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INTRODUCTION

Nonrobustness refers to qualitative or catastrophic failures in geometric algorithms
arising from numerical errors. Section 45.1 provides background on these problems.
Although nonrobustness is already an issue in “purely numerical” computation, the
problem is compounded in “geometric computation.” In Section 45.2 we character-
ize such computations. Researchers trying to create robust geometric software have
tried two approaches: making fixed-precision computation robust (Section 45.3),
and making the exact approach viable (Section 45.4). Another source of nonro-
bustness is the phenomenon of degenerate inputs. General methods for treating
degenerate inputs are described in Section 45.5. For some problems the exact ap-
proach may be expensive or infeasible. To ensure robustness in this setting, a
recent extension of exact computation, the so-called “soft exact approach,” has
been proposed. This is described in Section 45.6.

45.1 NUMERICAL NONROBUSTNESS ISSUES

Numerical nonrobustness in scientific computing is a well-known and widespread
phenomenon. The root cause is the use of fixed-precision numbers to represent
real numbers, with precision usually fixed by the machine word size (e.g., 32 bits).
The unpredictability of floating-point code across architectural platforms in the
1980s was resolved through a general adoption of the IEEE standard 754-1985.
But this standard only makes program behavior predictable and consistent across
platforms; the errors are still present. Ad hoc methods for fixing these errors (such
as treating numbers smaller than some ε as zero) cannot guarantee their elimination.

Nonrobustness is already problematic in purely numerical computation: this
is well documented in numerous papers in numerical analysis with the key word
“pitfalls” in their title. But nonrobustness apparently becomes intractable in “geo-
metric” computation. In Section 45.2, we elucidate the concept of geometric com-
putations. Based on this understanding, we conclude that nonrobustness problems
within fixed-precision computation cannot be solved by purely arithmetic solutions
(better arithmetic packages, etc.). Rather, some suitable fixed-precision geometry

is needed to substitute for the original geometry (which is usually Euclidean). We
describe such approaches in Section 45.3. But in Section 45.4, we describe the
alternative exact approach that requires arbitrary precision. Naively, the exact ap-
proach suggests that each numerical predicate must be computed exactly. But the
formulation of Exact Geometric Computation (EGC) asks only for error-free
evaluation of predicates. The simplicity and generality of the EGC solution has
made it the dominant nonrobustness approach among computational geometers.
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In Section 45.5, we address a different but common cause of numerical non-
robustness, namely, data degeneracy. Geometric inputs can be degenerate: an
input triangle might degenerate into a line segment, or an input set of points might
contain collinear triples, etc. This can cause geometric algorithms to fail. But if ge-
ometric algorithms must detect such special situations, the number of such special
cases can be formidable, especially in higher dimensions. For nonlinear problems,
such analysis usually requires new and nontrivial facts of algebraic geometry. This
section looks at general techniques to avoid explicit enumeration of degeneracies.

In Section 45.6, we note some formidable barriers to extending the EGC ap-
proach for nonlinear and nonalgebraic problems. This motivates some current re-
search directions that might be described as soft exact computation. It goes beyond
“simply exact” computation by giving a formal role to numerical approximations
in our computing concepts and notions of correctness.

GLOSSARY

Fixed-precision computation: A mode of computation in which every number
is represented using some fixed number L of bits, usually 32 or 64. The repre-
sentation of floating point numbers using these L bits is dictated by the IEEE
Floating Point standard. Double-precision mode is a relaxation of fixed pre-
cision: the intermediate values are represented in 2L bits, but these are finally
truncated back to L bits.

Nonrobustness: The property of code failing on certain kinds of inputs. Here we
are mainly interested in nonrobustness that has a numerical origin: the code fails
on inputs containing certain patterns of numerical values. Degenerate inputs are
just extreme cases of these “bad patterns.”

Benign vs. catastrophic errors: Fixed-precision numerical errors are fully ex-
pected and so are normally considered to be “benign.” In purely numerical
computations, errors become “catastrophic” when there is a severe loss of preci-
sion. In geometric computations, errors are “catastrophic” when the computed
results are qualitatively different from the true answer (e.g., the combinatorial
structure is wrong) or when they lead to unexpected or inconsistent states of
the programs.

Big number packages: They refer to software packages for representing and
computing with arbitrary precision numbers. There are three main types of
such number packages, called BigIntegers, BigRationals and BigFloats, repre-
senting (respectively) integers, rational numbers, and floating point numbers.
For instance, +, −, and × are implemented exactly with BigIntegers. With
BigRationals, division can also be exact. Beyond rational numbers, BigFloats
become essential, and operations such as

√
can be approximated to any de-

sired precision in BigFloat. But ensuring that BigFloats achieve the correct
rounding is a highly nontrivial issue especially for transcendental function. The
MPFR [FHL+07] package is the only Big number package to address this.
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45.2 THE NATURE OF GEOMETRIC COMPUTATION

It is well known that numerical approximations may cause an algorithm to crash or
enter an infinite loop; but there is a persistent belief that when the algorithm halts,
then the output is a reasonably close approximation (up to the machine precision)
to the true output. The paper [KMP+07, §4.3] wishes to “refute this myth” by
considering a simple algorithm for computing the convex hull of a planar point set.
They constructed inputs such that the output “convex hull” might (1) miss a point
far from the interior, (2) contain a large concave corner, or (3) be a self-intersecting
polygon. The paper provides “classroom examples” based on a systematic analysis
of floating point errors and their effects on common predicates in computational
geometry. If the root cause of nonrobustness is arithmetic, then it may appear
that the problem can be solved with the right kind of arithmetic package. We may
roughly divide the approaches into two camps, depending on whether one uses finite
precision arithmetic or insists on exactness (or at least the possibility of computing
to arbitrary precision). While arithmetic is an important topic in its own right,
our focus here will be on geometric rather than purely arithmetic approaches for
achieving robustness.

To understand why nonrobustness is especially problematic for geometric com-
putation, we need to understand what makes a computation “geometric.” Indeed,
we are revisiting the age-old question “What is Geometry?” that has been asked
and answered many times in mathematical history, by Euclid, Descartes, Hilbert,
Dieudonné and others. But as in many other topics, the perspective stemming
from a modern computational viewpoint sheds new light. Geometric computation
clearly involves numerical computation, but there is something more. We use the
aphorism geometric = numeric + combinatorial to capture this. Instead of
“combinatorial” we could have substituted “discrete” or sometimes “topological.”
What is important is that this combinatorial part is concerned with discrete rela-
tions among geometric objects. Examples of discrete relations are “a point is on a
line,” “a point is inside a simplex,” or “two disks intersect.” The geometric objects
here are points, lines, simplices, and disks. Following Descartes, each object is
defined by numerical parameters. Each discrete relation is reduced to the truth of
suitable numerical inequalities involving these parameters. Geometry arises when
such discrete relations are used to characterize configurations of geometric objects.

The mere presence of combinatorial structures in a numerical computation does
not make a computation “geometric.” There must be some nontrivial consistency
condition holding between the numerical data and the combinatorial data. Thus,
we would not consider the classical shortest-path problems on graphs to be geo-
metric: the numerical weights assigned to edges of the graphs are not restricted by
any consistency condition. Note that common restrictions on the weights (positiv-
ity, integrality, etc.) are not consistency restrictions. But the related Euclidean
shortest-path problem (Chapter 31) is geometric. See Table 45.2.1 for further
examples from well-known problems.

Alternatively, we can characterize a computation as “geometric” if it involves
constructing or searching a geometric structure (which may only be implicit). The
incidence graph of an arrangement of hyperplanes (Chapter 28), with suitable addi-
tional labels and constraints, is a primary example of such a structure. The reader
may keep this example in mind in the following definition. A geometric structure
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TABLE 45.2.1 Examples of geometric and

nongeometric problems.

PROBLEM GEOMETRIC?

Matrix multiplication, determinant no

Hyperplane arrangements yes

Shortest paths on graphs no

Euclidean shortest paths yes

Point location yes

Convex hulls, linear programming yes

Minimum circumscribing circles yes

is comprised of four components:

D = (G, λ,Φ(z), I), (45.2.1)

where G = (V,E) is a directed graph, λ is a labeling function on the vertices
and edges of G, Φ is the consistency predicate, and I the input assignment. In-
tuitively, G is the combinatorial part, λ the geometric part, and Φ constrains λ
based on the structure of G. The input assignment , for an input of size n, is
I : {z1, . . . , zn} → R where the zi’s are called structural variables. We in-
formally identify I with the sequence “c = (c1, . . . , cn)” where I(zi) = ci. The
ci’s are called (structural) parameters. For each u ∈ V ∪ E, the label λ(u)
is a Tarski formula of the form ξ(x, z), where z = (z1, . . . , zn) are the structural
variables and x = (x1, . . . , xd) for some d ≥ 1. This d is fixed and determines
the ambient space Rd containing the geometric object. This formula defines a
semialgebraic set (Chapter 37) parameterized by the structural variables. For
a given c, the semialgebraic set is fc(v) = {a ∈ Rd | ξ(a, c) holds}. Follow-
ing Tarski, we are identifying semialgebraic sets in Rd with d-dimensional geo-
metric objects. The consistency relation Φ(z) is another Tarski formula of the
form Φ(z) = (∀x1, . . . , xd)φ(λ(u1), . . . , λ(um),x, z) where u1, . . . , um ranges over
elements of V ∪ E. For each class of geometric structures, e.g., hyperplane ar-
rangements, or Voronoi diagrams of points, the formula Φ(z) can be systematically
constructed from G. Note that if D is to be computed in an output, we need not
explicitly specify Φ(z), as this is understood (or implicit in our understanding of
the geometric structure). The definition above can be contrasted with Fortune’s
definition, where a geometric problem on input of size n is a map from Rn to a
discrete set, e.g., the set of cyclic permutations for convex hulls or the incidence
graph for arrangements [For89]; this definition, however, fails to capture discrete
relations on the input.

An example of the notation in (45.2.1), is an arrangement S of hyperplanes
in Rd. The combinatorial structure D(S) is the incidence graph G = (V,E) of
the arrangement and V is the set of faces of the arrangement. The parameter
c consists of the coefficients of the input hyperplanes. If z is the corresponding
structural parameters then the input assignment is I(z) = c. The geometric data
associates to each node v of the graph the Tarski formula λ(v) involving x, z. When
c is substituted for z, then the formula λ(v) defines a face fc(v) (or f(v) for short)
of the arrangement. We use the convention that an edge (u, v) ∈ E represents an
“incidence” from f(u) to f(v), where the dimension of f(u) is one more than that
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of f(v). So f(v) is contained in the closure of f(u). Let aff(X) denote the affine
span of a set X ⊆ Rd. Then (u, v) ∈ E implies aff(f(v)) ⊆ aff(f(u)) and f(u) lies
on one of the two open halfspaces defined by aff(f(u))\aff(f(v)). We let λ(u, v) be
the Tarski formula ξ(x, z) that defines the open halfspace in aff(f(u)) that contains
f(u). Again, let f(u, v) = fc(u, v) denote this open halfspace. The consistency
requirement is that (a) the set {f(v) : v ∈ V } is a partition of Rd, and (b) for each
u ∈ V , the set f(u) is nonempty with an irredundant representation of the form

f(u) =
⋂
{f(u, v) | (u, v) ∈ E}.

Although the above definition appears complicated, all its elements are neces-
sary in order to capture the following additional concepts. We can suppress the
input assignment I, so there are only structural variables z (which is implicit in λ
and Φ) but no parameters c. The triple

D̂ = (G, λ,Φ(z)) (45.2.2)

becomes an abstract geometric structure, and D = (G, λ,Φ(z), I) is an in-

stance of D̂. The structure D in (45.2.1) is consistent if the predicate Φ(c)

holds. An abstract geometric structure D̂ is realizable if it has some consistent
instance. Two geometric structures D,D′ are structurally similar if they are in-
stances of a common abstract geometric structure. We can also introduce metrics
on structurally similar geometric structures: if c and c′ are the parameters of D,D′

then define d(D,D′) to be the Euclidean norm of c− c′.
The graph G = (V,E) in (45.2.1) is an abstract graph where each v ∈ V is

a symbol that represents the semi-algebraic set f(v) ⊆ Rd. The Tarski formula
λ(v) is an exact but symbolic representation of f(v). For most applications of
geometric algorithms, such a symbolic representation is alone insufficient. We need
an approximate “embedding” of the underlying semi-algebraic sets in Rd. Consider
the problem of meshing curves and surfaces (see Boissonnat et al. [BCSM+06] for
a survey). In meshing, the set {f(v) : v ∈ V } is typically a simplicial complex
(i.e., triangulation). For each v ∈ V , if f(v) is a k-simplex (k = 0, . . . , d), then we

want to compute a piecewise linear set f̃(v) ⊆ Rd that is homeomorphic to a k-ball.

Moreover, (u, v) ∈ E iff f̃(v) ⊆ ∂f̃(u) (∂ is the boundary operator). Then the set

Ṽ = {f̃(v) : v ∈ V } is a topological simplicial complex that captures all information
in the symbolic graph G = (V,E). The algorithms in [PV04, LY11, LYY12] (for

d ≤ 3) can even ensure that for all v ∈ V , we have dH(f(v), f̃(v)) < ε (for any
given ε) where dH denotes the Hausdorff distance on Euclidean sets. In that case,

Ṽ is an ε-approximation of the simplicial complex {f(v) : v ∈ V }. This is the
“explicit” geometric representation of D, which applications need.

45.3 FIXED-PRECISION APPROACHES

This section surveys the various approaches within the fixed-precision paradigm.
Such approaches have strong motivation in the modern computing environment
where fast floating point hardware has become a de facto standard in every com-
puter. If we can make our geometric algorithms robust within machine arithmetic,
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we are assured of the fastest possible implementation. We may classify the ap-
proaches into several basic groups. We first illustrate our classification by con-
sidering the simple question: “What is the concept of a line in fixed-precision
geometry?” Four basic answers to this question are illustrated in Figure 45.3.1 and
in Table 45.3.1.

(a)                      (b)                                            (c)                           (d)     


FIGURE 45.3.1

Four concepts of “finite-precision” lines.

WHAT IS A FINITE-PRECISION LINE?

We call the first approach interval geometry because it is the geometric analogue
of interval arithmetic. Segal and Sequin [SS85] and others define a zone surrounding
the line composed of all points within some ǫ distance from the actual line.

The second approach is called topologically consistent distortion . Greene
and Yao [GY86] distorted their lines into polylines, where the vertices of these
polylines are constrained to be at grid points. Note that although the “fixed-
precision representation” is preserved, the number of bits used to represent these
polylines can have arbitrary complexity.

TABLE 45.3.1 Concepts of a finite-precision line.

APPROACH SUBSTITUTE FOR IDEAL LINE SOURCE

(a) Interval geometry a line fattened into a tubular region [SS85]

(b) Topological distortion a polyline [GY86, Mil89]

(c) Rounded geometry a line whose equation has bounded coefficients [Sug89]

(d) Discretization a suitable set of pixels computer graphics

The third approach follows a tack of Sugihara [Sug89]. An ideal line is specified
by a linear equation, ax + by + c = 0. Sugihara interprets a “fixed-precision line”
to mean that the coefficients in this equation are integer and bounded: |a|, |b| <
K, |c| < K2 for some constant K. Call such lines representable (see Figure 45.3.1(c)
for the case K = 2). There are O(K4) representable lines. An arbitrary line must
be “rounded” to the closest (or some nearby) representable line in our algorithms.
Hence we call this rounded geometry .
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The last approach is based on discretization: in traditional computer graphics
and in the pattern recognition community, a “line” is just a suitable collection of
pixels. This is natural in areas where pixel images are the central objects of study,
but less applicable in computational geometry, where compact line representations
are desired. This approach will not be considered further in this chapter.

INTERVAL GEOMETRY

In interval geometry, we thicken a geometric object into a zone containing the
object. Thus a point may become a disk, and a line becomes a strip between
two parallel lines: this is the simplest case and is treated by Segal and Sequin
[SS85, Seg90]. They called these “toleranced objects,” and in order to obtain correct
predicates, they enforce minimum feature separations . To do this, features that are
too close must be merged (or pushed apart).

Guibas, Salesin, and Stolfi [GSS89] treat essentially the same class of thick
objects as Segal and Sequin, although their analysis is mostly confined to geometric
data based on points. Instead of insisting on minimum feature separations, their
predicates are allowed to return the don’t know truth value. Geometric predicates
(called ǫ-predicates) for objects are systematically treated in this paper.

In general we can consider zones with nonconstant descriptive complexity, e.g.,
a planar zone with polygonal boundaries. As with interval arithmetic, a zone is
generally a conservative estimate because the precise region of uncertainty may be
too complicated to compute or to maintain. In applications where zones expand
rapidly, there is danger of the zone becoming catastrophically large: Segal [Seg90]
reports that a sequence of duplicate-rotate-union operations repeated eleven times
to a cube eventually collapsed it to a single vertex.

TOPOLOGICALLY CONSISTENT DISTORTION

Sugihara and Iri [SI89b, SIII00] advocate an approach based on preserving topo-
logical consistency. These ideas have been applied to several problems, including
geometric modeling [SI89a] and Voronoi diagrams for point sets [SI92]. In their ap-
proach, one first chooses some topological property (e.g., planarity of the underlying
graph) and constructs geometric algorithms that preserve the chosen property in
the following sense: the algorithm will always terminate with an output whose topo-
logical properties match the topological properties for the output corresponding to
some input but not necessarily a nearby instance. It is not clear in this prescription
how to choose appropriate topological properties. Greene and Yao [GY86] consider
the problem of maintaining certain “topological properties” of an arrangement of
finite-precision line segments. They introduce polylines as substitutes for ideal line
segments in order to preserve certain properties of ideal arrangements (e.g., two
line segments intersect in a connected subset). Each polyline is a distortion of an
ideal segment σ when constrained to pass through the “hooks” of σ (i.e., grid points
nearest to the intersections of σ with other line segments). But this may gener-
ate new intersections (derived hooks) and the cascaded effects must be carefully
controlled. The grid model of Greene-Yao has been taken up by several other au-
thors [Hob99, GM95, GGHT97]. Extension to higher dimensions is harder: there
is a solution of Fortune [For99] in 3 dimensions. Further developments include the
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numerically stable algorithms in [FM91]. The interesting twist here is the use of
pseudolines rather than polylines.

Hoffmann, Hopcroft, and Karasick [HHK88] address the problem of intersect-
ing polygons in a consistent way. Phrased in terms of our notion of “geometric
structure” (Section 45.2) their goal is to compute a combinatorial structure G that
is consistent in the sense that G is the structure underlying a consistent geometric
structure D = (G, λ,Φ, c′). Here, c′ need not equal the actual input parameter
vector c. They show that the intersection of two polygons R1, R2 can be efficiently
computed, i.e., a consistent G representing R1 ∩R2 can be computed. However, in
their framework, R1 ∩ (R2 ∩ R3) 6= (R1 ∩ R2) ∩ R3. Hence they need to consider
the triple intersection R1 ∩R2 ∩R3. Unfortunately, this operation seems to require
a nontrivial amount of geometric theorem proving ability.

This suggests that the problem of verifying consistency of combinatorial struc-
tures (the “reasoning paradigm” [HHK88]) is generally hard. Indeed, the NP-hard
existential theory of reals can be reduced to such problems. In some sense, the
ultimate approach to ensuring consistency is to design “parsimonious algorithms”
in the sense of Fortune [For89]. This also amounts to theorem proving as it entails
deducing the consequences of all previous decisions along a computation path. A
similar approach has been proposed more recently by Sugihara [Sug11].

STABILITY

This is a metric form of topological distortion where we place a priori bounds on the
amount of distortion. It is analogous to backward error analysis in numerical anal-
ysis. Framed as the problem of computing the graph G underlying some geometric
structure D (as above, for [HHK88]), we could say, following Fortune [For89], that
an algorithm is ǫ-stable if there is a consistent geometric structureD = (G, λ,Φ, c′)
such that ‖c− c′‖ < ǫ where c is the input parameter vector. We say an algorithm
has strong (resp. linear) stability if ǫ is a constant (resp., O(n)) where n is the in-
put size. Fortune and Milenkovic [FM91] provide both linearly stable and strongly
stable algorithms for line arrangements. Stable algorithms have been achieved for
two other problems on planar point sets: maintaining a triangulation of a point
set [For89], and Delaunay triangulations [For92, For95]. The latter problem can
be solved stably using either an incremental or a diagonal-flipping algorithm that
is O(n2) in the worst case. Jaromczk and Wasilkowski [JW94] presented stable
algorithms for convex hulls. Stability is a stronger requirement than topological
consistency, e.g., the topological algorithms in [SI92] have not been proved stable.

ROUNDED GEOMETRY

Sugihara [Sug89] shows that the above problem of “rounding a line” can be reduced
to the classical problem of simultaneous approximation by rationals : given real
numbers a1, . . . , an, find integers p1, . . . , pn and q such that max1≤i≤n |aiq − pi| is
minimized. There are no efficient algorithms to solve this exactly, although lattice
reduction techniques yield good approximations. The above approach of Greene
and Yao can also be viewed as a geometric rounding problem. The “rounded lines”
in the Greene-Yao sense are polylines with unbounded combinatorial complexity;
but rounded lines in the Sugihara sense still have constant complexity. Milenkovic
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and Nackman [MN90] show that rounding a collection of disjoint simple polygons
while preserving their combinatorial structure is NP-complete. In Section 45.5,
rounded geometry is seen in a different light.

ARITHMETICAL APPROACHES

Certain approaches might be described as mainly based on arithmetic consider-
ations (as opposed to geometric considerations). Ottmann, Thiemt, and Ullrich
[OTU87] show that the use of an accurate scalar product operator leads to improved
robustness in segment intersection algorithms; that is, the onset of qualitative errors
is delayed. A case study of Dobkin and Silver [DS88] shows that permutation of
operations combined with random rounding (up or down) can give accurate predic-
tions of the total round-off error. By coupling this with a multiprecision arithmetic
package that is invoked when the loss in significance is too severe, they are able to
improve the robustness of their code. There is a large literature on computation
under the interval arithmetic model (e.g., [Ull90]). It is related to what we call
interval geometry above. There are also systems providing programming language
support for interval analysis.

45.4 EXACT APPROACH

As the name suggests, this approach proposes to compute without any error. The
initial interpretation is that every numerical quantity is computed exactly. While
this has a natural meaning when all numerical quantities are rational, it is not
obvious what this means for values such as

√
2 which cannot be exactly repre-

sented “explicitly.” Informally, a number representation is explicit if it facilitates
efficient comparison operations. In practice, this amounts to representing numbers
by one or more integers in some positional notation (this covers the usual represen-
tation of rational numbers as well as floating point numbers). Although we could
achieve numerical exactness in some modified sense, this turns out to be unneces-
sary. The solution to the nonrobustness only requires a weaker notion of exactness:
it is enough to ensure “geometric exactness.” In the geometric = numeric +

combinatorial formulation, the exactness is not to be found in the numeric part,
but in the combinatorial part, as this encodes the geometric relations. Hence this
approach is called Exact Geometric Computation (EGC), and it entails the
following:

Input is exact. We cannot speak of exact geometry unless this is true. This
assumption can be an issue if the input is inherently approximate. Sometimes we
can simply treat the approximate inputs as nominally exact, as in the case of
an input set of points without any constraints. Otherwise, there are two options:
(1) “clean up” the inexact input, by transforming it to data that is exact; or (2)
formulate a related problem in which the inexact input can be treated as exact
(e.g., inexact input points can be viewed as the exact centers of small balls). So the
convex hull of a set of points becomes the convex hull of a set of balls. The cleaning-
up process in (1) may be nontrivial as it may require perturbing the data to achieve
some consistency property and lies outside our present scope. The transformation
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(2) typically introduces a computationally harder problem. Not much research is
currently available for such transformed problems. In any case, (1) and (2) still end
up with exact inputs for a well-defined computational problem.

Numerical quantities may be implicitly represented. This is necessary
if we want to represent irrational values exactly. In practice, we will still need
explicit numbers for various purposes (e.g., comparison, output, display, etc.). So
a corollary is that numerical approximations will be important, a remark that was
not obvious in the early days of EGC.

All branching decisions in a computation are errorless. At the heart
of EGC is the idea that all “critical” phenomena in geometric computations are
determined by the particular sequence branches taken in a computation tree. The
key observation is that the sequence of branching decisions completely decides the
combinatorial nature of the output. Hence if we make only errorless branches, the
combinatorial part of a geometric structure D (see Section 45.2) will be correctly
computed. To ensure this, we only need to evaluate test values to one bit of relative
precision, i.e., enough to determine the sign correctly.

For problems (such as convex hulls) requiring only rational numbers, exact
computation is possible. In other applications rational arithmetic is not enough.
The most general setting in which exact computation is known to be possible is the
framework of algebraic problems [Yap97].

GLOSSARY

Computation tree: A geometric algorithm in the algebraic framework can be
viewed as an infinite sequence T1, T2, T3, . . . of computation trees. Each Tn is
restricted to inputs of size n, and is a finite tree with two kinds of nodes: (a)
nonbranching nodes, (b) branching nodes. Assume the input to Tn is a sequence
of n real parameters c1, . . . , cn (this is I in (45.2.1)). A nonbranching node at
depth i computes a value vi, say vi ← fi(v1, . . . , vi−1, c1, . . . , cn). A branching
node tests a previous computed value vi and makes a 3-way branch depending
on the sign of vi. In case vi is a complex value, we simply take the sign of the
real part of vi. Call any vi that is used solely in a branching node a test value.
The branch corresponding to a zero test value is the degenerate branch .

Exact Geometric Computation (EGC): Preferred name for the general ap-
proach of “exact computation,” as it accurately identifies the goal of determining
geometric relations exactly. The exactness of the computed numbers is either
unnecessary, or should be avoided if possible.

Composite Precision Bound: This is specified by a pair [r, a] where r, a ∈
R ∪ {∞}. For any z ∈ C, let z[r, a] denote the set of all z̃ ∈ C such that
|z−z̃| ≤ max{2−a, |z|2−r}. When r =∞, then z[∞, a] comprises all the numbers
z̃ that approximate z with an absolute error of 2−a; we say this approximation z̃
has a absolute bits. Similarly, z[r,∞] comprises all numbers z̃ that approximate
z with a relative error of 2−r; we say this approximation z̃ has r relative bits.

Constant Expressions: Let Ω be a set of complex algebraic operators; each
operator ω ∈ Ω is a partial function ω : Ca(ω) → C where a(ω) ∈ N is the arity
of ω. If a(ω) = 0, then ω is identified with a complex number. Let E(Ω) be
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the set of expressions over Ω where an expression E is a rooted DAG (directed
acyclic graph) and each node with outdegree n ∈ N is labeled with an operator
of Ω of arity n. There is a natural evaluation function val : E(Ω) → R. If Ω
has partial functions, then val() is also partial. If val(E) is undefined, we write
val(E) =↑ and say E is invalid . When Ω = Ω2 = {+,−,×,÷,√ } ∪ Z we
get the important class of constructible expressions, so called because their
values are precisely the constructible reals.

Constant Zero Problem, ZERO(Ω): Given E ∈ E(Ω), decide if val(E) =↑; if
not, decide if val(E) = 0.

Guaranteed Precision Evaluation Problem, GVAL(Ω): Given E ∈ E(Ω) and
a, r ∈ Z∪{∞}, (a, r) 6= (∞,∞), compute some approximate value in val(E)[r, a].

Schanuel’s Conjecture: If z1, . . . , zn ∈ C are linearly independent over Q, then
the set {z1, . . . , zn, ez1 , . . . , ezn} contains a subset B = {b1, . . . , bn} that is alge-
braically independent, i.e., there is no polynomial P (X1, . . . , Xn) ∈ Q[X1, . . . , Xn]
such that P (b1, . . . , bn) = 0. This conjecture generalizes several deep results in
transcendental number theory, and implies many other conjectures.

NAIVE APPROACH

For lack of a better term, we call the approach to exact computation in which every
numerical quantity is computed exactly (explicitly if possible) the naive approach.
Thus an exact algorithm that relies solely on the use of a big number package is
probably naive. This approach, even for rational problems, faces the “bugbear of
exact computation,” namely, high numerical precision. Using an off-the-shelf big
number package does not appear to be a practical option [FW93a, KLN91, Yu92].
There is evidence (surveyed in [YD95]) that just improving current big number
packages alone is unlikely to gain a factor of more than 10.

BIG EXPRESSION PACKAGES

The most common examples of expressions are determinants and the distance√∑n
i=1(pi − qi)2 between two points p, q. A big expression package allows a user

to construct and evaluate expressions with big number values. They represent the
next logical step after big number packages, and are motivated by the observa-
tion that the numerical part of a geometric computation is invariably reduced to
repeated evaluations of a few variable1 expressions (each time with different con-
stants substituted for the variables). When these expressions are test values, then it
is sufficient to compute them to one bit of relative precision. Some implementation
efforts are shown in Table 45.4.1.

One of LN’s goals [FW96] is to remove all overhead associated with function
calls or dynamic allocation of space for numbers with unknown sizes. It incorpo-
rates an effective floating-point filter based on static error analysis. The experience
in [CM93] suggests that LN’s approach is too aggressive as it leads to code bloat.
The LEA system philosophy [BJMM93] is to delay evaluating an expression un-
til forced to, and to maintain intervals of uncertainty for values. Upon complete
evaluation, the expression is discarded. It uses root bounds to achieve exactness

1 These expressions involve variables, unlike the constant expressions in E(Ω).
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TABLE 45.4.1 Expression packages.

SYSTEM DESCRIPTION REFERENCES

LN Little Numbers [FW96]

LEA Lazy ExAct Numbers [BJMM93]

Real/Expr Precision-driven exact expressions [YD95]

LEDA Real Exact numbers of Library of Efficient

Data structures and Algorithms [BFMS99, BKM+95]

Core Library Package with Numerical Accuracy API

and C++ interface [KLPY99, YYD+10]

and floating point filters for speed. The Real/Expr Package [YD95] was the first
package to achieve guaranteed precision for a general class of nonrational expres-
sions. It introduces the “precision-driven mechanism” whereby a user-specified
precision at the root of the expression is transformed and downward-propagated
toward the leaves, while approximate values generated at the leaves are evaluated
and error bounds up-propagated up to the root. This up-down process may be
iterated. See [LPY04] for a general description of this evaluation mechanism, and
[MS15] for optimizations issues. LEDA Real [BFMS99, BKM+95] is a number
type with a similar mechanism. It is part of a much more ambitious system of
data structures for combinatorial and geometric computing (see Chapter 68). The
semantics of Real/Expr expression assignment is akin to constraint propagation in
the constraint programming paradigm. The Core Library (CORE) is derived from
Real/Expr with the goal of making the system as easy to use as possible. The two
pillars of this transformation are the adoption of conventional assignment semantics
and the introduction of a simple Numerical Accuracy API [Yap98].

The CGAL Library (Chapter 68) is a major library of geometric algorithms which
are designed according to the EGC principles. While it has some native num-
ber types supporting rational expressions, the current distribution relies on LEDA

Real or CORE for more general algebraic expressions. Shewchuk [She96] implements
an arithmetic package that uses adaptive-precision floating-point representations.
While not a big expression package, it has been used to implement polynomial
predicates and shown to be extremely efficient.

THEORY

The class of algebraic computational problems encompasses most problems in con-
temporary computational geometry. Such problems can be solved exactly in singly
exponential space [Yap97]. This general result is based on a solution to the decision
problem for Tarski’s language, on the associated cell decomposition problems, as
well as cell adjacency computation (Chapter 37). However, general EGC libraries
such as the Core Library and LEDA Real depend directly on the algorithms for the
guaranteed precision evaluation problem GVAL(Ω) (see Glossary), where Ω is the
set of operators in the computation model. The possibility of such algorithms can
be reduced to the recursiveness of a constellation of problems that might be called
the Fundamental Problems of EGC . The first is the Constant Zero Problem
ZERO(Ω). But there are two closely related problems. In the Constant Va-

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 45: Robust geometric computation 1201

lidity Problem VALID(Ω), we are to decide if a given E ∈ E(Ω) is valid, i.e.,
val(E) 6=↑. The Constant Sign Problem SIGN(Ω) is to compute sign(E) for
any given E ∈ E(Ω), where sign(E) ∈ {↑,−1, 0,+1}. In case val(E) is complex,
define sign(E) to be the sign of the real part of val(E).

TABLE 45.4.2 Expression hierarchy.

OPERATORS NUMBER CLASS EXTENSIONS

Ω0 = {+,−,×} ∪ Z Integers

Ω1 = Ω0 ∪ {÷} Rational Numbers Ω+

1
= Ω1 ∪ Q

Ω2 = Ω1 ∪ {√·} Constructible Numbers Ω+

2
= Ω2 ∪ { k

√· : k ≥ 3}
Ω3 = Ω2 ∪ {RootOf(P (X), I)} Algebraic Numbers Use of ⋄(E1, . . . , Ed, i), [BFM+09]

Ω4 = Ω3 ∪ {exp(·), ln(·)} Elementary Numbers (cf. [Cho99])

There is a natural hierarchy of the expression classes, each corresponding to a
class of complex numbers as shown in Table 45.4.2. In Ω3, P (X) is any polynomial
with integer coefficients and I is some means of identifying a unique root of P (X):
I may be a complex interval bounding a unique root of P (X), or an integer i to
indicate the ith largest real root of P (X). The operator RootOf(P, I) can be gen-
eralized to allow expressions as coefficients of P (X) as in Burnikel et al. [BFM+09],
or by introducing systems of polynomial equations as in Richardson [Ric97]. The
problem of isolating the roots of such a polynomial in the univariate case has been
recently addressed in [BSS+16, BSSY15]. Although Ω4 can be treated as a set of
real operators, it is more natural to treat Ω4 (and sometimes Ω3) as complex op-
erators. Thus the elementary functions sinx, cosx, arctanx, etc., are available as
expressions in Ω4.

It is clear that ZERO(Ω) and VALID(Ω) are reducible to SIGN(Ω). For Ω4, all
three problems are recursively equivalent. The fundamental problems related to Ωi

are decidable for i ≤ 3. It is a major open question whether the fundamental prob-
lems for Ω4 are decidable. These questions have been studied by Richardson and
others [Ric97, Cho99, MW96]. The most general positive result is that SIGN(Ω3) is
decidable. An intriguing conditional result of Richardson [Ric07] is that ZERO(Ω4)
is decidable, conditional on the truth of Schanuel’s conjecture in Transcendental
Number Theory. The most general unconditional result known about ZERO(Ω4)
is (essentially) Baker’s theory of linear form in logarithms [Bak75].

CONSTRUCTIVE ROOT BOUNDS

In practice, algorithms for the guaranteed precision problem GVAL(Ω3) can exploit
the fact that algebraic numbers have computable root bounds. A root bound for
Ω is a total function β : E(Ω) → R≥0 such that for all E ∈ E(Ω), if E is valid and
val(E) 6= 0 then |val(E)| ≥ β(E). More precisely, β is called an exclusion root
bound; it is an inclusion root bound when the inequality becomes “|val(E)| ≤
β(E).” We use the (exclusion) root bound β to solve ZERO(Ω) as follows: to test
if an expression E evaluates to zero, we compute an approximation α to val(E)
such that |α − val(E)| < β(E)/2. While computing α, we can recursively verify
the validity of E. If E is valid, we compare α with β/2. It is easy to conclude
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that val(E) = 0 if |α| ≤ β/2. Otherwise |α| > β/2, and the sign of val(E) is that
of α. An important remark is that the root bound β determines the worst-case
complexity. This is unavoidable if val(E) = 0. But if val(E) 6= 0, the worst case
may be avoided by iteratively computing αi with increasing absolute precision εi.
If for any i ≥ 1, |αi| > εi, we stop and conclude sign(val(E)) = sign(αi) 6= 0.

There is an extensive classical mathematical literature on root bounds, but
they are usually not suitable for computation. Recently, new root bounds have
been introduced that explicitly depend on the structure of expressions E ∈ E(E).
In [LY01], such bounds are called constructive in the following sense: (i) There
are easy-to-compute recursive rules for maintaining a set of numerical parameters
u1(E), . . . , um(E) based on the structure of E, and (ii) β(E) is given by an explicit
formula in terms of these parameters. The first constructive bounds in EGC were
the degree-length and degree-height bounds of Yap and Dubé [YD95, Yap00] in
their implementation of Real/Expr. The (Mahler) Measure Bound was introduced
even earlier by Mignotte [Mig82, BFMS00] for the problem of “identifying alge-
braic numbers.” A major improvement was achieved with the introduction of the
BFMS Bound [BFMS00]. Li-Yap [LY01] introduced another bound aimed at im-
proving the BFMS Bound in the presence of division. Comparison of these bounds
is not easy: but let us say a bound β dominates another bound β′ if for every
E ∈ E(Ω2), β(E) ≤ β′(E). Burnikel et al. [BFM+09] generalized the BFMS Bound
to the BFMSS Bound. Yap noted that if we incorporate a symmetrizing trick for
the

√
x/y transformation, then BFMSS will dominate BFMS. Among current con-

structive root bounds, three are not dominated by other bounds: BFMSS, Measure,
and Li-Yap Bounds. In general, BFMSS seems to be the best. Scheinerman [Sch00]
provides an interesting bound based on eigenvalues. A factoring technique of Pion
and Yap [PY06] can be combined with the above methods (e.g., BFMSS) to yield
sharper bounds; it exploits the presence of k-ary input numbers (such as binary or
decimal numbers) which appear in realistic inputs. In general, we need multivari-
ate root bounds such as Canny’s bound [Can88], the Brownawell-Yap bound
[BY09], and the DMM bound [EMT10].

FILTERS

An extremely effective technique for speeding up predicate evaluation is based on
the filter concept. Since evaluating the predicate amounts to determining the sign
of an expression E, we can first use machine arithmetic to quickly compute an
approximate value α of E. For a small overhead, we can simultaneously determine
an error bound ε where |val(E) − α| ≤ ε. If |α| > ε, then the sign of α is the
correct one and we are done. Otherwise, we evaluate the sign of E again, this
time using a sure-fire if slow evaluation method. The algorithm used in the first
evaluation is called a (floating-point) filter . The expected cost of the two-stage
evaluation is small if the filter is efficient with a high probability of success. This
idea was first used by Fortune and van Wyk [FW96]. Floating-point filters can
be classified along the static-to-dynamic dimension: static filters compute the
bound ε solely from information that is known at compile time while dynamic
filters depend on information available at run time. There is an efficiency-
efficacy tradeoff : static filters (e.g., FvW Filter [FW96]) are more efficient, but
dynamic filters (e.g., BFS Filter [BFS98]) are more accurate (efficacious). Interval
arithmetic has been shown to be an effective way to implement dynamic filters
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[BBP01]. Automatic tools for generating filter code are treated in [FW93b, Fun97].
Filters can be elaborated in several ways. First, we can use a cascade of filters
[BFS98]. The “steps” of an algorithm which are being filtered can be defined at
different levels of granularity. One extreme is to consider an entire algorithm as one
step [MNS+96, KW98]. A general formulation “structural filtering” is proposed in
[FMN05]. Probabilistic analysis [DP99] shows the efficacy of arithmetic filters. The
filtering of determinants is treated in several papers [Cla92, BBP01, PY01, BY00].

Filtering is related to program checking [BK95, BLR93]. View a computational
problem P as an input-output relation, P ⊆ I×O where I, O is the input and output
spaces, respectively. Let A be a (standard) algorithm for P which, viewed as a
total function A : I → O∪{↑}, has the property that for all i ∈ I, we have A(i) 6=↑
iff (i, A(i)) ∈ P . Let H : I → O ∪ {↑} be another algorithm with no restrictions;
call H a heuristic algorithm for P . Let F : I ×O→ {true, false}. Then F is a
checker for P if F computes the characteristic function for P , i.e., F (i, o) = true
iff (i, o) ∈ P . Note that F is a checker for the problem P , and not for any purported
program for P . Unlike program checking literature, we do not require any special
properties of P such as self-reducibility. We call F a filter for P if F (i, o) = true
implies (i, o) ∈ P . So filters are less restricted than checkers. Another filter F ′

is more efficacious than F if F (i, o) = true implies F ′(i, o) = true. A filtered
program for P is therefore a triple (H,F,A) where H is a heuristic algorithm,
A a standard algorithm and F a filter. To run this program on input i, we first
compute H(i) and check if F (i,H(i)) is true. If so, we output H(i); otherwise
compute and output A(i). Filtered programs can be extremely effective when H,F
are both efficient and efficacious. Usually H is easy—it is just a machine arithmetic
implementation of an exact algorithm. The filter F can be more subtle, but it is still
more readily constructed than any checker. In illustration, let P be the problem
SDET of computing the sign of determinants. The only checker we know here is
trivial, amounting to computing the determinant itself. On the other hand, effective
filters for SDET are known [BBP01, PY01].

PRECISION COMPLEXITY

An important goal of EGC is to control the cost of high-precision computation. For
instance, consider the sum of square roots problem: given 2k numbers a1, . . . , ak
and b1, . . . , bk such that 0 < ai, bi ≤ N , derive a bound on the precision required
to compute a 1-relative bit approximation to (

∑k
i=1

√
ai −

∑k
i=1

√
bi). The best

known bounds on the precision are of the form O(2k logN); for instance, we can
compute the constructive root bound for the expression denoting the difference and
take its logarithm to obtain such a bound. In practice, it has been observed that
O(k logN) precision is sufficient. The current best upper bound implies that the
problem is in PSPACE. We next describe two approaches to address the issue of
precision complexity based on modifying the algorithmic specification.

In predicate evaluation, there is an in-built precision of 1-relative bit (this pre-
cision guarantees the correct sign in the predicate evaluation). But in construction
steps, any precision guarantees must be explicitly requested by the user. For op-
timization problems, a standard method to specify precision is to incorporate an
extra input parameter ǫ > 0. Assume the problem is to produce an output x
to minimizes the function µ(x). An ǫ-approximation algorithm will output a
solution x such that µ(x) ≤ (1 + ε)µ(x∗) for some optimum x∗. An example is
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the Euclidean Shortest-path Problem in 3-space (3ESP). Since this problem
is NP-hard (Section 31.5), we seek an ǫ-approximation algorithm. A simple way
to implement an ǫ-approximation algorithm is to directly implement any exact al-
gorithm in which the underlying arithmetic has guaranteed precision evaluation
(using, e.g., Core Library). However, the bit complexity of such an algorithm
may not be obvious. The more conventional approach is to explicitly build the
necessary approximation scheme directly into the algorithm. The first such scheme
from Papadimitriou [Pap85] is polynomial time in n and 1/ε. Choi et al. [CSY97]
give an improved scheme, and perform a rare bit-complexity analysis.

Another way to control precision is to consider output complexity. In geometric
problems, the input and output sizes are measured in two independent ways: com-
binatorial size and bit sizes. Let the input combinatorial and input bit sizes be n
and L, respectively. By an L-bit input, we mean each of the numerical parameters
in the description of the geometric object (see Section 45.2) is an L-bit number.
Now an extremely fruitful concept in algorithmic design is this: an algorithm is
said to be output-sensitive if the complexity of the algorithm can be made a
function of the output size as well as of the input size parameters. In the usual
view of output-sensitivity, only the output combinatorial size is exploited. Choi et
al. [SCY00] introduced the concept of precision-sensitivity to remedy this gap.
They presented the first precision-sensitive algorithm for 3ESP, and gave some ex-
perimental results. Using the framework of pseudo-approximation algorithms,
Asano et al. [AKY04] gave new and more efficient precision-sensitive algorithms for
3ESP, as well as for an optimal d1-motion for a rod.

GEOMETRIC ROUNDING

We saw rounded geometry as one of the fixed-precision approaches (Section 45.3)
to robustness. But geometric rounding is also important in EGC, with a difference.
The EGC problem is to “round” a geometric structure (Section 45.2) D to a ge-
ometric structure D′ with lower precision. In fixed-precision computation, one is
typically asked to construct D′ from some input S that implicitly defines D. In
EGC, D is explicitly given (e.g., D may be computed from S by an EGC algo-
rithm). The EGC view should be more tractable since we have separated the two
tasks: (a) computing D and (b) rounding D. We are only concerned with (b), the
pure rounding problem . For instance, if S is a set of lines that are specified by
linear equations with L-bit coefficients, then the arrangementD(S) of S would have
vertices with 2L+O(1)-bit coordinates. We would like to round the arrangement,
say, back to L bits. Such a situation, where the output bit precision is larger than
the input bit precision, is typical. If we pipeline several of these computations in
a sequence, the final result could have a very high bit precision unless we perform
rounding.

If D rounds to D′, we could call D′ a simplification of D. This viewpoint
connects to a larger literature on simplification of geometry (e.g., simplifying geo-
metric models in computer graphics and visualization (Chapter 52). Two distinct
goals in simplification are combinatorial versus precision simplification . For
example, a problem that has been studied in a variety of contexts (e.g., Douglas-
Peucker algorithm in computational cartography) is that of simplifying a polygonal
line P . We can use decimation to reduce the combinatorial complexity (i.e., num-
ber of vertices #(P )), for example, by omitting every other vertex in P . Or we
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can use clustering to reduce the bit-complexity of P to L-bits, e.g., we collapse
all vertices that lie within the same grid cell, assuming grid points are L-bit num-
bers. Let d(P, P ′) be the Hausdorff distance between P and another polyline P ′;
other similar measures of distance may be used. In any simplification P ′ of P , we
want to keep d(P, P ′) small. In [BCD+02], two optimization problems are studied:
in the Min-# Problem , given P and ε, find P ′ to minimize #(P ), subject to
d(P, P ′) ≤ ε. In the Min-ε Problem , the roles of #(P ) and d(P, P ′) are reversed.
For EGC applications, optimality can often be relaxed to simple feasibility. Path
simplification can be generalized to the simplification of any cell complexes.

BEYOND ALGEBRAIC

Non-algebraic computation over Ω4 is important in practice. This includes the use
of elementary functions such as expx, lnx, sin x, etc., which are found in stan-
dard libraries (math.h in C/C++). Elementary functions can be implemented via
their representation as hypergeometric functions, an approach taken by Du et
al. [DEMY02]. They described solutions for fundamental issues such as automatic
error analysis, hypergeometric parameter processing and argument reduction. If f
is a hypergeometric function and x is an explicit number, one can compute f(x) to
any desired absolute accuracy. But in the absence of root bounds for Ω4, we cannot
solve the guaranteed precision problem GVAL(Ω4). In Core Library 2.1, tran-
scendental functions are provided, but they are computed up to some user-specified
“Escape Bound.” Numbers that are smaller than this bound are declared zero, and
a record is made. Thus our computation is correct subject to these records being
actual zeros. Another intriguing approach is to invoke some strong version of the
uniformity conjecture [RES06], which provides a bound implemented in an EGC
library like [YYD+10], or to use a decision procedure conditioned on the truth of
Schanuel’s conjecture [Ric07]. If our library ever led to an error, we would have
produced a counterexample to the underlying conjectures. Thus, we are continually
testing some highly nontrivial conjectures when we use the transcendental parts of
the library.

A rare example of a simple geometric problem that is provably transcendental
and yet decidable was shown in [CCK+06]. This is the problem of shortest path
between two points amidst a set of circular obstacles. Although a direct argument
can be used to show the decidability of this problem, to get a complexity bound,
it was necessary to invoke Baker’s theory of linear form in logarithms [Bak75] to
derive a single-exponential time bound.

The need for transcendental functions may be only apparent: e.g., path plan-
ning in Euclidean space only appears to need trigonometric functions, but they
can be replaced by algebraic relations. Moreover, we can get arbitrarily good ap-
proximations by using rational rigid transformations where the sines or cosines are
rational. Solutions in 2 and 3 dimensions are given by Canny et al. [CDR92] and
Milenkovic and Milenkovic [MM93], respectively.

APPLICATIONS

We now consider issues in implementing specific algorithms under the EGC paradigm.
The rapid growth in the number of such algorithms means the following list is quite
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partial. We attempt to illustrate the range of activities in several groups: (i) The
early EGC algorithms are easily reduced to integer arithmetic and polynomial pred-
icates, such convex hulls or Delaunay triangulations. The goal was to demonstrate
that such algorithms are implementable and relatively efficient (e.g., [FW96]). To
treat irrational predicates, the careful analysis of root bounds were needed to en-
sure efficiency. Thus, Burnikel, Mehlhorn, and Schirra [BMS94, Bur96] gave sharp
bounds in the case of Voronoi diagrams for line segments. Similarly, Dubé and Yap
[DY93] analyzed the root bounds in Fortune’s sweepline algorithm, and first iden-
tified the usefulness of floating point approximations in EGC. Another approach is
to introduce algorithms that use new predicates with low algebraic degrees. This
line of work was initiated by Liotta, Preparata, and Tamassia [LPT98, BS00]. (ii)
Polyhedral modeling is a natural domain for EGC techniques. Two efforts are
[CM93, For97]. The most general viewpoint here uses Nef polyhedra [See01] in
which open, closed or half-open polyhedral sets are represented. This is a radical
departure from the traditional solid modeling based on regularized sets and the
associated regularized operators; see Chapter 57. The regularization of a set
S ⊆ Rd is obtained as the closure of the interior of S; regularized sets do not allow
lower dimensional features, e.g., a line sticking out of a solid is not permitted. Treat-
ment of Nef polyhedra was previously impossible outside the EGC framework. (iii)
An interesting domain is optimization problems such as linear and quadratic pro-
gramming [Gae99, GS00] and the smallest enclosing cylinder problem [SSTY00]. In
linear programming, there is a tradition of using benchmark problems for evaluat-
ing algorithms and their implementations. But what is lacking in the benchmarks is
reference solutions with guaranteed accuracy to (say) 16 digits. One application
of EGC algorithms is to produce such solutions. (iv) An area of major challenge is
computation of algebraic curves and surfaces. Algorithms for low degree curves and
surfaces can be efficiently solved today e.g., [BEH+02, GHS01, Wei02, EKSW06].
Arbitrary precision libraries for algebraic curves have been implemented (see Kr-
ishnan et al. [KFC+01]) but without zero bounds, there are no topology guaran-
tees. More recently, there has been a lot of progress in determining the topology
of curves, which may be given implicitly, e.g., as the Voronoi diagram of ellipses
[ETT06], or are given explicitly and are of arbitrary degree [EKW07, BEKS13].
The more general problems of computing the topology of arrangements of curves
[BEKS11], and the topology of surfaces [BKS08, Ber14] are also being addressed
under the EGC paradigm. These algorithms have been implemented under the
EXACUS project [BEH+05]. (v) The development of general geometric libraries
such as CGAL [HHK+07] or LEDA [MN95] exposes a range of issues peculiar to
EGC (cf. Chapter 68). For instance, in EGC we want a framework where various
number kernels and filters can be used for a single algorithm.

45.5 TREATMENT OF DEGENERACIES

Suppose the input to an algorithm is a set of planar points. Depending on the con-
text, any of the following scenarios might be considered “degenerate”: two cover-
tical points, three collinear points, four cocircular points. Intuitively, these are
degenerate because arbitrarily small perturbations can result in qualitatively dif-
ferent geometric structures. Degeneracy is basically a discontinuity [Yap90b, Sei98].
Sedgewick [Sed02] calls degeneracies the “bugbear of geometric algorithms.” Degen-
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eracy is a major cause of nonrobustness for two reasons. First, it presents severe
difficulties for approximate arithmetic. Second, even under the EGC paradigm,
implementers are faced with a large number of special degenerate cases that must
be treated (this number grows exponentially in the dimension of the underlying
space). For instance, the Voronoi diagram of the arrangements of three lines in R3

is characterized by five cases [EGL+09]. In general, the types of Voronoi cells grow
exponentially in the dimension [YSL12]. Thus there is a need to develop general
techniques for handling degeneracies.

GLOSSARY

Inherent and induced degeneracy: This is illustrated by the planar convex hull
problem: an input set S with three collinear points p, q, r is inherently degenerate
if S lies entirely in one halfplane determined by the line through p, q, r. If p, q, r
are collinear but S does not lie on one side of the line through p, q, r, then we may
have an induced degeneracy for a divide-and-conquer algorithm. This happens
when the algorithm solves a subproblem S′ ⊆ S containing p, q, r with all the
remaining points on one side. Induced degeneracy is algorithm-dependent. In
this chapter, we simply say “degeneracy” for induced degeneracy. More precisely,
an input is degenerate if it leads to a path containing a vanishing test value
in the computation tree [Yap90b]. A nondegenerate input is also said to be
generic.

Generic versus General algorithm: A generic algorithm is one that is only
guaranteed to be correct on generic inputs. A general algorithm is one that
works correctly for all (legal) inputs. Beware that “general” and “generic” are
used synonymously in the literature (e.g., “generic inputs” often means inputs
in “general position”).

THE BASIC ISSUES

1. One basic goal of this field is to provide a systematic transformation of a
generic algorithm A into a general algorithm A′. Since generic algorithms are
widespread in the literature, the availability of general tools for this A 7→ A′

transformation is useful for implementing robust algorithms.

2. Underlying any transformations A 7→ A′ is some kind of perturbation of the
inputs. There are two kinds of perturbations: symbolic (a.k.a. infinitesimal)
or numeric. Informally, perturbation has the connotation of being random.
But there are applications where we want to “control” these perturbations
to achieve some properties: e.g., for a convex polytope A, we may like this
to be an “outward perturbation” so that A′ contains A. However, the term
controlled perturbation has now taken a rather specific meaning in the frame-
work introduced by Halperin et al. [HS98, Raa99]. The goal of controlled
perturbation is to guarantee that a random δ-perturbation achieves a suffi-

ciently nondegenerate state with high probability. Sufficient nondegeneracy
here means that the underlying predicates can be computed with (say) IEEE
floating point arithmetic, with a certification of nondegeneracy.
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3. There is a postprocessing issue: although A′ is “correct” in some technical
sense, it may not necessarily produce the same outputs as an ideal algo-
rithm A∗. This issue arises in symbolic rather than numeric perturbation.
For example, suppose A computes the Voronoi diagram of a set of points in
the plane. Four cocircular points are a degeneracy and are not treated by
A. The transformed A′ can handle four cocircular points but it may output
two Voronoi vertices that have identical coordinates and are connected by a
Voronoi edge of length 0. This may arise if we use infinitesimal perturba-
tions. The postprocessing problem amounts to cleaning up the output of A′

(removing the length-0 edges in this example) so that it conforms to the ideal
output of A∗.

CONVERTING GENERIC TO GENERAL ALGORITHMS

There are three main methods for converting a generic algorithm to a general one:

Symbolic perturbation schemes (Blackbox sign evaluation) We postulate
a sign blackbox that takes as input a function f(x) = f(x1, . . . , xn) and param-
eters a = (a1, . . . , an) ∈ Rn, and outputs a nonzero sign (either + or −). In case
f(a) 6= 0, this sign is guaranteed to be the sign of f(a), but the interesting fact
is that we get a nonzero sign even if f(a) = 0. We can formulate a consistency
property for the blackbox, both in an algebraic setting [Yap90b] and in a geometric
setting [Yap90a]. The transformation A 7→ A′ amounts to replacing all evalua-
tions of test values by calls to this blackbox. In [Yap90b], a family of admissible
schemes for blackboxes is given in case the functions f(x) are polynomials. This
method of Simulation of Simplicity (SoS) is a special case of this scheme.

Numerical and controlled perturbation. In contrast to symbolic perturba-
tion, we can make a random numerical perturbation to the input. Intuitively, we
expect this results in nondegeneracy. But controlled perturbation [HS98, Raa99]
in the sense of Halperin assumes other ingredients: one idea is that the perturba-
tion must be “sufficiently nondegenerate” so that it could be “efficiently certified.”
To formalize this, consider this problem: given any ε > 0 and input z, compute

δ = δ(ε) > 0 such that a random δ-perturbation of z has probability > 1/2 of being

ε-nondegenerate. The set of δ-perturbations of z is Uδ(z) :={z′ : ‖z′ − z‖ ≤ δ},
where ‖ ·‖ is any norm. Usually the infinity-norm is chosen (so Uδ(z) is a box). As-
sume that z is degenerate if f(z) = 0, where f is a given real function. Note that it
is not enough to be “simply nondegenerate” (the probability of this is 1, trivially).
We define ε-nondegenerate to mean |f(u)| > ε. How to choose this ε? It is dictated
by a pragmatic assumption: for efficiency, assume we want to use the IEEE floating
point arithmetic. Let f̃(z) denote the result of computing f(z) in IEEE floating
point. There are techniques (see below and [MOS11, appendix]) to compute a

bound B(f,M) such that for all ‖z‖ ≤M , if |f̃(z)| > B(f,M) then |f(z)| > 0, i.e.,
z is nondegenerate. Moreover, B(f,M) can be computed in floating point, taking
no more than big-Oh of the time to evaluate f(z). Therefore, if we choose ε to be

B(f,M), we can verify that z is nondegenerate by checking that |f̃(z)| > B(f,M).
If this check succeeds, we say z is certifiably nondegenerate and stop. If it fails,
we repeat the process with another random δ-perturbation z′; but we are assured
that the expected number of such repeats is at most one. In actual algorithms, we
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do not seek a monolithic perturbation of z, but view z = (z1, z2, . . . , zn) to be a
sequence of points where each zi is an m-vector. We perturb the zi’s sequentially
(in the order i = 1, . . . , n). Inductively, suppose (z′1, . . . , z

′
i−1) is certifiably nonde-

generate. The perturbed z′i must be chosen to extend this inductive hypothesis.

Perturbation toward a nondegenerate instance. A third approach is pro-
vided by Seidel [Sei98], based on the following idea. For any problem, if we know
one nondegenerate input a∗ for the problem, then every other input a can be made
nondegenerate by perturbing it in the direction of a∗. We can take the perturbed
input to be a + ǫa∗ for some small ǫ. For example, for the convex hull of points
in Rn, we can choose a∗ to be distinct points on the moment curve (t, t2, . . . , tn).
This method can be regarded as symbolic or numeric, depending on whether ǫ is
an infinitesimal or an actual numerical value.

We now elaborate on these methods. We currently only have blackbox schemes
for rational functions, while Seidel’s method would apply even in nonalgebraic set-
tings. Blackbox schemes are independent of particular problems, while the nonde-
generate instances a∗ depend on the problem (and on the input size); no systematic
method to choose a∗ is known. An early work in this area is the Simulation of Sim-
plicity (SoS) technique of Edelsbrunner and Mücke [EM90]. The method amounts
to adding powers of an indeterminate ǫ to each input parameter. Such ǫ-methods
were first used in linear programming in the 1950s. The SoS scheme (for determi-
nants) turns out to be an admissible scheme [Yap90b]. Intuitively, sign blackbox
invocations should be almost as fast as the actual evaluations with high probabil-
ity [Yap90b]. But the worst-case exponential behavior led Emiris and Canny to
propose more efficient numerical approaches [EC95]. To each input parameter ai
in a, they add a perturbation biǫ (where bi ∈ Z and ǫ is again an infinitesimal):
these are called linear perturbations. In case the test values are determinants,
they show that a simple choice of the bi’s will ensure nondegeneracy and efficient
computation. For general rational function tests, a lemma of Schwartz shows that
a random choice of the bi’s is likely to yield nondegeneracy. Emiris, Canny, and
Seidel [ECS97, Sei98] give a general result on the validity of linear perturbations,
and apply it to common test polynomials.

Controlled perturbation was developed explicitly to be practical and to exploit
fast floating point arithmetic. Our above assumption of the specific IEEE standard
is only for simplicity: in general, we will need to consider floating point systems
with L-bit mantissa as discussed in [MOS11]. By choosing L arbitrarily large,
we can make the error bound ε = B(f,M) arbitrarily close to 0. The idea of
computing B(f,M) goes back to Fortune and van Wyk [FW93a, FW96]. Given
an expression E (typically a polynomial perhaps also with square-root), certain
parameters such as mE , indE , degE , etc., can be recursively defined from the
structure of E (e.g., [MOS11, Table 1]). They can even be computed in the chosen

floating point system, costing no more than evaluating E in floating point. If Ẽ is
the floating point value of E then [MOS11, Theorem 16] says that the error |Ẽ−E|
is at most (indE + 1) · u ·mE , where u = 2−L−1 is the unit round-off error. If E
is an expression for evaluating f(z), then the bound B(f,M) may be defined as
(intE + 1) · u ·mE .

We note two additional issues in controlled perturbation: (1) The above per-
turbation analysis operates at a predicate level. An algorithm execution will call
these predicates many times on different inputs. We must translate the bounds and
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probabilities from predicate level to algorithm level. (2) The analysis assumes the
input and perturbation are real numbers. Since the actual perturbations must be
floating point numbers, we must convert our probability estimates based on real
numbers into corresponding estimates for a discrete set of floating point numbers.
Say u is a δ-perturbation of z. Let the w = fℓ(u) be the floating point number
closest to u (breaking ties arbitrarily). In our algorithm, we must be able to gener-
ate w with the probability pw of the set {u ∈ U : fℓ(u) = w}. This issue was first
addressed explicitly in Mehlhorn et al. [MOS11].

APPLICATIONS AND PRACTICE

Michelucci [Mic95] describes implementations of blackbox schemes, based on the
concept of “ǫ-arithmetic.” One advantage of his approach is the possibility of con-
trolling the perturbations. Experiences with the use of perturbation in the beneath-
beyond convex hull algorithm in arbitrary dimensions are reported in [ECS97].
Neuhauser [Neu97] improved and implemented the rational blackbox scheme of
Yap. He also considered controlled perturbation techniques. Comes and Ziegel-
mann [CZ99] implemented the linear perturbation ideas of Seidel in CGAL.

Controlled perturbation was initially applied by Halperin et al. to arrangements
for spheres, polyhedra and circles [HS98, Raa99, HL04]. This was extended to
controlled perturbations for Delaunay triangulations [FKMS05], convex hulls in
all dimensions [Kle04], and Voronoi diagrams of line segments [Car07]. Finally,
Mehlhorn et al. [MOS11] provided the general analysis for all degeneracy predicates
defined by multivariate polynomials, subsuming the previously studied cases.

In solid modeling systems, it is very useful to systematically avoid degenerate
cases (numerous in this setting). Fortune [For97] uses symbolic perturbation to
allow an “exact manifold representation” of nonregularized polyhedral solids (see
Section 57.1). The idea is that a dangling rectangular face (for instance) can be
perturbed to look like a very flat rectangular solid, which has a manifold represen-
tation. Hertling and Weihrauch [HW94] define “levels of degeneracy” and use this
to obtain lower bounds on the size of decision computation trees.

In contrast to our general goal of avoiding degeneracies, there are some pa-
pers that propose to directly handle degeneracies. Burnikel, Mehlhorn, and Schirra
[BMS95] describe the implementation of a line segment intersection algorithm and
semidynamic convex hull maintenance in arbitrary dimensions. Based on this ex-
perience, they question the usefulness of perturbation methods using three obser-
vations: (i) perturbations may increase the running time of an algorithm by an
arbitrary amount; (ii) the postprocessing problem can be significant; and (iii) it
is not hard to handle degeneracies directly. But the probability of (i) occurring
in a drastic way (e.g., for a degenerate input of n identical points) is so negligi-
ble that it may not deter users when they have the option of writing a generic
algorithm, especially when the general algorithm is very complex or not readily
available. Unfortunately, property (iii) is the exception rather than the rule, es-
pecially in nonlinear and nonplanar settings. In illustration, consider the mildly
nonlinear problem of computing the Voronoi diagram of convex polyhedra in R3.
An explicit exact algorithm for this “Voronoi quest” is still elusive at the moment
of this writing. Solution of a special case (Voronoi diagram of arbitrary lines in R3)
was called a major milestone in Hemmer et al. [HSH10]. The fundamental barrier
here is traced by [YSL12] to the lack of a complete degeneracy analysis, requiring 10
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cases (with subcases) and nontrivial facts of algebraic geometry (the requisite alge-
braic geometry lemma for lines in R3 was provided by Everett et al. [ELLD09]). In
short, users must weigh these opposing considerations for their particular problem
(cf. [Sch94]).

45.6 SOFT EXACT COMPUTATION

EGC has emerged as a successful general solution to numerical nonrobustness for
basic geometric problems, mainly planar and linear problems. In principle, this
solution extends to nonlinear algebraic problems. But its complexity is a barrier in
practice. For transcendental problems, the specter of noncomputable Zero problems
(Section 45.4) must be faced. These considerations alone press us to weaken the
notion of exactness. On top of this, the input is inherently inexact in the vast ma-
jority of geometric applications (e.g., in robotics or biology). All common physical
constants, save the speed of light which is exact by definition, is known to at most 8
digits of accuracy. In such settings, exact computation could be regarded as a device
to ensure robustness (treating the inexact input as nominally exact, Section 45.4).
But this device is no longer reasonable when addressing regimes where exact com-
putation is expensive or impossible. Numerical approaches [Yap09] promise to open
up vast new domains in Computational Science and Engineering (CS&E) that are
inaccessible to current techniques of Computational Geometry. This section de-
scribes current attempts to exploit numerics and achieve some weak notion (or soft
notion) of exactness in regimes challenging for the current exact approach.

GLOSSARY

Traditional Numerical Algorithm: An algorithm described in the Real RAM
model and then implemented in the Standard Model of Numerical Analysis
[TB97]: namely, each primitive numerical operation returns a value with relative
error at most u, where u > 0 is called the unit round-off error . Of course,
these errors will accumulate in subsequent steps.

Subdivision Model of Computation: A popular model for practitioners and
can take many forms. Here we describe a fully adaptive version [LY11, Yap15]
that supports rigorous soft algorithms using interval methods. Computational
problems in a metric space X can often be reduced to “local computation”
in small neighborhoods of X . Concretely, let X = Rd, and X denote the
set of d-boxes in X , representing neighborhoods. A subdivision of any set
S ⊆ X is a finite collection C of sets with pairwise-disjoint interiors, whose
union

⋃
C equals S. Assume an operator that replaces any box B by a finite

subdivision of B called split(B); each subbox in split(B) is a child of B. In
this way, we form a subdivision tree T (B) rooted at B where the parent-child
relationship is determined by split operations. This is a dynamic tree that grows
by splitting at leaves. The leaves of T (B) form a subdivision of B. For example,
for d = 2, split(B) is the set of four congruent subboxes sharing the midpoint of
B, and T (B) is called a quadtree. To solve a problem in B ⊆ X , we grow the
subdivision tree rooted at B by splitting at any leaf. Termination is determined
by some numerical predicate on boxes. These predicates need only be evaluated
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to a precision determined by the depth, thus side-stepping exact computation.
In general, we can replace boxes by other well-structured sets such as simplices;
see [Yap15] for a treatment that includes subdivision in non-Euclidean spaces.

RESOLUTION EXACTNESS

Our return to numerics needs new approaches: after all, we were driven to the exact
approach in the first place because the Traditional Numerical Algorithms led
to insoluble nonrobustness issues. Such algorithms do not have an a priori guarantee
of correctness, but depend on an a posteriori error analysis. What we seek are
algorithms with a priori correctness guarantees, and which can dynamically adjust
their arbitrary precision and steps depending on the input instance. Informally, we
call this mode of numerical computation “Soft Exact Computation.”

The approximate version of an arbitrary problem is obtained by introducing
a new resolution parameter ε > 0, in addition to its normal parameters. We
must not identify ε with the unit round-off error u of the Standard Model of
numerical analysis; intuitively, we want ε to bound the output error. In approxi-
mation algorithms, this has a standard interpretation called ε-approximation for
optimization problems. It says that the output value should be within a relative
error of ε of the optimal. For example, for shortest path problems, the output
path length is ≤ (1 + ε) times the shortest length. If no path exists, the optimal
length is ∞. Observe that such an ε-approximation algorithm implicitly solves the
same path-existence predicate as the original algorithm: it outputs ∞ iff there is
no path. Since this predicate requires exact computation, it is not really what we
want. In fact, we want to approximate even the nonoptimization problems; in par-
ticular, what are “ε-approximate predicates”? In general, this is not a meaningful
thought. However we can define a sensible notion in case of numerical predi-
cates: if f : X → R is a continuous function over some metric space X , then it
defines a numerical predicate Cf : X → {true, false} given by Cf (x) = true iff
f(x) > 0.

To be concrete, consider the robot motion planning problem (Chapter 50) for
some fixed robot in R3: given x = (A,B,Ω), we must find a path from start
configuration A to goal configuration B while avoiding some polygonal set Ω ⊆ R3.
Let X be the set of all such inputs x. There is2 a nontrivial path-existence predicate
here: does input x = (A,B,Ω) admit a path? Let f(x) be defined as the minimum
clearance of an Ω-avoiding path from A to B if one exists; f(x) = 0 if there
is no such path. Thus Cf is the path-existence predicate. Following [WCY15,

LCLY15, Yap15], we call a function of the form C̃f : X × R>0 → {true, false}
resolution-exact (or ε-exact) version of Cf if there exists a K > 1 such that for
all (x, ε) ∈ X × R>0, we have the following:

(T) If f(x) > Kε, then C̃f (x, ε) = true.

(F) If f(x) < ε/K, then C̃f (x, ε) = false.

The conditions (T) and (F) are nonexhaustive: in case f(x) ∈ [ε/K,Kε], C̃f (x)
can output either answer. Because of this, we say that the ε-exactness problem is

2 Current robotics literature ignores the path-existence predicate and formulates their correctness
criteria for path planning, but only for inputs that admit a path; two such criteria are “resolution
completeness” and “probabilistic completeness” [LaV06].
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indeterminate. Indeterminacy allows us to bypass the specter of the Zero problem
because the computability of C̃f is not in question as long as we can arbitrarily
approximate f .

Another crucial step in transitioning to numerical approximation is to abandon
the Real RAM model implicit in Traditional Numerical Algorithms. The alternative
is conveniently captured by the Subdivision Model . We need techniques from
interval arithmetic [Moo66]: assume X = Rd and Rd is the set of full-bodied
axes-parallel boxes. If f : X → R and f : X → R, we call f a soft
version of f if f is conservative (i.e., f(B) ⊆ f(B) for B ∈ Rd) and
convergent (i.e., limi→∞ f(Bi) = f(p) for any sequence {Bi : i ≥ 0} of boxes
that monotonically converges to a point p ∈ X). Such soft functions are relatively
easy to design and implement for motion planning problems, leading to efficient and
practical ε-exact planners [WCY15]. Soft exact algorithms have been developed for
Voronoi diagrams [BPY16], meshing curves and surfaces [PV04, LY11, LYY12], and
arrangement of curves [LSVY14].

The approach can be systematically extended to the first-order theory of reals
as in Gao et al. [GAC12b]: given a Tarski formula ϕ, there are standard ways to
bring it into a positive prenex form whose matrix is a Boolean combination of atomic
predicates of the form t(x) > 0 or t(x) ≥ 0 where t(x) are terms (i.e., polynomials).
Positive means that there are no negations in ϕ. We can enrich Tarski’s language by
allowing terms that include functions from some subset F of real functions that are
computable in the sense of computable analysis [Wei00]. Call these F -formulas.
For any δ ≥ 0, the δ-strengthened form of ϕ, denoted by ϕ+δ, is obtained by
replacing the atomic predicate t(x) > 0 by t(x) > δ and t(x) ≥ 0 by t(x) ≥ δ
in the positive form. Clearly, ϕ+δ implies ϕ. Next, an F -formula ϕ is said to be
bounded if each occurrence of a quantifier Qi (i = 1, 2, . . .) appears in the form
(Qixi ∈ [ui, vi])[...] where ui ≤ vi are both terms involving variables xj , for j < i.
The δ-decision problem is this: given a bounded F -sentence ϕ and δ > 0, decide
whether ϕ is true or ϕ+δ is false. Their main result in [GAC12b] is that this
problem is decidable. Prima facie, this is surprising since the decision problem for
F -sentences is already undecidable if the sin(·) function is included in F [Ric68]. It is
less surprising when we realize that δ-decision is indeterminate, not the usual “hard”
decision involving the Zero problem for F -terms. The δ-strengthening is one of
several ways to strengthen (or weaken) numerical predicates; the above notion of ε-
exactness is a variant better suited to nonnegative functions like clearance f(x) and
to the physical interpretations of robot uncertainty. It is also possible to strengthen
using relative errors. Gao et al. [GAC12a] address the more practical case of δ-
decision for bounded existential F -sentences. They further introduce a subdivision
algorithm with interval evaluations (in the terminology of verification literature,
this is called the DPLL-Interval Constraint Propagation (or DPLL/ICP)).
It is proved that the DPLL/ICP algorithm can δ-decide bounded existential F -
sentences within the complexity class NPP assuming that the functions in F are
P -computable.

45.7 OPEN PROBLEMS

1. The main theoretical question in EGC is whether the Constant Zero Problem
for Ω4 is decidable. This is decidable if Schanuel’s conjecture is true. Baker’s
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theory gives a positive answer to a very special subproblem. This is expected
to be very deep, so deciding any nontrivial subproblem would be of interest.
A simpler question is whether ZERO(Ω3 ∪ {sin(·), π}) is decidable.

2. In constructive root bounds, it is unknown if there exists a root bound β :
E(Ω2)→ R≥0 where − lg(β(E)) = O(D(E)) and D(E) is the degree of E. In
current bounds, we only know a quadratic bound, − lg(β(E)) = O(D(E)2).
The Revised Uniformity Conjecture of Richardson and Sonbaty [RES06] is a
useful starting point.

3. Give an optimal algorithm for the guaranteed precision evaluation problem
GVAL(Ω) for, say, Ω = Ω2. The solution includes a reasonable cost model.

4. In geometric rounding, we pose two problems: (a) Extend the Greene-Yao
rounding problem to nonuniform grids (e.g., the grid points are L-bit floating
point numbers). (b) Round simplicial complexes. The preferred notion of
rounding here should not increase combinatorial complexity (unlike Greene-
Yao), but rather allow features to collapse (triangles can degenerate to a
vertex), but disallow inversion (triangles cannot flip its orientation).

5. Extend the control perturbation technique to more general classes of expres-
sions, including rational functions, square-root functions, analytic functions
[MOS11].

6. Give a systematic treatment of inexact (dirty) data. Held [Hel01a, Hel01b]
describes the engineering of reliable algorithms to handle such inputs.

7. Design soft exact algorithms for kinodynamic planning and for nonholonomic
planning in robotics. Known theoretical algorithms are far from practical
(and practical ones are nonrigorous). Even when subdivision is used, such
algorithms use exact (“hard”) predicates.

8. Develop techniques for nontrivial complexity analysis of subdivision algo-
rithms in computation geometry. Since such algorithms are adaptive, we
would like to use complexity parameters based on the geometry of the input
instance such as feature size or separation bounds.

45.8 SOURCES AND RELATED MATERIAL

SURVEYS

Forrest [For87] is an influential overview of the field of computational geometry.
He deplores the gap between theory and practice and describes the open problem
of robust intersection of line segments (expressing a belief that robust solutions do
not exist). Other surveys of robustness issues in geometric computation are Schirra
[Sch00], Yap and Dubé [YD95] and Fortune [For93]. Robust geometric modelers
are surveyed in [PCH+95].

Preliminary version (July 20, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 45: Robust geometric computation 1215

RELATED CHAPTERS

Chapter 26: Convex hull computations
Chapter 28: Arrangements
Chapter 31: Shortest paths and networks
Chapter 37: Computational and quantitative real algebraic geometry
Chapter 41: Ray shooting and lines in space
Chapter 50: Algorithmic motion planning
Chapter 51: Robotics
Chapter 57: Solid modeling
Chapter 67: Software
Chapter 68: Two computational geometry libraries: LEDA and CGAL

REFERENCES

[AKY04] T. Asano, D. Kirkpatrick, and C. Yap. Pseudo approximation algorithms, with

applications to optimal motion planning. Discrete Comput. Geom., 31:139–171, 2004.

[Bak75] A. Baker. Transcendental Number Theory. Cambridge University Press, 1975.
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