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INTRODUCTION

Linear programming has many important practical applications, and has also given
rise to a wide body of theory. See Section 49.9 for recommended sources. Here
we consider the linear programming problem in the form of maximizing a linear
function of d variables subject to n linear inequalities. We focus on the relationship
of the problem to computational geometry, i.e., we consider the problem in small
dimension. More precisely, we concentrate on the case where d ≪ n, i.e., d =
d(n) is a function that grows very slowly with n. By linear programming duality,
this also includes the case n ≪ d. This has been called fixed-dimensional linear
programming, though our viewpoint here will not treat d as constant. In this case
there are strongly polynomial algorithms, provided the rate of growth of d with n
is small enough.

The plan of the chapter is as follows. In Section 49.2 we consider the sim-
plex method, in Section 49.3 we review deterministic linear time algorithms, in
Section 49.4 randomized algorithms, and in Section 49.5 we consider the deran-
domization of the latter. Section 49.6 discusses the combinatorial framework of
LP-type problems, which underlie most current combinatorial algorithms and al-
lows their application to a host of optimization problems. We briefly describe the
more recent combinatorial framework of unique sink orientations, in the context of
striving for algorithms with a milder dependence on d. In Section 49.7 we examine
parallel algorithms for this problem, and finally in Section 49.8 we briefly discuss
related issues. The emphasis throughout is on complexity-theoretic bounds for the
linear programming problem in the form (49.1.1).

49.1 THE BASIC PROBLEM

Any linear program (LP) may be expressed in the inequality form

maximize z = c · x
subject to Ax ≤ b ,

(49.1.1)

where c ∈ R
d, b ∈ R

n, and A ∈ R
n×d are the input data and x ∈ R

d the variables.
Without loss of generality, the columns of A are assumed to be linearly independent.
The vector inequality in (49.1.1) is with respect to the componentwise partial order
on R

n. We will write ai for the ith row of A, so the constraint may also be expressed
in the form

ai · x =

d
∑

j=1

aijxj ≤ bi (i = 1, . . . , n). (49.1.2)
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GLOSSARY

Constraint: A condition that must be satisfied by a solution.

Objective function: The linear function to be maximized over the set of solu-
tions.

Inequality form: The formulation of the linear programming problem where all
the constraints are weak inequalities ai · x ≤ bi.

Feasible set: The set of points that satisfy all the constraints. In the case of
linear programming, it is a convex polyhedron in R

d.

Defining hyperplanes: The hyperplanes described by the equalities ai · x = bi.

Tight constraint: An inequality constraint is tight at a certain point if the point
lies on the corresponding hyperplane.

Infeasible problem: A problem with an empty feasible set.

Unbounded problem: A problem with no finite maximum.

Vertex: A feasible point where at least d linearly independent constraints are
tight.

Nondegenerate problem: A problem where at each vertex precisely d con-
straints are tight.

Strongly polynomial-time algorithm: An algorithm for which the total num-
ber of arithmetic operations and comparisons (on numbers whose size is polyno-
mial in the input length) is bounded by a polynomial in n and d alone.

We observe that (49.1.1) may be infeasible or unbounded, or have multiple
optima. A complete algorithm for linear programming must take account of these
possibilities. In the case of multiple optima, we assume that we have merely to
identify some optimum solution. (The task of identifying all optima is considerably
more complex; see [Dye83, AF92].) An optimum of (49.1.1) will be denoted by x0.
At least one such solution (assuming one exists) is known to lie at a vertex of the
feasible set. There is little loss in assuming nondegeneracy for theoretical purposes,
since we may “infinitesimally perturb” the problem to ensure this using well known
methods [Sch86]. However, a complete algorithm must recognize and deal with this
possibility.

It is well known that linear programs can be solved in time polynomial in
the total length of the input data [GLS93]. However, it is not known in general
if there is a strongly polynomial-time algorithm. This is true even if randomiza-
tion is permitted. (Algorithms mentioned below may be assumed deterministic
unless otherwise stated.) The “weakly” polynomial-time algorithms make crucial
use of the size of the numbers, so seem unlikely to lead to strongly polynomial-time
methods. However, strong bounds are known in some special cases. Here are two
examples. If all aij are bounded by a constant, then É. Tardos [Tar86] has given
a strongly polynomial-time algorithm. If every row ai has at most two nonzero
entries, Megiddo [Meg83a] has shown how to find a feasible solution in strongly
polynomial time.
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49.2 THE SIMPLEX METHOD

GLOSSARY

Simplex method: For a nondegenerate problem in inequality form, this method
seeks an optimal vertex by iteratively moving from one vertex to a neighboring
vertex of higher objective function value.

Pivot rule: The rule by which a neighboring vertex is chosen.

Random-edge simplex algorithm: A randomized variant of the simplex method
where the neighboring vertex is chosen uniformly at random.

Dantzig’s simplex method is probably still the most commonly used method for
solving large linear programs in practice, but (with Dantzig’s original pivot rule)
Klee and Minty showed that the algorithm may require an exponential number of
iterations in the worst case. For example, it may require 2d − 1 iterations when
n = 2d. Other variants were subsequently shown to have similar behavior. While it
is not known for certain that all suggested variants of the simplex method have this
bad worst case, there seems to be no reason to believe otherwise. In fact, two long-
standing candidates for a polynomial-time variant (Zadeh’s and Cunningham’s rule)
have recently been shown to have bad worst-case behavior as well [Fri11, AF16].
This breakthrough is due to a new technique by Friedmann who constructed lower
bound instances in a combinatorial way from certain games on graphs. Earlier
lower bound constructions were typically in the form of “raw” linear programs,
with carefully crafted coordinates. But this direct approach (pioneered by Klee
and Minty [KM72]) could so far not be applied to history-dependent rules such as
Zadeh’s and Cunningham’s.

When we assume d ≪ n, the simplex method may require Ω(n⌊d/2⌋) iterations
[KM72, AZ99], and thus it is polynomial only for d = O(1). This is asymptotically
no better than enumerating all vertices of the feasible region.

By contrast, Kalai [Kal92] gave a randomized simplex-like algorithm that re-

quires only 2O(
√
d log n ) iterations. (An identical bound was also given by Ma-

tousěk, Sharir, and Welzl [MSW96] for a closely related algorithm; see Section
49.4.) Combined with Clarkson’s methods [Cla95], this results in a bound of

O(d2n) + eO(
√
d log d) (cf. [MSW96]). This is the best “strong” bound known,

other than for various special cases, and it is evidently polynomial-time provided
d = O(log2 n/ log log n). No complete derandomization of these algorithms is
known, and it is possible that randomization may genuinely help here. How-
ever, Friedmann, Hansen and Zwick recently showed that the complexity of the
random-edge simplex algorithm (where the pivot is chosen uniformly at random)
is actually superpolynomial, defeating the most promising candidate for an (ex-
pected) polynomial-time pivot rule [FHZ11]. By giving a lower bound also for the
random-facet rule, they actually prove that the analysis underlying the best strong
bound above is essentially tight. These are the first superpolynomial lower bound
constructions for natural randomized simplex variants, again exploiting the new
game-based technique by Friedmann. Some less natural randomized variants have
not been defeated yet, and it remains to be seen whether this would also be possible
through Friedmann’s approach.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.
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49.3 LINEAR-TIME LINEAR PROGRAMMING

The study of linear programming within computational geometry was initiated by
Shamos [Sha78] as an application of an O(n logn) convex hull algorithm for the
intersection of halfplanes. Muller and Preparata [MP78] gave an O(n logn) algo-
rithm for the intersection of halfspaces in R

3. Dyer [Dye84] and Megiddo [Meg83b]
found, independently, an O(n) time algorithm for the linear programming problem
in the cases d = 2, 3.

Megiddo [Meg84] generalized the approach of these algorithms to arbitrary

d, arriving at an algorithm of time complexity O(22
d

n), which is polynomial for
d ≤ log logn + O(1). This was subsequently improved by Clarkson [Cla86b] and

Dyer [Dye86] to O(3d
2

n), which is polynomial for d = O(
√
logn). Megiddo [Meg84,

Meg89] and Dyer [Dye86, Dye92] showed that Megiddo’s idea could be used for
many related problems: Euclidean one-center, minimum ball containing balls, min-
imum volume ellipsoid, etc.; see also the derandomized methods and LP-type prob-
lems in the sections below.

GLOSSARY

Multidimensional search: Given a set of hyperplanes and an oracle for locating
a point relative to any hyperplane, locate the point relative to all the input
hyperplanes.

MEGIDDO’S ALGORITHMS

The basic idea in these algorithms is as follows. It follows from convexity consider-
ations that either the constraints in a linear program are tight (i.e., satisfied with
equality) at x0, or they are irrelevant. We need identify only d linearly independent
tight constraints to identify x0. We do this by discarding a fixed proportion of the
irrelevant constraints at each iteration. Determining whether the ith constraint is

tight amounts to determining which case holds in ai ·x0 >
= bi. This is embedded in

a multidimensional search problem. Given any hyperplane α · x = β, we can deter-

mine which case of α · x0 >
=
<

β holds by (recursively) solving three linear programs

in d− 1 variables. These are (49.1.1) plus α · x = γ, where γ ∈ {β − ǫ, β, β + ǫ} for
“small” ǫ > 0. (We need not define ǫ explicitly; it can be handled symbolically.)
In each of the three linear programs we eliminate one variable to get d − 1. The
largest of the three objective functions tells us where x0 lies with respect to the
hyperplane. We call this an inquiry about α · x = β. The problem now reduces to
locating x0 with respect to a proportion P (d) of the n hyperplanes using only N(d)
inquiries.

The method recursively uses the following observation in R
2. Given two lines

through the origin with slopes of opposite sign, knowing which quadrant a point lies
in allows us to locate it with respect to at least one of the lines (see Figure 49.3.1).

We use this on the first two coordinates of the problem in R
d. First rotate

until 1
2n defining hyperplanes have positive and 1

2n negative “slopes” on these
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FIGURE 49.3.1

Quadrants 1, 3 locate for l2; quadrants 2, 4 locate for l1.
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coordinates. This can be done in O(n) time using median-finding. Then arbitrarily
pair a positive with a negative to get 1

2n pairs of the form

ax1 + bx2 + · · · = · · ·
cx1 − dx2 + · · · = · · · ,

where a, b, c, and d represent nonnegative numbers, and the · · · represent linear
functions of x3, . . . , xd on the left and arbitrary numbers on the right. Eliminating
x2 and x1 in each pair gives two families S1, S2 of 1

2n hyperplanes each in d − 1
dimensions of the form

S1 : x1 + · · · = · · ·
S2 : x2 + · · · = · · · .

We recursively locate with respect to 1
2P (d−1)n hyperplanes withN(d−1) inquiries

in S1, and then locate with respect to a P (d−1)-fraction of the corresponding paired
hyperplanes in S2. We have then located 1

2P (d−1)2n pairs with 2N(d−1) inquiries.
Using the observation above, each pair gives us location with respect to at least
one hyperplane in d dimensions, i.e.,

P (d) = 1
2P (d− 1)2, N(d) = 2N(d− 1). (49.3.1)

Since P (1) = 1
2 , N(1) = 1 (by locating with respect to the median in R

1), (49.3.1)
yields

P (d) = 2−(2d−1), N(d) = 2d−1,

giving the following time bound T (n, d) for solving (49.1.1).

T (n, d) ≤ 3 · 2d−1T (n, d− 1) + T ((1− 2−(2d−1))n, d) +O(nd),

with solution T (n, d) < 22
d+2

n.

THE CLARKSON-DYER IMPROVEMENT

The Clarkson/Dyer improvement comes from repeatedly locating in S1 and S2 to
increase P (d) at the expense of N(d).

49.4 RANDOMIZED ALGORITHMS

Dyer and Frieze [DF89] showed that, by applying an idea of Clarkson [Cla86a]
to give a randomized solution of the multidimensional search in Megiddo’s al-
gorithm [Meg84], an algorithm of complexity O(d3d+o(d)n) was possible. Clark-
son [Cla88, Cla95] improved this dramatically. We describe this below, but first
outline a simpler algorithm subsequently given by Seidel [Sei91].
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Suppose we order the constraints randomly. At stage k, we have solved the
linear program subject to constraints i = 1, . . . , k − 1. We now wish to add con-
straint k. If it is satisfied by the current optimum we finish stage k and move to
k+1. Otherwise, the new constraint is clearly tight at the optimum over constraints
i = 1, . . . , k− 1. Thus, recursively solve the linear program subject to this equality
(i.e., in dimension d−1) to get the optimum over constraints i = 1, . . . , k, and move
on to k + 1. Repeat until k = n.

The analysis hinges on the following observation. When constraint k is added,
the probability it is not satisfied is exactly d/k (assuming, without loss, nondegen-
eracy). This is because only d constraints are tight at the optimum and this is the
probability of writing one of these last in a random ordering of 1, 2, . . . , k. This
leads to an expected time of O(d!n) for (49.1.1). Welzl [Wel91] extended Seidel’s
algorithm to solve other problems such as smallest enclosing ball or ellipsoid, and
described variants that perform favorably in practice.

Sharir and Welzl [SW92] modified Seidel’s algorithm, resulting in an improved
running time of O(d32dn). They put their algorithm in a general framework
of solving “LP-type” problems (see Section 49.6 below). Matousěk, Sharir, and
Welzl [MSW96] improved the analysis further, essentially obtaining the same bound
as for Kalai’s “primal simplex” algorithm. The algorithm was extended to LP-type
problems by Gärtner [Gär95], with a similar time bound.

CLARKSON’S ALGORITHM

The basic idea is to choose a random set of r constraints, and solve the linear
program subject to these. The solution will violate “few” constraints among the
remaining n − r, and, moreover, one of these must be tight at x0. We solve a
new linear program subject to the violated constraints and a new random subset of
the remainder. We repeat this procedure (aggregating the old violated constraints)
until there are no new violated constraints, in which case we have found x0. Each
repetition gives an extra tight constraint for x0, so we cannot perform more than
d iterations.

Clarkson [Cla88] gave a different analysis, but using Seidel’s idea we can easily
bound the expected number of violated constraints (see also [GW01] for further
simplifications of the algorithm). Imagine all the constraints ordered randomly,
our sample consisting of the first r. For i > r, let Ii = 1 if constraint i is violated,
Ii = 0 otherwise. Now Pr(Ii = 1) = Pr(Ir+1 = 1) for all i > r by symmetry,
and Pr(Ir+1 = 1) = d/(r + 1) from above. Thus the expected number of violated
constraints is

E

(

n
∑

i=r+1

Ii

)

=
n
∑

i=r+1

Pr(Ii = 1) = (n− r)d/(r + 1) < nd/r.

(In the case of degeneracy, this will be an upper bound by a simple perturbation
argument.)

Thus, if r =
√
n, say, there will be at most d

√
n violated constraints in ex-

pectation. Hence, by Markov’s inequality, with probability 1
2 there will be at most

2d
√
n violated constraints in actuality. We must therefore recursively solve about

2(d+ 1) linear programs with at most (2d2 + 1)
√
n constraints. The “small” base

cases can be solved by the simplex method in dO(d) time. This can now be applied
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recursively, as in [Cla88], to give a bound for (49.1.1) of

O(d2n) + (logn)log d+2dO(d).

Clarkson [Cla95] subsequently modified his algorithm using a different “itera-
tive reweighting” algorithm to solve the d + 1 small linear programs, obtaining a
better bound on the execution time.

Each constraint receives an initial weight of 1. Random samples of total weight
10d2 (say) are chosen at each iteration, and solved by the simplex method. If W
is the current total weight of all constraints, and W ′ the weight of the unsatisfied
constraints, then W ′ ≤ 2Wd/10d2 = W/5d with probability at least 1

2 by the dis-
cussion above, regarding the weighted constraints as a multiset. We now double
the weights of all violated constraints and repeat until there are no violated con-
straints (see [BG11] for a further simplification of this algorithm). This terminates
in O(d log n) iterations by the following argument. After k iterations we have

W ≤
(

1 +
1

5d

)k

n ≤ nek/5d,

and W ∗, the total weight of the d optimal constraints, satisfies W ∗ ≥ 2k/d, since
at least one is violated at each iteration. Now it is clear that W ∗ < W only while
k < Cd lnn, for some constant C. Applying this to the d+1 small linear programs
gives overall complexity

O(d2n+ d4
√
n logn) + dO(d) logn.

This is almost the best expected time bound known for linear programming, except
that Kalai’s algorithm (or [MSW96]) can be used to solve the base cases rather
than the simplex method. Then we get the improved bound (cf. [GW96])

O(d2n) + eO(
√
d log d) .

This is polynomial for d = O(log2 n/ log logn), and is the best expected time bound
to date.

49.5 DERANDOMIZED METHODS

Somewhat surprisingly, the randomized methods of Section 49.4 can also lead to the
best deterministic algorithms for (49.1.1). Chazelle and Matoušek [CM96] produced
a first derandomized version of Clarkson’s algorithm.

The idea, which has wider application, is based on finding (in linear time)
approximations to the constraint set. If N is a constraint set, then for each x ∈
R

d let V (x,N) be the set of constraints violated at x. A set S ⊆ N is an ǫ-
approximation to N if, for all x,

∣

∣

∣

∣

|V (x, S)|
|S| − |V (x,N)|

|N |

∣

∣

∣

∣

< ǫ.

(See also Chapters 40 and 47.) Since n = |N | hyperplanes partition R
d into only

O(nd) regions, there is essentially only this number of possible cases for x, i.e.,
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only this number of different sets V (x,N). It follows from the work of Vapnik and
Chervonenkis that a (d/r)-approximation of size O(r2 log r) always exists, since a
random subset of this size has the property with nonzero probability. If we can find
such an approximation deterministically, then we can use it in Clarkson’s algorithm
in place of random sampling. If we use a (d/r)-approximation, then, if x∗ is the
linear programming optimum for the subset S, |V (x∗, S)| = 0, so that

|V (x∗, N)| < |N |d/r = nd/r,

as occurs in expectation in the randomized version. The implementation involves
a refinement based on two elegant observations about approximations, which both
follow directly from the definition.

(i) An ǫ-approximation of a δ-approximation is an (ǫ + δ)-approximation of the
original set.

(ii) If we partition N into q equal sized subsets N1, . . . , Nq and take an (equal
sized) ǫ-approximation Si in each Ni (i = 1, . . . , q), then S1 ∪ . . . ∪ Sq is an
ǫ-approximation of N .

FIGURE 49.5.1

A partition tree of height k, with q = 3. level 0

.

.

.

.

.
level 1

.level k

We then recursively partition N into q equal sized subsets, to give a “partition
tree” of height k, say, as in Figure 49.5.1 (cf. Section 40.2). The sets at level
0 in the partition tree are “small.” We calculate an ǫ0-approximation in each.
We now take the union of these approximations at level 1 and calculate an ǫ1-
approximation of this union. This is an (ǫ0 + ǫ1)-approximation of the whole level
1 set, by the above observations. Continuing up the tree, we obtain an overall
(
∑k

i=0 ǫi)-approximation of the entire set. At each stage, the sets on which we have
to find the approximations remain “small” if the ǫi are suitably chosen. Therefore
we can use a relatively inefficient method of finding an approximation. A suitable
method is the method of conditional probabilities due to Raghavan and Spencer. It
is (relatively) straightforward to implement this on a set of sizem to run in O(md+1)
time. However, since this has to be applied only to small sets (in comparison with
n), the total work can be bounded by a linear function of n. Chazelle and Matoušek
[CM96] used q = 2, and an ǫi that corresponds to roughly halving the union at each
level i = 1, . . . , k .

The algorithm cannot completely mimic Clarkson’s, however, since we can no
longer use r =

√
n. Such a large approximation cannot be determined in linear

time by the above methods. But much smaller values of r suffice (e.g., r = 10d3)
simply to get linear-time behavior in the recursive version of Clarkson’s algorithm.
Using this observation, Chazelle and Matoušek [CM96] obtained a deterministic
algorithm with time-complexity dO(d)n. As far as the asymptotics of the exponent is
concerned, this is still the best deterministic time bound known for solving (49.1.1),
and it remains polynomial for d = O(log n/ log logn). Later research has improved
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the constant in the exponent. The currently best (and most simple) approach is
due to Chan [Cha16].

Recall that with r = 10d3, Chazelle and Matoušek’s algorithm as sketched
above computes an O(1/d2)-approximation S of the constraint set. Actually, an
O(1/d2)-net S suffices. An ǫ-net has the ǫ-approximation property only for vectors
x satisfying V (x, S) = ∅. But this is enough, as (the derandomized version of)
Clarkson’s algorithm solves the problem subject to the constraints in S first, and
then only keeps adding constraints. Hence, all solutions x coming up during the
algorithm satisfy V (x, S) = ∅.

Chan’s observation is that the O(1/d2)-net does not have to be of optimal size,
hence one might be able to employ a simpler and faster deterministic construction
algorithm. Indeed, as long as the subproblems solved in the recursive calls of
Clarkson’s algorithm are by a factor of 2d, say, smaller than the original problem,
the linear-time analysis still works.

Chan’s main contribution is a simple and fast deterministic method to com-
pute an O(1/d2)-net of size roughly n/(2d). For this, he first provides a very
simple and fast greedy method to compute an ǫ-net for a set of k constraints, of
size O((d/ǫ) log k). This is clearly suboptimal, as there are ǫ-nets whose size is
independent of k. The trick now is to subdivide the constraint set arbitrarily into
n/f(d) groups of size f(d), for a suitable polynomial f . For each group, the fast al-
gorithm is applied with k = f(d), meaning that the size penalty is only logarithmic
in d, per group. The final ǫ-net is simply the union of the ǫ-nets for the groups.

The resulting algorithm has runtime O(d3dn), up to (log d)O(d) factors. A
further reduction to O(dd/2n), again up to (log d)O(d) factors, is obtained through
a derandomization of a new variant of Clarkson’s second algorithm, and improved
ǫ-net constructions. Moreover, this seems to reach a natural barrier in the sense
that an exponent of d/2 is already incurred by the simplex algorithm that is used
as a subroutine for linear programs with O(d2) constraints.

49.6 LP-TYPE PROBLEMS

The randomized algorithms above by Clarkson and in [MSW96, Gär95] can be for-
mulated in an abstract framework called LP-type problems. With an extra condition
(involving VC-dimension of certain set-systems) this extends to the derandomiza-
tion in [CM96]. In this way, the algorithms are applicable to a host of problems
including smallest enclosing ball, polytope distance, smallest enclosing ellipsoid,
largest ellipsoid in polytope, smallest ball intersecting a set of convex objects, angle-
optimal placement in polygon, rectilinear 3-centers in the plane, spherical separa-
bility, width of thin point sets in the plane, and integer linear programming (see
[MSW96, GW96] for descriptions of these problems and of the reductions needed).
A different abstraction called abstract objective functions is described by Kalai in
[Kal97], and for the even more general setting of abstract optimization problems see
[Gär95].

For the definitions below, the reader should think of optimization problems in
which we are given some set H of constraints and we want to minimize some given
function under those constraints. For every subset G of H , let w(G) denote the
optimum value of this function when all constraints in G are satisfied. The function
w is only given implicitly via some basic operations to be specified below. The goal
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is to compute an inclusion-minimal subset BH of H with the same value as H (from
which, in general, the value is easy to determine).

GLOSSARY

LP-type problem: A pair (H,w), where H is a finite set and w : 2H → W for a
linearly ordered set (W ,≤) with a minimal element−∞, so that the monotonicity
and locality axioms below are satisfied.

Monotonicity axiom: For any F,G with F ⊆ G ⊆ H , we have w(F ) ≤ w(G).

Locality axiom (for LP-type problems): For any F ⊆ G ⊆ H with −∞ 6=
w(F ) = w(G) and for any h ∈ H , w(G) < w(G∪{h}) implies w(F ) < w(F∪{h}).

Constraints of LP-type problem: Given an LP-type problem (H,w), the ele-
ments of H are called constraints.

Basis: A set B of constraints is called a basis if w(B′) < w(B) for every proper
subset of B.

Basis of set of constraints: Given a set G of constraints, a subset B ⊆ G is
called a basis of G if it is a basis and w(B) = w(G) (i.e., an inclusion-minimal
subset of G with equal w-value).

Combinatorial dimension: The maximum cardinality of any basis in an LP-
type problem (H,w), denoted by δ = δ(H,w).

Basis regularity: An LP-type problem (H,w) is basis-regular if, for every basis
B with |B| = δ and for every constraint h, all bases of B ∪ {h} have exactly δ
elements.

Violation test: Decides whether or not w(B) < w(B ∪ {h}), for a basis B and
a constraint h.

Basis computation: Delivers a basis of B∪{h}, for a basis B and a constraint h.

Violator space: A pair (H,V), where H is a finite set and V : 2H → 2H such
that the consistency and locality axioms below are satisfied.

Consistency axiom: For any G ⊆ H , we have G ∩ V(G) = ∅.
Locality axiom (for violator spaces): For any F ⊆ G ⊆ H , G ∩ V(F ) = ∅

implies V(F ) = V(G).

Unique Sink Orientation: Orientation of the n-dimensional hypercube graph
such that every subgraph induced by a nonempty face has a unique sink.

A simple example of an LP-type problem is the smallest enclosing ball problem
(this problem traces back to J.J. Sylvester [Syl57]): Let S be a finite set of points in
R

d, and for G ⊆ S, let ρ(G) be the radius of the ball of smallest volume containing
G (with ρ(∅) = −∞). Then (S, ρ) is an LP-type problem with combinatorial
dimension at most d + 1. A violation test amounts to a test deciding whether a
point lies in a given ball, while an efficient implementation of basis computations
is not obvious (cf. [Gär95]).

Many more examples have been indicated above. As the name suggests, linear
programming can be formulated as an LP-type problem, although some care is
needed in the presence of degeneracies. Let us assume that we want to maximize the
objective function −xd in (49.1.1), i.e., we are looking for a point in R

d of smallest
xd-coordinate. In the underlying LP-type problem, the set H of constraints is given
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by the halfspaces as defined by (49.1.2). For a subset G of these constraints, let
v(G) be the backwards lexicographically smallest point satisfying these constraints,
with v(G) := −∞ if G gives rise to an unbounded problem, and with v(G) := ∞
in case of infeasibility. We assume the backwards lexicographical ordering on R

d to
be extended to R

d ∪ {−∞,∞} by letting −∞ and ∞ be the minimal and maximal
element, resp. The resulting pair (H, v) is LP-type of combinatorial dimension at
most d + 1. In fact, if the problem is feasible and bounded, then the LP-type
problem is basis-regular of combinatorial dimension d. The violation test and basis
computation (this amounts to a dual pivot step) are easy to implement.

Matoušek, Sharir, and Welzl [MSW96] showed that a basis-regular LP-type
problem (H,w) of combinatorial dimension δ with n constraints can be solved (i.e.,
a basis of H can be determined) with an expected number of at most

min{e2
√

δ ln((n−δ)/
√
δ )+O(

√
δ+lnn), 2δ+2(n− δ)} (49.6.1)

violations tests and basis computations, provided an initial basis B0 with |B0| = δ
is available. (For linear programming one can easily generate such an initial basis
by adding d symbolic constraints at “infinity.”) Then Gärtner [Gär95] generalized
this bound to all LP-type problems. Combining this with Clarkson’s methods, one
gets a bound (cf. [GW96]) of

O(δn) + eO(
√
δ log δ )

for the expected number of violation tests and basis computations, the best bound
known up to now. In the important special case where n = O(δ), the resulting

bound of eO(
√
δ log δ ) can be improved to eO(

√
δ ) by using a dedicated algorithm for

this case [Gär95]. Recently, Hansen and Zwick [HZ15] have developed and analyzed
a new variant of the general algorithm, essentially replacing the denominator of

√
δ

under the root in (49.6.1) with δ. For n = O(δ), this also results in an improved

bound of eO(
√
δ ).

Matoušek [Mat94] provided a family of LP-type problems, for which the bound
(49.6.1) is almost tight for the algorithm provided in [MSW96], for the case n = 2d.
It was an open problem, though, whether the algorithm performs faster when ap-
plied to linear programming instances. In fact, Gärtner [Gär02] showed that the
algorithm is quadratic on the instances in Matousek’s lower bound family which are
realizable as linear programming problems as in (49.1.1). Only the recent subex-
ponential lower bound for the random facet simplex algorithm due to Friedmann,
Hansen and Zwick [FHZ11] implies that for n = 2d, the bound (49.6.1) is tight up
to a possible replacement of the square root by a different root.

Amenta [Ame94] considers the following extension of the abstract framework:
Suppose we are given a family of LP-type problems (H,wλ), parameterized by a
real parameter λ; the underlying ordered value set W has a maximum element
∞ representing infeasibility. The goal is to find the smallest λ for which (H,wλ)
is feasible, i.e., wλ(H) < ∞. [Ame94] provides conditions under which such a
problem can be transformed into a single LP-type problem, and she gives bounds
on the resulting combinatorial dimension. This work exhibits interesting relations
between LP-type problems and Helly-type theorems (see also [Ame96]).

An interesting combinatorial generalization of LP-type problems that removes
the objective function w has been introduced by Škovroň [Ško07]. A violator space

is a pair (H,V), where H is a finite set that we again think of as being constraints.
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V : 2H → 2H is a function that assigns to each subset G of constraints a set V(G) of
constraints violated by (the solution subject to the constraints in) G. V is required
to satisfy consistency (G ∩ V(G) = ∅ for all G) as well as locality (if F ⊆ G and
G ∩ V(F ) = ∅, then V(F ) = V(G)). If (H,w) is an LP-type problem (without a
set of value −∞) and V(G) := {h ∈ H \G : w(G ∪ {h}) > w(G)}, then (H,V) is a
violator space. A variant of the definition that covers −∞ also exists [Ško07].

It turns out that violator spaces form in a well-defined sense the most general
framework in which Clarkson’s random-sampling based methods still work [GMRS08,
BG11]. In this sense, violator spaces form a “combinatorial core” of linear program-
ing, useful for theoretical considerations. The concept properly generalizes LP-type
problems: in the absence of an objective function, simplex-type algorithms may cy-
cle even in nondegenerate situations [GMRS08]. In the applications, however, most
violator spaces can actually be cast as LP-type problems.

UNIQUE SINK ORIENTATIONS

As seen in Section 49.4, the currently best “strong” bound for linear programming
is

O(d2n) + eO(
√
d log d)

in expectation. In order to further improve the (subexponential) dependence on
d, one would have to make progress on “small” problems, most notably the case
n = O(d2).

A natural and important but poorly understood special case is that of linear
programs whose feasible set is a (deformed) d-dimensional cube. Here, n = 2d.

The combinatorial framework of unique sink orientations (USO) has been in-
troduced to deal with such small problems; in fact, there is only one parameter,
namely n. A USO is an orientation of the n-dimensional hypercube graph, with
the property that every subgraph induced by a nonempty face of the cube has a
unique sink [SW01].

The algorithmic problem is the following: given a vertex evaluation oracle that
for a given vertex returns the orientations of the n incident edges, how many vertex
evaluations need to be performed in order to find the unique global sink?

Under suitable nondegeneracy assumptions, a linear program over a (deformed)
cube directly yields an acyclic USO; from its global sink, one can read off the
solution to the linear program. But in fact, any linear program with n inequality
constraints reduces to sink-finding in a (possibly cyclic) n-cube USO [GS06].

Simplex-type methods (following a directed path in the USO) are the most nat-
ural sink-finding strategies; in fact, the idea behind the subexponential algorithm
for LP-type problems [MSW96] can be understood in its purest form on acyclic
USO [Gär02]. This, however, does not imply any new strong bounds for linear
programming.

But the cube structure also allows for algorithms that “jump,” meaning that
they do not necessarily follow a path in the cube graph but visit cube vertices in
a random access fashion. The Fibonacci Seesaw [SW01] is a deterministic jumping
algorithm that is able to find the sink of any n-cube USO with O(1.61n) vertex
evaluations. Via the reduction to USO, this yields the best known deterministic
strong bound for linear programs with n = 2d constraints [GS06]. Most notably,
this bound is smaller than the worst-case number of vertices, all of which the known
deterministic simplex algorithms might have to visit.
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49.7 PARALLEL ALGORITHMS

GLOSSARY

PRAM: Parallel Random Access Machine. (See Section 46.1 for more informa-
tion on this and the next two terms.)

EREW: Exclusive Read Exclusive Write.

CRCW: Concurrent Read Concurrent Write.

P: The class of polynomial time problems.

NC: The class of problems that have poly-logarithmic parallel time algorithms
running a polynomial number of processors.

P-complete problem: A problem in P whose membership in NC implies P=NC.

Expander: A graph in which, for every set of nodes, the set of the neighbors of
the nodes is relatively large.

We will consider only PRAM algorithms. (See also Section 46.2.)
The general linear programming problem has long been known to be P-complete,

so there is little hope of very fast parallel algorithms. However, the situation is dif-
ferent in the case d ≪ n, where the problem is in NC if d grows slowly enough.

First, we note that there is a straightforward parallel implementation of Me-
giddo’s algorithm [Meg83b] that runs in O((log n)d) time on an EREW PRAM.
However, this algorithm is rather inefficient in terms of processor utilization, since
at the later stages, when there are few constraints remaining, most processors are
idle. However, Deng [Den90] gave an “optimal” O(n) work implementation in the
plane running in O(log n) time on a CRCW PRAM with O(n/ logn) processors.
Deng’s method does not seem to generalize to higher dimensions.

Alon and Megiddo [AM94] gave a randomized parallel version of Clarkson’s
algorithm which, with high probability, runs in constant time on a CREW PRAM
in fixed dimension. Here the “constant” is a function of dimension only, and the
probability of failure to meet the time bound is small for n ≫ d.

Ajtai and Megiddo [AM96] attempted to improve the processor utilization in
parallelizing Megiddo’s algorithm for general d. They gave an intricate algorithm
based on using an expander graph to select more nondisjoint pairs so as to uti-
lize all the processors and obtain more rapid elimination. The resulting algorithm
for (49.1.1) runs in O((log logn)d) time, but in a nonuniform model of parallel com-
putation based on Valiant’s comparison model. The model, which is stronger than
the CRCW PRAM, requires O(log logn) time median selection from n numbers
using n processors, and employs an O(log logn) time scheme for compacting the
data after deletions, again based on a nonuniform use of expander graphs. A lower
bound of Ω(log n/ log logn) time for median-finding on the CRCW PRAM follows
from results of Beame and H̊astad. Thus Ajtai and Megiddo’s algorithm could
not be implemented directly on the CRCW PRAM. Within Ajtai and Megiddo’s
model there is a lower bound Ω(log logn) for the case d = 1 implied by results of
Valiant. This extends to the CRCW PRAM, and is the only lower bound known
for solving (49.1.1) in this model.

Dyer [Dye95] gave a different parallelization of Megiddo’s algorithm, which
avoids the use of expanders. The method is based on forming groups of size r ≥ 2,
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rather than simple pairs. As constraints are eliminated, the size of the groups
is gradually increased to utilize the extra processors. Using this, Dyer [Dye95]
establishes an O(log n(log logn)d−1) bound in the EREW model. It is easy to show
that there is an Ω(logn) lower bound for solving (49.1.1) on the EREW PRAM,
even with d = 1. (See [KR90].) Thus improvements on Dyer’s bound for the EREW
model can only be made in the log logn term. However, there was still an open
question in the CRCW model, since exact median-finding and data compaction
cannot be performed in time polynomial in log logn.

Goodrich [Goo93] solved these problems for the CRCW model by giving fast
implementations of derandomization techniques similar to those outlined in Sec-
tion 49.5. However, the randomized algorithm that underlies the method is not
a parallelization of Clarkson’s algorithm, but is similar to a parallelized version
of that of Dyer and Frieze [DF89]. He achieves a work-optimal (i.e., O(n) work)
algorithm running in O(log logn)d time on the CRCW PRAM. The methods also
imply a work-optimal EREW algorithm, but only with the same time bound as
Dyer’s. Neither Dyer nor Goodrich is explicit about the dependence on d of the
execution time of their algorithms.

Independently of Goodrich’s work, Sen [Sen95] has shown how to directly mod-
ify Dyer’s algorithm to give a work-optimal algorithm with O((log logn)d+1) execu-
tion time in the CRCW model. The “constant” in the running time is shown to be
2O(d2). To achieve this, he uses approximate median-finding and approximate data
compaction operations, both of which can be done in time polynomial in log logn
on the common CRCW PRAM. These additional techniques are, in fact, both ex-
amples of derandomized methods and similar to those Goodrich uses for the same
purpose. Note that this places linear programming in NC provided d = O(

√
logn).

This is the best result known, although Goodrich’s algorithm may give a better
behavior once the “constant” has been explicitly evaluated. We may also observe
that the Goodrich/Sen algorithms improve on Deng’s result in R

2.
There is still room for some improvements in this area, but there now seems to

be a greater need for sharper lower bounds, particularly in the CRCW case.

49.8 RELATED ISSUES

GLOSSARY

Integer programming problem: A linear programming problem with the ad-
ditional constraint that the solution must be integral.

k-Violation linear programming: A problem as in (49.1.1), except that we
want to maximize the linear objective function subject to all but at most k of
the given linear constraints.

Average case analysis: Expected performance of an algorithm for random in-
put (under certain distributions).

Smoothed analysis: Expected performance of an algorithm under small random
perturbations of the input.

Linear programming is a problem of interest in its own right, but it is also
representative of a class of geometric problems to which similar methods can be
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applied. Many of the references given below discuss closely related problems, and
we have mentioned them in passing above.

An important related area is integer programming. Here the size of the numbers
cannot be relegated to a secondary consideration. In general this problem is NP-
hard, but in fixed dimension is polynomial-time solvable. See [Sch86] for further
information. It may be noted that Clarkson’s methods and the LP-type framework
are applicable in this situation; some care with the interpretation of the primitive
operations is in place, though.

We have considered only the solution of a single linear program. However, there
are some situations where one might wish to solve a sequence of closely related linear
programs. In this case, it may be worth the computational investment of building
a data structure to facilitate fast solution of the linear programs. For results of this
type see, for example, [Epp90, Mat93, Cha96, Cha98].

Finally there has been some work about optimization, where we are asked to
satisfy all but at most k of the given constraints, see, e.g., [RW94, ESZ94, Mat95b,
DLSS95, Cha99]. In particular, Matoušek [Mat95a] has investigated this question
in the general setting of LP-type problems. Chan [Cha02] solved this problem in
R

2 with a randomized algorithm in expected time O((n+ k2) log k) (see this paper
for the best bounds known for d = 3, 4.)

A direction we did not touch upon here is average-case analysis, where we an-
alyze a deterministic algorithm for random inputs [Bor87, Sma83, AM85, Tod86,
AKS87]. In the latter three, bounds are proven with respect to classes of probability
distributions, where the numerical entries of A, b, and c are fixed in a nondegen-
erate way and the directions of inequalities are picked at random. More recently,
there has been an interesting new direction, smoothed analysis, where a simplex
algorithm is analyzed for small random perturbations of the input. The main result
of Spielmann and Teng [ST04] is that (superpolynomial) worst-case instances for
the shadow vertex simplex algorithm are “isolated.” This means that after small
random perturbations of the input, the algorithm will be fast in expectation. In-
deed, if one looks at the geometry of the known (contrived) worst-case instances,
one sees 2-dimensional projections (“shadows”) with exponentially many vertices,
tightly packed along the boundary of a convex polygon. It is not surprising that
such “bad” projections disappear even under small random perturbations of the in-
put. What is more surprising—and this is the main contribution of Spielmann and
Teng—is that not only these bad instances, but all instances have small shadows
after random perturbations.

49.9 SOURCES AND RELATED MATERIAL

BOOKS AND SURVEYS

Linear programming is a mature topic, and its foundations are well-covered in classic
textbooks. A good general introduction to linear programming may be found in
Chvátal’s book [Chv83]. A theoretical treatment is given in Schrijver’s book [Sch86].
The latter is a very good source of additional references. The book by Matoušek
and Gärtner [MG07] is a concise introduction from a computer science perspective.
Karp and Ramachandran [KR90] is a good source of information on models of
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parallel computation. See [Mat96] for a survey of derandomization techniques for
computational geometry.
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[SW01] T. Szabó and E. Welzl. Unique sink orientations of cubes. In Proc. 42nd IEEE Sympos.

Found. Comp. Sci., pages 547–555, 2001.

[Syl57] J.J. Sylvester. A question in the geometry of situation. Quart. J. Math., 1:79, 1857.

[Tar86] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.

Oper. Res., 34:250–256, 1986.

[Tod86] M.J. Todd. Polynomial expected behavior of a pivoting algorithm for linear comple-

mentarity and linear programming problems. Math. Program., 35:173–192, 1986.

[Wel91] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Re-

sults and New Trends in Computer Science, vol. 555 of LNCS, pages 359–370, Springer,

Berlin, 1991.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.


