When only two-handed monotone sequences are permitted, deciding if an as-
sembly A can be partitioned into two subassemblies S and A\S such that they
can be separated by an arbitrary motion is NP-complete [WKLL95]. The prob-
lem remains NP-complete when both S and A\S are required to be connected and
motions are restricted to translations [KK95].

MONOTONE TWO-HANDED ASSEMBLY SEQUENCING

A popular approach to assembly sequencing is disassembly sequencing [HdMS91]. A
sequence that separates an assembly into its individual components is first generated
and next reversed. Most existing assembly sequencers can only generate two-handed
monotone sequences. Such a sequence is computed by partitioning the assembly
and, recursively, the resulting subassemblies into two separated subassemblies.

The nondirectional blocking graph (NDBG) is proposed in [WL94] to rep-
resent all the blocking relations in an assembly. It is a subdivision of the space of all
allowable motions of separation into a finite number of cells such that within each
cell the set of blocking relations between all pairs of parts remains fixed. Within
each cell this set is represented in the form of a directed graph, called the directional
blocking graph (DBG). The NDBG is the collection of the DBGs over all the cells
in the subdivision.

We illustrate this approach for polyhedral assemblies when the allowable mo-
tions are infinite translations. The partitioning of an assembly consisting of poly-
hedral parts into two subassemblies is performed as follows. For an ordered pair of
parts Pi, Pj , the 3-vector ~d is a blocking direction if translating Pi to infinity in

direction ~d will cause Pi to collide with Pj . For each ordered pair of parts, the set of
blocking directions is constructed on the unit sphere S2 by drawing the boundary
arcs of the union of the blocking directions (each arc is a portion of a great circle).
The resulting collection of arcs partitions S2 into maximal regions such that the
blocking relation among the parts is the same for any direction inside such a region.

Next, the blocking graph is computed for one such maximal region. The al-
gorithm then moves to an adjacent region and updates the DBG by the blocking
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relations that change at the boundary between the regions, and so on. After each
time the construction of a DBG is completed, this graph is checked for strong con-
nectivity in time linear in its number of edges. The algorithm stops the first time it
encounters a DBG that is not strongly connected and it outputs the two subassem-
blies of the partitioning. The overall sequencing algorithm continues recursively
with the resulting subassemblies. If all the DBGs that are produced during a par-
titioning step are strongly connected, the algorithm reports that the assembly does
not admit a two-handed monotone assembly sequence with infinite translations.

Polynomial-time algorithms are proposed in [WL94] to compute and exploit
NDBGs for restricted families of motions. In particular, the case of partitioning a
polyhedral assembly by a single translation to infinity is analyzed in detail, and it is
shown that partitioning an assembly of m polyhedra with a total of v vertices takes
O(m2v4) time. Another case studied in [WL94] is where the separating motions
are infinitesimal rigid motions. Then partitioning the polyhedral assembly takes
O(mc5) time, where m is the number of pairs of parts in contact and c is the
number of independent point-plane contact constraints. (This result is improved
in [GHH+98] by using the concept of maximally covered cells; see Section 28.6.)
Using these algorithms, every feasible disassembly sequence can be generated in
polynomial time.

In [WL94], NDBG’s are defined only for simple families of separating mo-
tions (infinitesimal rigid motions and infinite translations). An extension, called
the interference diagram, is proposed in [WKLL95] for more complex motions.
In the worst case, however, this diagram yields a partitioning algorithm that is
exponential in the number of surfaces describing the assembly. When each sepa-
rating motion is restricted to be a short sequence of concatenated translations (for
example, a finite translation followed by an infinite translation), rather efficient
partitioning algorithms are available [HW96]. A unified and general framework
for assembly planning, based on the NDBG, called the motion space approach is
presented in [HLW00]. On the practical side, an exact and robust implementa-
tion of this framework for infinite-translation motions is discussed in [FH13]. We
mention the works [CJS08, LCS09], which employ sampling-based techniques (see
Section 51.3) in order to produce assembly sequences. The reader is referred to a
recent review on the subject of assembly sequencing in [Jim13].

OPEN PROBLEM

1. The complexity of the NDBG grows exponentially with the number of param-
eters that control the allowable motions, making this approach highly time
consuming for assembly sequencing with compound motions. For the case of
infinitesimal rigid motion it has been observed that only a (relatively small)
subset of the NDBG needs to be constructed [GHH+98]. Are there additional
types of motion where similar gains can be made? Are there situations where
the full NDBG (or a structure of comparable size) must be constructed?

2. Most efficient algorithms for assembly planning deal with the two-handed
case. Devise efficient algorithms for 3-(and higher)handed assembly planning.
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51.3 MOTION PLANNING

Motion planning is aimed to provide robots with the capability of deciding auto-
matically which motions to execute in order to achieve goals specified by spatial
arrangements of physical objects. It arises in a variety of forms. The simplest
form—the basic path-planning problem—requires finding a geometric collision-free
path for a single robot in a known static workspace. The path is represented by a
curve connecting two points in the robot’s configuration space [LP83]. This curve
must not intersect a forbidden region, the C-obstacle region, which is the image
of the workspace obstacles. Other motion planning problems require dealing with
moving obstacles, multiple robots, movable objects, uncertainty, etc.

In this section we consider the basic motion planning. In the next one we review
other motion planning problems. Most of our presentation focuses on practical
methods, and in particular, sampling-based algorithms. See Chapter 50 for a more
extensive review of theoretical motion planning.

GLOSSARY

Forbidden space: The set of configurations B ⊂ C in which the robot collides
with obstacles or violate the mechanical limits of its joints.

Free space: The complement of the forbidden space in region in C, F = C\B.

Path: A continuous map τ : [0, 1]→ C. A path is also free if it lies entirely in F .

Motion-planning problem: Compute a free path between two input configu-
rations.

Path planning query: Given two points in configuration space find a free path
between them. The term is often used in connection with algorithms that pre-
process the configuration space in preparation for many queries.

Complete algorithm: A motion planning algorithm is complete if it is guaran-
teed to find a free path between two given configurations whenever such a path
exists, and report that there is no free path otherwise. Complete algorithms
are sometimes referred to as exact algorithms. There are weaker variants of
completeness, for example, probabilistic completeness.

SAMPLING-BASED PLANNERS

The complexity of motion planning for robots with many dofs (more than 4 or 5)
has led to the development of sampling-based algorithms that trade off complete-
ness against applicability in practical settings. Such techniques avoid computing an
explicit geometric representation of the free space. Instead, in their simplest form,
they generate a large set of configuration samples and discard samples that repre-
sent forbidden configurations of the robot. Then, an attempt is made to connect
nearby configurations, given a metric which is defined over the configuration space.
This construction induces a graph structure, termed a roadmap, with the property
that a path connecting two vertices in the roadmap represents a free path in the
configuration space which connects the corresponding configurations. Although
such techniques are inherently incomplete, in many cases they can be shown to be
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probabilistically complete—guaranteed to find a solution with high probability if
one exists, given a sufficient number of samples.

The implementation of sampling-based techniques relies on two main geomet-
ric components: A collision detector determines whether a given configuration is
free or forbidden. Collision-detection calls typically dominate the running time of
sampling-based planners. A nearest-neighbor search structure processes a collection
of points to efficiently answer queries returning the set of nearest neighbors of a
given configuration, or the set of configurations that lie within a certain distance
from the given configuration. For further information on these components see
Chapter 39 and Chapter 43. We provide references for software implementation of
collision detection and nearest-neighbor search in Section 51.5 below.

A prime example of a sampling-based algorithm is the probabilistic roadmap
method (PRM) [KŠLO96], which proceeds as follows. A collection of randomly-
sampled configurations is generated, and the non-free configurations are identified
using the collision detector, and consequently discarded. The remaining configura-
tions represent the vertex set of the roadmap. Then, for every sampled configuration
a collection of nearby configurations are identified using nearest-neighbor search.
Finally, a simple (usually, straight-line) path is generated between pairs of nearby
configurations, and the path is checked for collision by dense sampling along the
path (or by more costly continuous collision-detection techniques). Paths that are
identified as collision free are added as edges to the roadmap. Once a roadmap has
been computed, it is used to process an arbitrary number of path-planning queries.
The density of sampling can be selectively increased to speed up the roadmap con-
nection.

Other sampling strategies, such as rapidly-exploring random trees
(RRT) [LK01c] and expansive-space trees (EST) [HLM99] assume that the
initial and goal configurations are given, and incrementally build a tree structure
until these two configurations are connected. In the frequently used RRT, for
example, in every step a random configuration is generated and the configuration
that is the closest to the sample in the current tree is identified. In the most
simplified version of the algorithm, the path between the two configurations is
checked for collision. If it is indeed free, the sampled configuration is added as a
vertex to the tree, along with the new edge connecting it to the tree. It should
also be noted that RRT, EST, and several other sampling-based algorithms have
found applications in cases where non-holonomic, dynamic, and other constraints
are considered (see [KL16] and Section 51.4.4).

The results reported in [KLMR98, HLM99, LK01c, KKL98, LK04b] provide a
probabilistic-completeness analysis of the aforementioned planners.

Some research has focused on designing efficient sampling and connection
strategies. For instance, the Gaussian sampling strategy produces a greater den-
sity of milestones near the boundary of the free space F , whose connectivity
is usually more difficult to capture by a roadmap than wide-open areas of F
[BOS99]. Different methods to create milestones near the boundary of F were
obtained in [YTEA12]. A lazy-evaluation of the roadmap has been suggested
in [BK00, SL03, SL02] while visibility has been exploited in [SLN00]. Sampling
and connection strategies are reviewed in [SL02].

Standard sampling-based planners are unable to determine that a given problem
has no solution. Several works deal with disconnection proofs, which are able to
determine, in certain settings, that two given configurations reside in two distinct
components of the free space [BGHN01, ZKM08, MBH12].
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There is a large variety of applications beyond robot motion where sampling-
based planners are useful. For a survey of few such applications, see Section 51.6.

OPTIMALITY IN SAMPLING-BASED PLANNING

So far we have been concerned with finding a solution to a given motion-planning
problem. In practical settings one is usually interested in finding a high-quality
path, in terms of, for example, the path’s length, clearance from obstacles, energy
consumption, and so on. Initial efforts in this area include applying shortcuts on
the returned solution to improve its quality [GO07], merging several solutions to
produce an improved one [REH11]. Some works fine-tune existing sampling-based
planners by modifying the sampling strategy [LTA03, US03, SLN00], or the connec-
tion scheme to new samples [US03, SLN00]. Other approaches include supplement-
ing edges for shortcuts in existing roadmaps [NO04] and random restarts [WB08].
On the negative side, it was shown that existing methods can produce arbitrarily
bad solutions [NRH10, KF11].

The breakthrough came in [KF11]. This work introduced PRM* and RRT*,
variants of PRM and RRT, and proved that they are asymptotically optimal—
the solution returned by these algorithms converges to the optimal solution, as
the number of samples tends to infinity. This work establishes a bound on the
connection radius of PRM, which ensures asymptotic optimality. In particular,
the connection radius is a function of the total number of samples n and results
in a roadmap of size O(n log n). The adaptation of RRT to an optimal planner
requires to consider additional neighbors for connection and a rewiring scheme,
which ensures that the resulting roadmap has a tree structure.

Since then, other asymptotically-optimal planners have been introduced.
RRT# [AT13] extends RRT, but through a different technique than RRT*, and
has (empirically) better convergence rates than the latter. Fast marching trees
(FMT*) [JSCP15] is another single-query planner which was shown to have faster
convergence rates than RRT*. An improvement of FMT* is introduced in [SH15a].
A lazy version of PRM* is described in [Hau15]. Finally, we note that by using
nearest-neighbor data structures tailored for these algorithms, additional speedup
in the running times can be obtained [KSH15].

The guarantee of optimality comes at the price of increased space and time con-
sumption of the planners. As a result, several techniques were developed to lower
these attributes, by relaxing the optimality guarantees to asymptotic near optimal-
ity. This property implies that the cost of the returned solution converges to within
a factor of (1 + ε) of the cost of the optimal solution. Several methods were intro-
duced to reduce the size of a probabilistic roadmaps via spanners [DB14, WBC15]
or edge contractions [SSAH14]. The planner described in [SH14a] allows for contin-
uous interpolation between the fast RRT algorithm and the asymptotically-optimal
RRT*. A different approach is taken in [LLB14], where an asymptotically near-
optimal algorithm is described, which is also suitable for systems with dynamics.

A recent work [SSH16b] describes a general framework for asymptotic analysis
of sampling-based planners. The framework exploits a relation between such plan-
ners and standard models of random geometric graphs, which have been extensively
studied for several decades and many of their aspects are by now well understood.

Most of the analysis for sampling-based algorithms is concerned with asymptotic
properties, i.e., those that hold with high probability as the number of samples
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tends to infinity. A recent work [DMB15] provides bounds on the probability of
finding a near-optimal solution with PRM* after a finite number of iterations. We
also mention that the work on FMT* [JSCP15] studies a similar setting for this
algorithm, albeit for a limited case of an obstacle-free workspace.

OTHER ALGORITHMS

Several non-sampling based methods have been proposed for path planning. Some
of them work well in practice, but they usually offer no performance guarantee.

Heuristic algorithms often search a regular grid defined over the configuration
space and generate a path as a sequence of adjacent grid points [Don87]. Early
heuristics employed potential fields to guide the grid search. A potential field
is a function over the free space that (ideally) has a global minimum at the goal
configuration. This function may be constructed as the sum of an attractive and
a repulsive field [Kha86]. More modern approaches use A*-flavored graph-search
techniques that drastically reduce the amount of explored grid vertices, and in
some cases can guarantee convergence to an optimal solution (see, e.g., [LF09,
ASN+16]). Other approaches combine discrete search and sampling-based planners.
For example, SyCloP [PKV10] combines A*-flavored searched over a grid imposed
on the workspace, and the result of the search is used to guide sampling-based
planners.

One may also construct grids at variable resolution. Hierarchical space de-
composition techniques such as octrees and boxtrees have been used for that pur-
pose [BH95]. At any decomposition level, each grid cell is labeled empty, full, or
mixed depending on whether it lies entirely in the free space, lies in the C-obstacle
region, or overlaps both. Only the mixed cells are decomposed further, until a
search algorithm finds a sequence of adjacent free cells connecting the initial and
goal configurations. A recent subdivision-based planner [WCY15] reduces the com-
putation time by incorporating inexact predicates for checking the property of cells.
This planner accepts a resolution parameter and can determine whether a solution
determined by this parameter exists or not.

We note that several optimizing planners that are based on optimization meth-
ods have been recently developed (e.g., [Kob12, SDH+14]).

OPEN PROBLEMS

1. Analyze convergence rates for sampling-based algorithms (see [DMB15,
JSCP15]).

2. Given a fixed amount of time, can one decide if it is best to use an optimizing
sampling-based planner, or a non-optimizing sampling-based planner and then
optimization methods to improve the resulting path?
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51.4 EXTENSIONS OF THE BASIC MOTION PLANNING
PROBLEM

There are many useful extensions of the basic motion-planning problem. Several
are surveyed in Chapter 50, e.g., shortest paths, time-varying workspaces (moving
obstacles), and exploratory motion planning. Below we focus on the following
extensions: multi-robot motion planning, manipulation planning, task planning,
and planning with differential constraints.

GLOSSARY

Movable object: Body that can be grasped, pushed, pulled, and moved by a
robot.

Manipulation planning: Motion planning with movable objects.

Trajectory: Path parameterized by time.

Tangent space: Given a smooth manifold M and a point p ∈ M , the vector
space Tp(M) spanned by the tangents at p to all smooth curves passing through
p and contained in M . The tangent space has the same dimension as M .

Nonholonomic robot: Robot whose permissible velocities at every configuration
q span a subset Ω(q) of the tangent space Tq(C) of lower dimension. Ω is called
the set of controls of the robot.

Feasible path: A piecewise differentiable path of a nonholonomic robot whose
tangent at every point belongs to the robot’s set of controls, i.e., satisfies the
nonholonomic velocity constraints.

Locally controllable robot: A nonholonomic robot is locally controllable if for
every configuration q0 and any configuration q1 in a neighborhood U of q0, there
exists a feasible path connecting q0 to q1 which is entirely contained in U .

Kinodynamic planning: Find a minimal-time trajectory between two given
configurations of a robot, given the robot’s dynamic equation of motion.

51.4.1 MULTI-ROBOT MOTION PLANNING

In multi-robot motion planning several robots operate in a shared workspace. The
goal is to move the robots to their assigned target positions, while avoiding colli-
sions with obstacles, as well as with each other. The problem can be viewed as an
instance of the single-robot case in which the robot consists of several independent
parts (robots). In particular, suppose the problem consists of planning the motion
of m robots, and denote by Ci the configuration space of the ith robot. Then it
can be restated as planning the motion of a single robot whose configuration space
is defined to be C1 × . . .×Cm. This observation allows to apply single-robot tools
directly to the multi-robot case. However, such a naive approach overlooks the spe-
cial characteristics of the problem at hand and tends to be inefficient both in theory
and practice. Various techniques were specifically designed for this problem. Com-
plete algorithms are covered in Chapter 50.2.3 (“coordinated motion planning”).
Here we focus on heuristics and sampling-based techniques.
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We start with the decentralized approach, which asserts that conflicts between
robots should be resolved locally and without central coordination. In the recip-
rocal method [SBGM11, BB15], the individual robots take into consideration the
current position and the velocity of other robots to compute their future trajec-
tories in order to avoid collisions. The work in [KEK10] takes a game-theoretic
approach and develops a reward function that reduces time and resources which
are spent on coordination, and maximizes the time between conflicts. Several
works [KR12, GGGDC12] develop collision-avoidance heuristics based on the soci-
ology of pedestrian interaction.

Centralized planners produce a global plan, which the individual robots need
to execute. Such planners fall into the two categories of coupled and decoupled
planners, which indicate whether the planners account for all the possible robot-
robot interactions or only partially do so, respectively. Coupled planners typically
operate in the combined configuration space of the problem, and as a result can
usually guarantee probabilistic completeness. Due to the high dimensionality of the
combined configuration space, decoupled planners typically solve separate problems
for the individual robots and combine the sub-solutions into one for the entire
problem [LLS99, BBT02, BO05, BSLM09, BGMK12].

We proceed to describe coupled planners. In [SL02] an evaluation of single-
robot sampling-based algorithms is given, when directly applied to the multi-robot
case. The works [HH02, SHH15] exploit the geometric properties of the two-robot
setting and develop techniques that combine sampling-based methods and geomet-
ric tools. The work in [ŠO98] introduces a sampling-based technique, which was
exploited in two recent works to solve complex settings of the multi-robot prob-
lem involving many more robots than the original method could. The algorithm
described in [ŠO98] produces probabilistic roadmaps for the individual robots and
combines them into a composite roadmap embedded in the joint configuration space.
Due to the size of this roadmap it can be explicitly constructed only for settings
in which the number of robots is very small. In particular, the number of its ver-
tices and the number of neighbors each vertex has are exponential in the number
of robots. In [WC15] a search-based method, termed M*, is developed to traverse
this enormous roadmap while representing it implicitly. M* can efficiently solve
problems involving multiple robots, as long as the solution requires only mild co-
ordination between the robots. Otherwise, it is forced to consider all the neighbors
of explored vertices, which is prohibitively costly. In [SSH16a] a different traver-
sal technique, termed discrete-RRT (dRRT) was introduced. It is an adaptation of
RRT for the exploration of a geometrically-embedded graphs; it can cope with more
tight settings of the problem as it does not require to consider all the neighbors of
a given vertex in order to make progress.

In [SH14b] a centralized algorithm is described for a generalized problem
termed k-color multi-robot motion planning—the robots are partitioned into k
groups (colors) such that within each group the robots are interchangeable. Ev-
ery robot is required to move to one of the target positions that are assigned to
its group, such that at the end of the motion each target position is occupied by
exactly one robot. This work exploits a connection between the continuous multi-
robot problem and a discrete variant of it called pebble motion on graphs (see,
e.g., [KMS84, GH10, KLB13, YL13]), which consists of moving a collection of peb-
bles from one set of vertices to another while abiding by a certain set of rules. The
algorithm reduces the k-color problem into several pebble problems such that the
solution to the latter can be transformed into a solution to the continuous problem.
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The special case of the k-color problem with k = 1 is usually termed unlabeled
multi-robot motion planning. It was first studied in [KH06], where a sampling-
based algorithm was introduced. Very recently, efficient and complete algorithms
for the unlabeled problem were introduced [TMMK14, ABHS15, SYZH15]. These
algorithms make several simplifying assumptions concerning the separation between
start and target positions, without which the problem was shown to be PSPACE-
hard [SH15b]. See additional information in Chapter 50.2.3.

51.4.2 MANIPULATION PLANNING

Many robot tasks consist of achieving arrangements of physical objects. Such ob-
jects, called movable objects, cannot move autonomously; they must be grasped by
a robot. Planning with movable objects is called manipulation planning. The prob-
lem is considered to be very challenging as one has to reason in a prohibitively large
search space, which encompasses the various positions of the robot and the objects.
In contrast with Section 51.1, here we take the viewpoint of the manipulator, rather
than that of the manipulated objects.

Different instances of the problem that consist of a single robot and a single
movable object with relatively simple geometry can be solved rather efficiently in
a complete manner [Wil91, ALS95, BG13]. However, the problem becomes compu-
tationally intractable when multiple movable objects come into play [Wil91]. The
problem of manipulation planning of multiple objects also relates to the popu-
lar SOKOBAN game, which was shown to be hard to solve on several occasions
(see, e.g., [HD05]). Navigation Among Moveable Obstacles (NAMO) considers
the path planning problem where obstacles can be moved out of the way [SK05].
Sampling-based techniques were developed to tackle more general and challeng-
ing instances of manipulation planning involving several manipulators and ob-
jects [NSO07, NSO08, BSK+08].

With the growing demand for robotic manipulators that can perform tasks in
cluttered human environments an additional level of complexity was added. In rear-
rangement planning, a robotic manipulator with complex kinodynamic constraints
is required to rearrange a set of objects. In [SSKA07] a technique for monotone
instances of the problem, in which it is assumed that each object can move at
most once, is described. A more recent work [KSD+14] which can cope also with
non-monotone instances draws upon a relation between the problem at hand and
multi-robot motion planning. The technique described in [KB15] extends previous
work for monotone settings to the non-monotone case.

Finally, we mention that recent advances in the area of machine learning have
led to the development of highly effective techniques for dealing with various com-
plex manipulation tasks. See, e.g., [LWA15, LLG+15, SEBK15].

51.4.3 TASK PLANNING

Thus far the focus was on tasks with relatively simple specifications for the robot
to follow. For instance, in motion planning the robot was required to “move from
s to t while avoiding collision with obstacles.” Real-world problems usually require
to perform much more complex operations that force the robot to make decisions
while performing a task. In some cases, a richer task specification can assist in
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performing a given task. Consider for example a robotic arm that needs to collect
several books from a desk and place them on a shelf. A human operator can assist
by specifying that the manipulator should first remove objects placed on top of the
books before proceeding to the actual books.

Such complex problems, which are often grouped under the umbrella term
task planning, usually require the combination of tools from motion planning, AI,
control, and model checking. The predominant methods for task planning are
heuristic search [HN01] and constraint satisfaction [KS92]. We mention that a
recent workshop was devoted to the subject1.

A prevalent approach for task planning in the context of motion planning is to
supplement the basic input with a Boolean logical expression, usually in the form
of linear temporal logic [Pnu77], which has to be satisfied in order to achieve the
goal. The workspace is decomposed into regions and the expression describes the
conditions on the order of visitation of regions. For instance, “the robot has to
first visit A, then B, and C afterwards; it cannot pass through D, unless B has
been reached.” Many of the approaches in this area implement a two layer archi-
tecture: a discrete planner generates a high-level plan that the robot has to fulfill
(“the robot should move from B to D”), whereas a low-level continuous planner
needs to plan a path that executes the high-level plan. Earlier works integrated
potential-field methods for the low-level plans (see, e.g., [KB08, FGKP09]). More
recent efforts rely on sampling-based techniques for the continuous planning (see,
e.g., [BKV10, BMKV11, KF12, VB13]). A recent work [LAF+15] explores a setting
in which every satisfying assignment is associated with a value and the goal is to
find the “best” satisfying plan. Besides using logics, the combination of Satisfia-
bility Modulo Theories (SMT) solvers and sampling-based planners for problems
involving tasks that include manipulation is presented in [DKCK16].

Task planning has also earned some attention in the context of multi-robot
systems [KDB11, WUB+13, USD+13, IS15] and manipulation [SK11, SFR+14].

51.4.4 MOTION PLANNING WITH CONSTRAINTS

In robotics, there is a need to satisfy both global constraints and local constraints.
One could consider the avoidance of obstacles as a global constraint. Often local
constraints are modeled with differential equations and are called differential con-
straints. Some of the first such constraints considered in the robotics community
were nonholonomic constraints, which raise very interesting geometric problems.
They are discussed in this section. However planning under constraints includes
planning with velocity and acceleration considerations (the problem is often called
kinodynamic planning) and other variations that are also discussed below.

PLANNING FOR NONHOLONOMIC ROBOTS

The trajectories of a nonholonomic robot are constrained by p ≥ 1 nonintegrable
scalar equality constraints:

G(q(t), q̇(t)) = (G1(q(t), q̇(t)), · · · , Gp(q(t), q̇(t))) = (0, . . . , 0),

where q̇(t) ∈ Tq(t)(C) designates the velocity vector along the trajectory q(t). At
every q, the function Gq = G(q, .) maps the tangent space Tq(C) into Rp. If Gq

1See http://www.kavrakilab.org/2016-rss-workshop/
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is smooth and its Jacobian has full rank (two conditions that are often satisfied),
the constraint Gq(q̇) = (0, . . . , 0) constrains q̇ to be in a linear subspace of Tq(C) of
dimension m−p. The nonholonomic robot may also be subject to scalar inequality
constraints of the form Hj(q, q̇) > 0. The subset of Tq(C) that satisfies all the
constraints on q̇ is called the set Ω(q) of controls at q. A feasible path is a piecewise
differentiable path whose tangent lies everywhere in the control set.

A car-like robot is a classical example of a nonholonomic robot. It is constrained
by one equality constraint (the linear velocity points along the car’s main axis).
Limits on the steering angle impose two inequality constraints. Other nonholonomic
robots include tractor-trailers, airplanes, and satellites.

Given an arbitrary subset U ⊂ C, the configuration q1 ∈ U is said to be
U -accessible from q0 ∈ U if there exists a piecewise constant control q̇(t) in the
control set whose integral is a trajectory joining q0 to q1 that lies fully in U .
Let AU (q0) be the set of configurations U -accessible from q0. The robot is said
to be locally controllable at q0 iff for every neighborhood U of q0, AU (q0) is
also a neighborhood of q0. It is locally controllable iff this is true for all q0 ∈ C.
Car-like robots and tractor-trailers that can go forward and backward are locally
controllable [BL93].

Let X and Y be two smooth vector fields on C. The Lie bracket of X and Y ,
denoted by [X,Y ], is the smooth vector field on C defined by [X,Y ] = dY ·X−dX ·Y ,
where dX and dY , respectively, denote the m×m matrices of the partial derivatives
of the components of X and Y w.r.t. the configuration coordinates in a chart placed
on C. To get a better intuition of the Lie bracket, imagine a trajectory starting at
an arbitrary configuration qs and obtained by concatenating four subtrajectories:
the first is the integral curve of X during time δt; the second, third, and fourth are
the integral curves of Y , −X, and −Y , respectively, each during the same δt. Let
qf be the final configuration reached. A Taylor expansion yields:

lim
δt→0

qf − qs
δt2

= [X,Y ].

Hence, if [X,Y ] is not a linear combination of X and Y , the above trajectory allows
the robot to move away from qs in a direction that is not contained in the vector
subspace defined by X(qs) and Y (qs). But the motion along this new direction is
an order of magnitude slower than along any direction αX(qs) + βY (qs).

The control Lie algebra associated with the control set Ω, denoted by L(Ω),
is the space of all linear combinations of vector fields in Ω closed by the Lie bracket
operation. The following result derives from the Controllability Rank Condition
Theorem [BL93]:

A robot is locally controllable if, for every q ∈ C, Ω(q) is symmetric
with respect to the origin of Tq(C) and the set {X(q) | X ∈ L(Ω(q))}
has dimension m.

The minimal length of the Lie brackets required to construct L(Ω), when these
brackets are expressed with vectors in Ω, is called the degree of nonholonomy
of the robot. The degree of nonholonomy of a car-like robot is 2. Except at some
singular configurations, the degree of nonholonomy of a tractor towing a chain of s
trailers is 2+s [LR96]. Intuitively, the higher the degree of nonholonomy, the more
complex (and the slower) the robot’s maneuvers to perform some motions.

Nonholonomic motion planning was also studied in a purely-geometric setting,
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where one is interested in finding a path of bounded curvature (see e.g., [KKP11,
KC13]). The reader is referred to Chapter 50 for further information.

PLANNING FOR CONTROLLABLE NONHOLONOMIC ROBOTS

Let A be a locally controllable nonholonomic robot. A necessary and sufficient con-
dition for the existence of a feasible free path of A between two given configurations
is that they lie in the same connected component of the open free space. Indeed,
local controllability guarantees that a possibly nonfeasible path can be decomposed
into a finite number of subpaths, each short enough to be replaced by a feasible
free subpath. Hence, deciding if there exists a free path for a locally controllable
nonholonomic robot has the same complexity as deciding if there exists a path for
the holonomic robot having the same geometry.

Transforming a nonfeasible free path τ into a feasible one can be done by
recursively decomposing τ into subpaths. The recursion halts at every subpath
that can be replaced by a feasible free subpath. Specific substitution rules (e.g.,
Reeds and Shepp curves) have been defined for car-like robots [LJTM94]. The
complexity of transforming a nonfeasible free path τ into a feasible one is of the
form O(εd), where ε is the smallest clearance between the robot and the obstacles
along τ and d is the degree of nonholonomy of the robot (see [LJTM94] for the case
d = 2).

The algorithm in [BL93] directly constructs a nonholonomic path for a car-
like or a tractor-trailer robot by searching a tree obtained by concatenating short
feasible paths, starting at the robot’s initial configuration. The planner is asymp-
totically complete, i.e., it is guaranteed to find a path if one exists, provided that
the lengths of the short feasible paths are small enough. It can also find paths that
minimize the number of cusps (changes of sign of the linear velocity).

PLANNING FOR NONCONTROLLABLE ROBOTS

Motion planning for nonholonomic robots that are not locally controllable is much
less understood. Research has almost exclusively focused on car-like robots that
can only move forward. Results include:

No obstacles: A complete synthesis of the shortest, no-cusp path for a point
moving with a lower-bounded turning radius [BSBL94].

Polygonal obstacles: An algorithm to decide whether there exists such a path
between two configurations; it runs in time exponential in obstacle complex-
ity [FW91].

Convex obstacles: The algorithm in [ART95] computes a path in polynomial
time under the assumptions that all obstacles are convex and their boundaries
have a curvature radius greater than the minimum turning radius of the point.

Other polynomial algorithms (e.g., [BL93]) require some sort of discretization
and are only asymptotically complete.

PLANNING UNDER DIFFERENTIAL CONSTRAINTS

If a planning problem involves constraints on at least velocity and acceleration the
problem is often referred to as kinodynamic planning. Typically nonholonomic
constraints are kinematic and arise from wheels in contact. But nonholonomic con-
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straints may arise from dynamics. Trajectory planning refers to the problem of
planning for both a path and a velocity function. Recently, the term planning un-
der differential constraints is used as a catch-all term that includes nonholonomic,
kinodynamic and sometimes trajectory planning. Planning under differential con-
straints may involve discretization of constraints and decoupled approaches where
some constraints are ignored at the beginning but are then gradually introduced
(see [KL16]).

Sampling-based planners were initially developed for the “geometric,” i.e., holo-
nomic, setting of the problem, but it was not long before similar techniques for
planning under differential constraints started to emerge. However, even in the
randomized setting of sampling-based planners, planning under differential con-
straints remains to be very challenging and the design of such planners usually
involves much more than straightforward extensions of existing geometric planners.

Sampling-based planners for problems with differential constraints operate in
the state space X . Typically, every state represents a pairing of a configuration and
a velocity vector. An inherent difficulty of the problem involves the connection of
two given states in the absence of obstacles—an operation called steering, or the
two-point boundary-value problem (BVP).

For robotic systems in which steering can be quickly performed (see, e.g., [ŠO97,
LSL99, KF10, WB13, PPK+12, XBPA15]) holonomic sampling-based planners, or
their extensions, can be applied.

Sampling-based algorithms that build trees avoid steering. They simply at-
tempt to move in the direction of sampled states and do not require to precisely
reach them (see, e.g., [HKLR02, LK01c, PKV10, SK12, LLB14] and many others).
As one of many examples, the planner described in [LK04a] samples robot actions,
which consist of a velocity vector and time duration, in order to avoid steering. The
idea of avoiding steering has been proven very powerful in the context of sampling-
based planners and has led to the solution of complex problems with differential
constraints.

Finally, a number of related works exist that augment sampling-based al-
gorithms for instances of whole-body manipulation for humanoids [KKN+02,
HBL+08, YPL+10, BSK11, BHB13, Hau14]. The primary concern in these works is
the generation of dynamically-stable motions for high-dimensional bipedal robots.

PLANNING UNDER OTHER TYPES OF CONSTRAINTS

Some robotic systems are subjected to constraints for particular tasks, restrict-
ing the set of valid configurations to a manifold, which has measure zero with
respect to the ambient space. Naturally, sampling in the ambient space can no
longer effectively produce valid configurations. Some approaches target specific
kinds of constraint problems, such as open- or closed-loop kinematic linkage con-
straints [TTCA10, CS05], end-effector pose constraints [BS10], or n-point contact
constraints [Hau14]. Some approaches project invalid samples through gradient de-
scent [YLK01] or by more robust means [KBV+12]. Recent successful algorithms
for planning under abstract constraints are CBiRRT2 [BSK11]—which like RRT
steps toward sampled points, but after every step it projects the current point back
to the manifold—as well as AtlasRRT [JP13] and [KTSP16]. AtlasRRT constructs a
piecewise-linear approximation of the manifold by computing tangent spaces. This
approximation allows the planner to reason about a difficult, implicitly-defined
space by projecting regions onto simpler spaces.
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51.5 SOFTWARE FOR SAMPLING-BASED PLANNERS

Robot motion planning requires the integration of numerous software components,
and several existing packages address this goal. The Open Motion Planning Li-
brary (OMPL) [SMK12] includes abstract implementations of many planning algo-
rithms discussed in this chapter. The robot modeling—loading 3D meshes, kinemat-
ics, visualization, etc.—necessary to apply OMPL is handled by external packages
such as MoveIt! [SC15], which integrates with the ROS framework [QGC+09], and
Amino [Dan16] which provides capabilities to support task planning and real-time
control.

Software packages performing nearest-neighbor search include E2LSH [AI06],
ANN [MA10], FLANN [ML10] and RTG [KSH15]. Collision checking is typically
handled by specialized packages such as the Flexible Collision Library [PCM12] and
libccd [Fis16]. The Orocos Kinematics and Dynamics Library (KDL) [Smi] is widely
used for basic kinematics and dynamics computations. Several dedicated pack-
ages provide more advanced capabilities for dynamic simulation [S+05, LGS+16,
C+16, SSD11]. Other all-in-one robotics packages include OpenRAVE [Dia10] and
Klamp’t [Hau16].

51.6 APPLICATIONS BEYOND ROBOTICS

Although the focus of this chapter was restricted to applications of motion plan-
ning in robotics, we mention that the problem naturally arises in many other
settings [Lat99]. For instance, in computer games2 motion planning is used for
determining the motion of single or multiple agents. In structural bioinformatics
motion-planning tools are employed in order to study the motion of molecules such
a proteins, which can be modeled as highly-complex robots. This is one appli-
cation domain where sampling-based tools enable motion planning with hundreds
of degrees of freedom [LK01a, RESH09, GMK13, ETA15, ADS03, ABG+03]. In
Computer-Aided-Design (CAD) motion planning has been used to find intricate
separation paths to take out parts for maintenance out of a complex and cluttered
environment [CL95, FL04].

51.7 SOURCES AND RELATED MATERIAL

Craig’s book [Cra05] provides an introduction to robot arm kinematics, dynam-
ics, and control. The mechanics of robotic manipulation is covered in Mason’s
book [Mas01]. The book by Siciliano and Khatib [SK16] provides a comprehensive
overview of the field of robotics.

Robot motion planning and its variants are discussed in Latombe’s
book [Lat91]. This book takes an algorithmic approach to a variety of advanced is-
sues in robotics. The books by LaValle [LaV06] and Choset et al. [CLS+05] provide
a more current overview of motion planning, and also include detailed description

2See the Motion in Games conference: http://www.motioningames.org/.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.
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of several sampling-based approaches.
Algorithmic issues in robotics are covered in several conferences including the

Workshop on Algorithmic Foundations of Robotics (WAFR), Robotics: Science and
Systems (RSS), and the broader IEEE International Conference on Robotics and
Automation (ICRA) and the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Several computational-geometry books contain sections on robotics or motion
planning [O’R98, SA95, BKOC08]. The book by Fogel et al. [FHW12] includes
implementation details for basic geometric constructions useful in motion planning,
such as Minkowski sums.
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assembly sequencing. I. J. Robotics Res., 14:335–350, 1995.

[WL94] R.H. Wilson and J.-C. Latombe. Geometric reasoning about mechanical assembly.

Artif. Intell., 71:371–396, 1994.

[WUB+13] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, and D. Rus. Incremental syn-

thesis of control policies for heterogeneous multi-agent systems with linear temporal

logic specifications. In Proc. IEEE Int. Conf. Robot. Autom., pages 5011–5018, 2013.

[XBPA15] C. Xie, J.P. van den Berg, S. Patil, and P. Abbeel. Toward asymptotically optimal

motion planning for kinodynamic systems using a two-point boundary value problem

solver. In Proc. IEEE Int. Conf. Robot. Autom., pages 4187–4194, 2015.

[YL13] J. Yu and S.M. LaValle. Structure and intractability of optimal multi-robot path

planning on graphs. In Proc. AAAI Conf. Artif. Intell., 2013.

[YLK01] J.H. Yakey, S.M. LaValle, and L.E. Kavraki. Randomized path planning for linkages

with closed kinematic chains. IEEE Trans. Robot. Autom., 17:951–958, 2001.

[YPL+10] E. Yoshida, M. Poirier, J.-P. Laumond, O. Kanoun, F. Lamiraux, R. Alami, and

K. Yokoi. Pivoting based manipulation by a humanoid robot. Auton. Robots, 28:77–

88, 2010.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1376 D. Halperin, L. Kavraki, and K. Solovey

[YRB00] M. Yim, J. Reich, and A.A. Berlin. Two approaches to distributed manipulation.
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