
44 RANDOMIZATION AND DERANDOMIZATION

Otfried Cheong, Ketan Mulmuley, and Edgar Ramos

INTRODUCTION

Randomization as an algorithmic technique goes back at least to the seventies. In
a seminal paper published in 1976, Rabin uses randomization to solve a geomet-
ric problem, giving an algorithm for the closest-pair problem with expected linear
running time [Rab76]. Randomized and probabilistic algorithms and constructions
were applied successfully in many areas of theoretical computer science. Following
influential work in the mid-1980s, a significant proportion of published research
in computational geometry employed randomized algorithms or proof techniques.
Even when both randomized and deterministic algorithms of comparable asymp-
totic complexity are available, the randomized algorithms are often much simpler
and more efficient in an actual implementation. In some cases, the best deter-
ministic algorithm known for a problem has been obtained by “derandomizing” a
randomized algorithm.

This chapter focuses on the randomized algorithmic techniques being used in
computational geometry, and not so much on particular results obtained using these
techniques. Efficient randomized algorithms for specific problems are discussed in
the relevant chapters throughout this Handbook.

GLOSSARY

Probabilistic or “Monte Carlo” algorithm: Traditionally, any algorithm
that uses random bits. Now often used in contrast to randomized algorithm to
denote an algorithm that is allowed to return an incorrect or inaccurate result, or
fail completely, but with small probability. Monte Carlo methods for numerical
integration provide an example. Algorithms of this kind have started to play a
larger role in computational geometry in the 21st century (Section 44.8).

Randomized or “Las Vegas” algorithm: An algorithm that uses random bits
and is guaranteed to produce a correct answer; its running time and space re-
quirements may depend on random choices. Typically, one tries to bound the
expected running time (or other resource requirements) of the algorithm. In this
chapter, we will concentrate on randomized algorithms in this sense.

Expected running time: The expected value of the running time of the algo-
rithm, that is, the average running time over all possible choices of the random
bits used by the algorithm. No assumptions are made about the distribution of
input objects in space. When expressing bounds as a function of the input size,
the worst case over all inputs of that size is given. Normally the random choices
made by the algorithm are hidden from the outside, in contrast with average
running time.

Average running time: The average of the running time, over all possible in-
puts. Some suitable distribution of inputs is assumed.

1159

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1160 O. Cheong, K. Mulmuley, and E. Ramos

To illustrate the difference between expected running time and average running
time, consider the Quicksort algorithm. If it is implemented so that the pivot
element is the first element of the list (and the assumed input distribution is
the set of all possible permutations of the input set), then it has O(n log n)
average running time. By providing a suitable input (here, a sorted list), an
adversary can force the algorithm to perform worse than the average. If, however,
Quicksort is implemented so that the pivot element is chosen at random, then it
has O(n log n) expected running time, for any possible input. Since the random
choices are hidden, an adversary cannot force the algorithm to behave badly,
although it may perform poorly with some positive probability.

Randomized divide-and-conquer: A divide-and-conquer algorithm that uses a
random sample to partition the original problem into subproblems (Section 44.1).

Randomized incremental algorithm: An incremental algorithm where the
order in which the objects are examined is a random permutation (Section 44.2).

Tail estimate: A bound on the probability that a random variable deviates from
its expected value. Tail estimates for the running time of randomized algorithms
are useful but seldom available (Section 44.9).

High-probability bound: A strong tail estimate, where the probability of devi-
ating from the expected value decreases as a fast-growing function of the input
size n. The exact definition varies between authors, but a typical example would
be to ask that for any α > 0, there exists a β > 0 such that the probability that
the random variable X(n) exceeds αE[X(n)] be at most n−β .

Derandomization: Obtaining a deterministic algorithm by “simulating” a ran-
domized one (Section 44.6).

Coreset: A data set of small size that can be used as a proxy for a large data
set. Algorithms can be run on the coreset to obtain a good approximation of the
result for the full data set. Since a random sample captures many characteristics
of a given data set, a coreset can be considered a stronger form of a random
sample. Chapter 48 discusses coresets in detail, and mentions randomization
frequently.

Trapezoidal map: A planar subdivision T (S) induced by a set S of line segments
with disjoint interiors in the plane (cf. Section 33.3). T (S) can be obtained
by passing vertical attachments through every endpoint of the given segments,
extending upward and downward until each hits another segment, or extending to
infinity; see Figure 44.0.1. Every face of the subdivision is a trapezoid (possibly
degenerated to a triangle, or with a missing top or bottom side), hence the name.

FIGURE 44.0.1
The trapezoidal map of a set of 6 line segments.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1161

We will use the problem of computing the trapezoidal map of a set of line seg-
ments with disjoint interiors as a running example throughout this chapter. We
assume for presentation simplicity that no two distinct endpoints have the same
x-coordinate, so that every trapezoid is adjacent to at most four segments. (This
can be achieved by a slight rotation of the vertical direction.)

The trapezoidal map can also be defined for intersecting line segments. In that
situation, vertical attachments must be added to intersection points as well,
and the map may consist of a quadratic number of trapezoids. The trapezoidal
map is also called the vertical decomposition of the set of line segments.
Decompositions similar to this play an important role in randomized algorithms,
because most algorithms assume that the structure to be computed has been
subdivided into elementary objects. (Section 44.5 explains why this assumption
is necessary.)

44.1 RANDOMIZED DIVIDE-AND-CONQUER

GLOSSARY

Top-down sampling: Sampling with small, usually constant-size random sam-
ples, and recursing on the subproblems.

Cutting: A subdivision Ξ of space into simple cells ∆ (of constant description
complexity, most often simplices). The size of a cutting is the number of cells.

ε-cutting Ξ: For a set X of n geometric objects, a cutting such that every cell
∆ ∈ Ξ intersects at most n/r of the objects in X (also called a 1/r-cutting with
ε = 1/r when convenient). See also Chapter 47.

Bottom-up sampling: Sampling with random samples large enough that the
subproblems may be solved directly (without recursion).

Bernoulli sampling: The “standard” way of obtaining a random sample of size r
from a given n-element set uses a random number generator to choose among all
the possible subsets of size r, with equal probability for each subset (also obtained
as the first r elements in a random permutation of n elements). In Bernoulli
sampling, we instead toss a coin for each element of the set independently, and
accept it as part of the sample with probability r/n. While the size of the sample
may vary, its expected size is r, and essentially all the bounds and results of this
chapter hold for both sampling models. Sharir showed that in fact this model
can be analysed more easily than the standard one [Sha03].

Gradation: A hierarchy of samples for a set X of objects obtained by bottom-up
sampling:

X = X1 ⊃ X2 ⊃ X3 ⊃ · · · ⊃ Xr−1 ⊃ Xr = ∅.

With Bernoulli sampling, a new element can be inserted into the gradation by
flipping a coin at most r times, leading to efficient dynamic data structures
(Section 44.3).

Geometric problems lend themselves to solution by divide-and-conquer algo-
rithms. It is natural to solve a geometric problem by dividing space into regions

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1162 O. Cheong, K. Mulmuley, and E. Ramos

(perhaps with a grid), and solving the problem in every region separately. When
the geometric objects under consideration are distributed uniformly over the space,
then gridding or “slice-and-dice” techniques seem to work well. However, when
object density varies widely throughout the environment, then the decomposition
has to be fine in the areas where objects are abundant, while it may be coarse in
places with low object density. Random sampling can help achieve this: the density
of a random sample R of the set of objects will approach that of the original set.
Therefore dividing space according to the sample R will create small regions where
the geometric objects are dense, and larger regions that are sparsely populated.

We can distinguish two main types of randomized divide-and-conquer algo-
rithm, depending on whether the size of the sample is rather small or quite large.

TOP-DOWN SAMPLING

Top-down sampling is the most common form of random sampling in computational
geometry. It uses a random sample of small, usually constant, size to partition the
problem into subproblems. We sketch the technique by giving an algorithm for the
computation of the trapezoidal map of a set of segments in the plane.

Given a set S of n line segments with disjoint (relative) interiors, we take a
sample R ⊂ S consisting of r segments, where r is a constant. We compute the
trapezoidal map T (R) of R. It consists of O(r) trapezoids. For every trapezoid
∆ ∈ T (R), we determine the conflict list S∆, the list of segments in S intersecting
∆. We construct the trapezoidal map of every set S∆ recursively, clip it to the
trapezoid ∆, and finally glue all these maps together to obtain T (S).

The running time of this algorithm can be analyzed as follows. Because r is a
constant, we can afford to compute T (R) and the lists S∆ naively, in time O(r2) and
O(nr) respectively. Gluing together the small maps can be done in time O(n). But
what about the recursive calls? If we denote the size of S∆ by n∆, then bounding
the n∆ becomes the key issue here. It turns out that the right intuition is to assume
that the n∆ are about n/r. Assuming this, we get the recursion

T (n) ≤ O(r2 + nr) +O(r)T (n/r),

which solves to T (n) = O(n1+ε), where ε > 0 is a constant depending on r. By
increasing the value of r, ε can be made arbitrarily small, but at the same time the
constant of proportionality hidden in the O-notation increases.

The truth is that one cannot really assume that n∆ = O(n/r) holds for every
trapezoid ∆ at the same time. Valid bounds are as follows. For randomly chosen
R of size r, we have:

The pointwise bound: With probability increasing with r,

n∆ ≤ C
n

r
log r, (44.1.1)

for all ∆ ∈ T (R), where the constant C does not depend on r and n.

The higher-moments bound: For any constant c ≥ 1, there is a constant
C(c) (independent of r and n) such that∑

∆∈T (R)

(n∆)c = C(c)
(n
r

)c
|T (R)|. (44.1.2)

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1163

In other words, while the maximum n∆ can be as much as O((n/r) log r), on the
average the n∆ behave as if they indeed were O(n/r).

Both bounds can be used to prove that T (n) = O(n1+ε), with the dependence
on ε being somewhat better using the latter bound. The difference between the two
bounds becomes more marked for larger values of r, as will be detailed below. (For
a more general result that subsumes these two bounds, see Theorem 44.5.2.)

The same scheme used to compute T (S) will also give a data structure for
point location in the trapezoidal map. This data structure is a tree, constructed
as follows. If the set S is small enough, simply store T (S) explicitly. Otherwise,
take a random sample R, and store T (R) in the root node. Subtrees are created
for every ∆ ∈ T (R). These subtrees are constructed recursively, using the sets S∆.

By the pointwise bound, the depth of the tree is O(log n) with high probability,
and therefore the query time is also O(log n). The storage requirement is easily seen
to be O(n1+ε) as above.

The algorithmic technique described in this section is surprisingly robust. It
works for a large number of problems in computational geometry, and for many
problems it is the only known approach to solve the problem. It does have two
major drawbacks, however.

First, it seems to be difficult to remove the ε-term in the exponent, and truly
optimal random-sampling algorithms are scarce. If the size r of the sample is a
function of n, say r = nδ, then the extra factor can often be reduced to logc n. To
entirely eliminate this extra factor, one needs to control the total conflict list size
using problem-specific insights. Some examples where this has been achieved are
listed below as applications.

Second, the practicality of this method remains to be established. If the size of
the random sample is chosen too small, then the problem size may not decrease fast
enough to guarantee a fast-running algorithm, or even termination. Few papers in
the literature calculate this size constant, and so for most applications it remains
unclear whether the size of the random sample can be chosen considerably smaller
than the problem size in practice.

CUTTINGS

The only use of randomization in the above algorithm was to subdivide the plane
into a number of simply-shaped regions ∆, such that every region is intersected
by only a few line segments. Such a subdivision is called a cutting Ξ for the set
X of n segments; if every ∆ ∈ Ξ intersects at most n/r of the objects in X,
it is a 1/r-cutting. Cuttings are interesting in their own right, and have been
studied intensively. See Section 47.5 for results on the deterministic construction of
efficient cuttings, with useful properties that go beyond those of the simple cutting
based on a random sample discussed above. Cuttings form the basis for many
algorithms and search structures in computational geometry; see Chapter 40. As
a result, many recent geometric divide-and-conquer algorithms no longer explicitly
use randomization, and randomized divide-and-conquer has to some extent been
replaced by divide-and-conquer based on cuttings.

In practice, however, cuttings may still be constructed most efficiently using
random sampling. There are two basic techniques, which we illustrate again using
a set X of n line segments with disjoint interiors in the plane.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1164 O. Cheong, K. Mulmuley, and E. Ramos

ε-net based cuttings: The easiest way to obtain a 1/r-cutting is to take a
random sample N ⊂ X of size O(r log r). If N is a 1/r-net for the range space
(X,Γ) (defined in Section 44.4 and Chapter 47), then the trapezoidal map of
N is a 1/r-cutting of size O(r log r). If not, we try a different sample.

Splitting the excess: The construction based on ε-nets can be improved
as follows. First take a random sample N of X of size O(r), and compute
its trapezoidal map. Every trapezoid ∆ may be intersected by O((n/r) log r)
segments. If we take a random sample of these segments, and form their trape-
zoidal map again (restricted to ∆), the pieces obtained are intersected by at
most n/r segments. The size of this cutting is only O(r), which is optimal.

Har-Peled [HP00] investigates the constants achievable for cuttings of lines in the
plane.

BOTTOM-UP SAMPLING

In bottom-up sampling, the random sample is so large that the resulting subprob-
lems are small enough to be solved directly. However, it is no longer trivial to
compute the auxiliary structures needed to subdivide the problem. We again illus-
trate with the trapezoidal map.

Given a set S of n line segments, we take a sample R of size n/2, and compute
the trapezoidal map of R recursively. For every ∆ ∈ T (R), we compute the list S∆

of segments in S \ R intersecting ∆. This can be done by locating an endpoint of
every segment in S \R in T (R) and traversing T (R) from there. If we use a planar
point location structure (Section 38.3), this takes time O(n log n +

∑
∆∈T (R) n∆).

For every ∆, we then compute the trapezoidal map T (S∆), and clip it to ∆. This
can be done naively in time O(n2

∆). Finally, we glue together all the little maps.
The running time of the algorithm is bounded by the recursion

T (n) ≤ T (n/2) +O(n log n) +
∑

∆∈T (R)

O(n2
∆).

The pointwise bound shows that with high probability, n∆ = O(log n) for
all ∆. That would imply that the last term in the recursion is O(n log2 n). Here,
the higher-moments bound turns out to give a strictly better result, as it shows
that the expected value of that term is only O(n). The recursion therefore solves
to O(n log2 n).

Bottom-up sampling has the potential to lead to more efficient algorithms
than top-down sampling, because it avoids the blow-up in problem size that man-
ifests itself in the nε-term in top-down sampling. However, it needs more refined
ingredients—as the constructions of T (R) and the lists S∆ demonstrate—and there-
fore seems to apply to fewer problems.

As with top-down sampling, bottom-up sampling can be used for point location.
These search structures have the advantage that they can often easily be made
dynamic (Section 44.3).

APPLICATIONS

Proofs for the theorems above can be found in the surveys and books cited in
Section 44.11, in particular [Cla92, Mul00, BCKO08, Mul93].

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1165

In the following we list a few advanced applications of geometric divide-and-conquer.

Computing the diameter of a point set in R3 [Ram01], achieves optimality by
clustering subproblems together to achieve a small boundary between subprob-
lems.

An optimal data structure for simplex range searching [Cha12], builds a parti-
tion tree by refining a cutting on each level.

A shallow cutting is a cutting for only the “shallow” part of a structure, that is,
the region of space that lies in few of the objects. Shallow cuttings are used in
range searching data structures and can be computed in optimal time [CT16].

44.2 RANDOMIZED INCREMENTAL ALGORITHMS

GLOSSARY

Backwards analysis: Analyzing the time complexity of an algorithm by viewing
it as running backwards in time [Sei93].

Conflict graph: A bipartite graph whose arcs represent conflicts (usually inter-
sections) between objects to be added and objects already constructed.

History graph: A directed, acyclic graph that records the history of changes in
the geometric structure being maintained. Also known as an influence graph.

Many problems in computational geometry permit a natural computation by
an incremental algorithm. Incremental algorithms need only process one new object
at a time, which often implies that changes in the geometric data structure remain
localized in the neighborhood of the new object.

As an example, consider the computation of the trapezoidal map of a set of
line segments (cf. Fig. 38.3.2; for another example, see Section 26.3). To add a
new line segment s to the map, one would first identify the trapezoids of the map
intersected by s. Those trapezoids must be split, creating new trapezoids, some of
which then must be merged along the segment s. All these update operations can
be accomplished in time linear in the sum of the number of old trapezoids that are
destroyed and the number of new trapezoids that are created during the insertion
of s. This quantity is called the structural change.

This results in a rather simple algorithm to compute the trapezoidal map of
a set of line segments. Starting with the empty set, we treat the line segments
one-by-one, maintaining the trapezoidal map of the set of line segments inserted so
far.

However, a general disadvantage of incremental algorithms is that the total
structural change during the insertions of n objects, and hence the running time of
the algorithm, depends strongly on the order in which the objects are processed. In
our case, it is not difficult to devise a sequence of n line segments leading to a total
structural change of Θ(n2). Even if we know that a good order of insertion exists
(one that implies a small structural change), it seems difficult to determine this
order beforehand. And this is exactly where randomization can help: we simply
treat the n objects in random order. In the case of the trapezoidal map, we will
show below that if the n segments are processed in random order, the expected
structural change in every step of the algorithm is only constant.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1166 O. Cheong, K. Mulmuley, and E. Ramos

BACKWARDS ANALYSIS

An easy way to see this is via backwards analysis. We first observe that it
suffices to bound the number of trapezoids created in each stage of the algorithm.
All these trapezoids are incident to the segment inserted in that stage. We imagine
the algorithm removing the line segments from the final map one-by-one. In each
step, we must bound the number of trapezoids incident to the segment s removed.
Now we make two observations:

The trapezoidal map is a planar graph, with every trapezoid incident to at
most 4 segments. Hence, if there are m segments in the current set, the total
number of trapezoid-segment incidences is O(m).

Since the order of the segments is a random permutation of the set of segments,
each of the m segments is equally likely to be removed.

These two facts suffice to show that the expected number of trapezoids incident to s
is constant. In fact, this number is bounded by the average degree of a segment in
a trapezoidal map.

It follows that the expected total structural change during the course of the
algorithm is O(n). To obtain an efficient algorithm, however, we need a second
ingredient: whenever a new segment s is inserted, we need to identify the trapezoids
of the old map intersected by s. Two basic approaches are known to solve this
problem: the conflict graph and the history graph.

CONFLICT GRAPH

A conflict graph is a bipartite graph whose nodes are the not-yet-added segments
on one side and the trapezoids of the current map on the other side. There is an
arc between a segment s and a trapezoid ∆ if and only if s intersects ∆, in which
case we say that s is in conflict with ∆.

It is possible to maintain the conflict graph during the course of the incremental
algorithm. Whenever a new segment is inserted, all the conflicts of the newly-
created trapezoids are found. This is not difficult, because a segment can only
conflict with a newly-created trapezoid if it was previously in conflict with the old
trapezoids at the same place. Thus the trapezoids intersected by the new segment
s are just the neighbors of s in the conflict graph.

The time necessary to maintain the conflict graph can be bounded by summing
the number of conflicts of all trapezoids created during the course of the algorithm.
It follows from the higher-moments bound (Eq. 44.1.2) that the average number of
conflicts of the trapezoids present after inserting the first r segments—note that
these segments form a random sample of size r of S—is O(n/r). Intuitively, we can
assume that this is also correct if we look only at the trapezoids that are created by
the insertion of the rth segment. Since the expected number of trapezoids created
in every step of the algorithm is constant, the expected total time is

∑n
i=1O(n/r) =

O(n log n).
Note that an algorithm using a conflict graph needs to know the entire set of

objects (segments in our example) in advance.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1167

HISTORY GRAPH

A different approach uses a history graph, which records the history of changes in
the maintained structure.

In our example, we can maintain a directed acyclic graph whose nodes corre-
spond to trapezoids constructed during the course of the algorithm. The leaves
are the trapezoids of the current map; all inner nodes correspond to trapezoids
that have already been destroyed (with the root corresponding to the entire plane).
When we insert a segment s, we create new nodes for the newly-created trapezoids,
and create a pointer from an old trapezoid to every new one that overlaps it. Hence,
there are at most four outgoing pointers for every inner node of the history graph.

We can now find the trapezoids intersected by a new segment s by performing a
graph search from the root, using say, depth-first search on the connected subgraph
consisting of all trapezoids intersecting s. Note that this search performs precisely
the same computations that would have been necessary to maintain the conflict
graph during the sequence of updates, but at a different time. We can therefore
consider a history graph as a lazy implementation of a conflict graph: it postpones
each computation to the moment it is actually needed. Consequently, the analysis
is exactly the same as for conflict graphs.

Algorithms using a history graph are on-line or semidynamic in the sense
that they do not need to know about a point until the moment it is inserted.

ABSTRACT FRAMEWORK AND ANALYSIS

Most randomized incremental algorithms in the literature follow the framework
sketched here for the computation of the trapezoidal map: the structure to be
computed is maintained while the objects defining it are inserted in random order.
To insert a new object, one first has to find a “conflict” of that object (the location
step), then local updates in the structure are sufficient to bring it up to date (the
update step). The cost of the update is usually linear in the size of the change
in the combinatorial structure being maintained, and can often be bounded using
backwards analysis. The location step can be implemented using either a conflict
graph or a history graph. In both cases, the analysis is the same (since the actual
computations performed are also often identical). To avoid having to prove the same
bounds repeatedly for different problems, researchers have defined an axiomatic
framework that captures the combinatorial essence of most randomized incremental
algorithms. This framework, which uses configuration spaces, provides ready-to-use
bounds for the expected running time of most randomized incremental algorithms.
See Section 44.5.

POINT LOCATION THROUGH HISTORY GRAPH

In our trapezoidal map example, the history graph may be used as a point location
structure for the trapezoidal map: given a query point q, find the trapezoid contain-
ing q by following a path from the root to a leaf node of the history graph. At each
step, we continue to the child node corresponding to the trapezoid containing q.

The search time is clearly proportional to the length of the path. Backwards
analysis shows that the expected length of this path is O(log n) for any fixed query

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1168 O. Cheong, K. Mulmuley, and E. Ramos

point. Even stronger, one can show that the maximum length of any search path
in the history graph is O(log n) with high probability.

If point location is the goal, the history graph can be simplified: instead of
storing trapezoids, the inner nodes of the graph can denote two different kinds of
elementary tests (“Does a point lie to the left or right of another point?” and
“Does a point lie above or below a line?”). The final result is then an efficient and
practical planar point location structure [Sei91].

This observation can also lead to a somewhat different location step inside the
randomized incremental algorithm. Instead of performing a graph search with the
whole segment s, point location can be used to find the trapezoid containing one
endpoint of s. From there, a traversal of the trapezoidal map allows locating all
trapezoids intersected by s.

APPLICATIONS

The randomized incremental framework has been successfully applied to a large
variety of problems. We list a number of important such applications. Details on
the results can be found in the chapters dealing with the respective area, or in one
of the surveys cited in Section 44.11.

Trapezoidal decomposition formed by segments in the plane, and point location
structures for this decomposition (Section 38.3).

Triangulation of simple polygons: an optimal randomized algorithm with lin-
ear running time, and a simple algorithm with running time O(n log∗ n) (Sec-
tion 30.3).

Convex hulls of points in d-dimensional space, output-sensitive convex hulls
in R3 (Section 26.3).

Voronoi diagrams in different metrics, including higher order and abstract
Voronoi diagrams (Section 27.3).

Linear programming in finite-dimensional space (Chapter 49).

Generalized linear programming: optimization problems that are combinatori-
ally similar to linear programming (Section 49.6).

Hidden surface removal (Section 33.8 and Chapter 52).

Constructing a single face in an arrangement of (curved) segments in the plane,
or in an arrangement of triangles or surface patches in R3 (Sections 28.5
and 50.2); computing zones in an arrangement of hyperplanes in Rd (Sec-
tion 28.4).

44.3 DYNAMIC ALGORITHMS

DYNAMIC RANDOMIZED INCREMENTAL

Any on-line randomized incremental algorithm can be used as a semidynamic al-
gorithm, a dynamic algorithm that can only perform insertions of objects. The
bound on the expected running time of the randomized incremental algorithm then

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1169

turns into a bound on the average running time, under the assumption that every
permutation of the input is equally likely. (The relation between the two uses of
the algorithms is similar to that between randomized and ordinary Quicksort as
mentioned in the Introduction.)

This observation has motivated researchers to extend randomized incremental
algorithms so that they can also manage deletions of objects. Then bounds on
the average running time of the algorithm are given, under the assumption that
the input sequence is a random update sequence. In essence, one assumes that
for an addition, every object currently not in the structure is equally likely to be
inserted, while for a deletion every object currently present is equally likely to be
removed (the precise definition varies between authors; see, e.g., [Mul91c, Sch91,
Cla92, DMT92]).

Two approaches have been suggested to handle deletions in history-graph based
incremental algorithms. The first adds new nodes at the leaf level of the history
graph for every deletion. This works for a wide variety of problems and is relatively
easy to implement, but after a number of updates the history graph will become
“dirty”: it will contain elements that are no longer part of the current structure
but which still must be traversed by the point-location steps. Therefore, the his-
tory graph needs periodic “cleaning.” This can be accomplished by discarding
the current graph, and reconstructing it from scratch using the elements currently
present.

In the second approach, for every deletion the history graph is transformed to
the state it would have been had the object never been inserted. The history graph
is therefore always “clean.” However, in this model deletions are more complicated,
and it therefore seems to apply to fewer problems.

DYNAMIC SAMPLING AND GRADATIONS

A rather different approach permits a number of search structures based on bottom-
up sampling to be dynamized surprisingly easily. Such a search structure consists
of a gradation using Bernoulli sampling (Section 44.1): The gradation is a hier-
archy of O(log n) levels. Every object is included in the first level, and is chosen
independently to be in the second level with probability 1

2 . Every object in the
second level is propagated to level 3 with probability 1

2 , and so forth. Whenever an
object is added to or removed from the current set, the search structure is updated
to the proper state. When adding an object, it suffices to flip a coin at most log n
times to determine where to place the object. Using this technique, it is possible to
give high-probability bounds on the search time and sometimes also on the update
time [Mul91a, Mul91b, Mul93].

44.4 RANGE SPACES

“Pointwise bounds” of the form in Equation 44.1.1 can be proved in the axiomatic
framework of range spaces, which then leads to immediate application to a wide
variety of geometric settings. Chapter 47 also discusses range spaces, but calls them
(abstract) set systems.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1170 O. Cheong, K. Mulmuley, and E. Ramos

GLOSSARY

Range space: A pair (X,Γ), with X a universe (possibly infinite), and Γ a family
of subsets of X. The elements of Γ are called ranges. Typical examples of range
spaces are of the form (Rd,Γ), where Γ is a set of geometric figures, such as all
line segments, halfspaces, simplices, balls, etc.

Shattered: A set A ⊆ X is shattered if every subset A′ of A can be expressed as
A′ = A ∩ γ, for some range γ ∈ Γ.

In the range space (R2,H), where H is the set of all closed halfplanes, a set of
three points in convex position is shattered. However, no set of four points is
shattered. See Figure 44.4.1: whether the point set is in convex position or not,
there always is a subset (encircled) that cannot be expressed as A ∩ h for any
halfplane h.

FIGURE 44.4.1
No set of four points can be
shattered by halfplanes.

In the range space (R2, C), where C is the set of all convex polygons, any set of
points lying on a circle is shattered.

Vapnik-Chervonenkis dimension (VC-dimension): The VC-dimension of
a range space (X,Γ) is the smallest integer d such that there is no shattered
subset A ⊆ X of size d+ 1. If no such d exists, the VC-dimension is said to be
infinite.

Range spaces (Rd,Γ), where Γ is the set of line segments, of simplices, of
balls, or of halfspaces, have finite VC-dimension. For example, the range space
(R2,H) has VC-dimension 3. The range space (R2, C), however, has infinite
VC-dimension.

Shatter function: For a range space (X,Γ), the shatter function πΓ(m) is defined
as

πΓ(m) = max
A⊂X,|A|=m

|{A ∩ γ | γ ∈ Γ}| .

If the VC-dimension of the range space is infinite, then πΓ(m) = 2m. Otherwise
the shatter function is bounded by O(md), where d is the VC-dimension. (So
the shatter function of any range space is either exponential or polynomially
bounded.) If the shatter function is polynomial, the VC-dimension is finite. The
order of magnitude of the shatter function is not necessarily the same as the
VC-dimension; for instance, the range space (R2,H) has VC-dimension 3 and
shatter function O(m2). Since the VC-dimension is often difficult to compute,
some authors have defined the VC-exponent as the order of magnitude of the
shatter-function.

ε-net: A subset N ⊆ X is called an ε-net for the range space (X,Γ) if N ∩ γ 6= ∅
for every γ ∈ Γ with |γ|/|X| > ε (here, ε ∈ [0, 1) and X is finite). It is often
more convenient to write 1/r for ε, with r > 1.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1171

ε-approximation: A subset A ⊆ X is called an ε-approximation for the range
space (X,Γ) if, for every γ ∈ Γ, we have∣∣∣∣ |A ∩ γ||A|

− |γ|
|X|

∣∣∣∣ ≤ ε .
An ε-approximation is also an ε-net, but not necessarily vice versa.

Relative (p, ε)-approximation: An ε-approximation provides an absolute error
on the term |γ|/|X|. In many applications we would prefer a relative error
instead. This cannot be achieved by a small approximation, so a relative (p, ε)-
approximation guarantees a relative error only when |γ|/|X| ≥ p, otherwise an
absolute error of εp [HPS11].

ε-NETS AND ε-APPROXIMATIONS

The pointwise bound translates into the abstract framework of range spaces as
follows:

THEOREM 44.4.1

Let (X,Γ) be a range space with X finite and of finite VC-dimension d. Then a
random sample R ⊂ X of size C(d)r log r is a 1/r-net for (X,Γ) with probability
whose complement to 1 is polynomially small in r, where C(d) is a constant that
depends only on d.

This theorem forms the basis for “traditional” randomized divide-and-conquer
algorithms, such as the one for the trapezoidal map of line segments sketched in
Section 44.1. The pointwise bound used there follows from the theorem. Consider
the range space (S,Γ), where Γ := {γ(∆) | ∆ an open trapezoid}, and γ(∆) is the
set of all segments in S intersecting ∆. The VC-dimension of this range space is
finite. The easiest way to see this is by looking at the shatter function. Consider
a set of m line segments. Extend them to full lines, pass 2m vertical lines through
all endpoints, and look at the arrangement of these 3m lines. Clearly, for any two
trapezoids ∆ and ∆′ whose corners lie in the same faces of this arrangement we
have γ(∆) = γ(∆′). Consequently, there are at most O(m8) different ranges, and
that crudely bounds the shatter function as O(m8). Thus the VC-dimension is
finite and Theorem 44.4.1 applies: with probability increasing rapidly with r, the
sample R of size r is an ε-net for S with ε = Ω((1/r) log r). Assume this is the case,
and consider some trapezoid ∆ ∈ T (R). The interior of ∆ does not intersect any
segment in R, so by the property of ε-nets, the range γ(∆) can intersect at most
εn segments of S. And so we have n∆ = O((n/r) log r).

The construction of ε-nets has been so successfully derandomized that ε-nets
now are used routinely in deterministic algorithms. Indeed, Chapter 47, which
covers ε-nets and ε-approximations in detail, hardly mentions randomization.

For general range spaces, the bound O(r log r) in Theorem 44.4.1 is the best
possible. For some geometrically defined spaces the bound has been improved,
see Section 47.4. For others, including the case of halfspaces in more than three
dimensions, a lower bound of Ω(r log r) has been shown [PT13].

An ε-approximation serves as a coreset for density estimation, see Section 48.2.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1172 O. Cheong, K. Mulmuley, and E. Ramos

44.5 CONFIGURATION SPACES

The framework of configuration spaces is somewhat more complicated than range
spaces, but facilitates proving higher-moment bounds as in Equation 44.1.2. Termi-
nology, axiomatics, and notation vary widely between authors. Note that the term
“configuration space” is used in robotics with a different meaning (see Chapters 50
and 51).

GLOSSARY

Configuration space: A four-tuple (X, T , D,K). X is a finite set of geometric
objects (the universe of size n). T is a mapping that assigns to every subset
S ⊆ X a set T (S); the elements of T (S) are called configurations. Π(X) :=⋃
S⊆X T (S) is the set of all configurations occurring over some subset of X.

D and K assign to every configuration ∆ ∈ Π(X) subsets D(∆) and K(∆) of
X. Elements of the set D(∆) are said to define the configuration (they are
also called triggers) and the elements of the set K(∆) are said to kill the
configuration (they are also said to be in conflict with the configuration and
are sometimes called stoppers).

Conflict size of ∆: The number of elements of K(∆).

We will require the following axioms:

(i) The number d = max{ |D(∆)|
∣∣ ∆ ∈ Π(X)} is a constant (called the maxi-

mum degree or the dimension of the configuration space). Moreover, the
number of configurations sharing the same defining set is bounded by a con-
stant.

(ii) For any ∆ ∈ T (S), D(∆) ⊆ S and S ∩K(∆) = ∅.

(iii) If ∆ ∈ T (S) and D(∆) ⊆ S′ ⊆ S, then ∆ ∈ T (S′).

(iii′) If D(∆) ⊆ S and K(∆) ∩ S = ∅, then ∆ ∈ T (S).

Note that axiom (iii) follows from (iii′); see below.

EXAMPLES

1. Trapezoidal map. The universe X is a set of segments in the plane, and T (S)
is the set of trapezoids in the trapezoidal map of S. The defining set D(∆)
is the set of segments that are necessary to define ∆ (at most four segments
suffice, so d = 4), and the killing set K(∆) is the set of segments that intersect
the trapezoid. It is easy to verify that conditions (i), (ii), (iii), (iii′) all hold.

2. Delaunay triangulation. X is a set of points in the plane (assume that no
four points lie on a circle), and T (S) is the set of triangles of the Delaunay
triangulation of S. D(∆) consists of the vertices of triangle ∆ (so d = 3),
while K(∆) is the set of points lying inside the circumcircle of the triangle.
Again, axioms (i), (ii), (iii), (iii′) all hold.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1173

3. Convex hulls in 3D. The universe X is a set of points in 3D (assume that no
four points are coplanar), and T (S) is the set of facets of the convex hull of S.
The defining set of a facet ∆ is the set of its vertices (d = 3), and the killing
set is the set of points lying in the outer open halfspace defined by ∆. Note
that there can be two configurations sharing the same defining set. Again,
axioms (i)–(iii′) all hold.

4. Single cell. The universe X is a set of possibly intersecting segments in the
plane, and T (S) is the set of trapezoids in the trapezoidal map of S that
belongs to the cell of the line segment arrangement containing the origin
(Figure 44.5.1). The defining and killing sets are defined as in the case of
the trapezoidal map of the whole arrangement above. In this situation, ax-
iom (iii′) does not hold. Whether or not a given trapezoid appears in T (S)
depends on segments other than the ones in D(∆) ∪K(∆). Axioms (i), (ii),
(iii) are nevertheless valid.

FIGURE 44.5.1
A single cell in an arrangement of line segments.

5. LP-type problems. LP-type problems and violator spaces are generalizations
of linear programming. Consider as an example the problem of finding the
smallest enclosing disk for a set of points in the plane. The universe X is the
set of points, and T (S) is the unique smallest enclosing disk. If we assume
general position, then a disk is defined by two or three points, its killing set
is the set of points lying outside the disk. Axioms (i)–(iii′) hold.

LP-type problems in general are defined as a set H of constraints and a
mapping assigning a “value” w(S) to each subset S ⊂ H, the goal is to find a
minimal subset B ⊂ H (a basis) such that w(B) = w(H), see Section 49.6 for
details. LP-type problems of constant combinatorial dimension (that is, the
size of bases is bounded by a constant) satisfy our axioms, but degeneracies
(many bases with the same value) need to be handled with care.

6. Counterexample. Let X be a set of line segments, and let T (S) be a decom-
position of the arrangement that is obtained by drawing vertical extensions
for faces with an even number of edges, and horizontal extensions for faces
with an odd number of edges. Axioms (i) and (ii) hold, but neither (iii) nor
(iii′) is satisfied.

Note that when (ii) and (iii′) both hold, then ∆ ∈ T (S) if and only if D(∆) ⊆ S
and K(∆) ∩ S = ∅. In other words, the mapping T is then completely defined by
the functions D and K. In fact, in the first three examples we can decide from local

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1174 O. Cheong, K. Mulmuley, and E. Ramos

information alone whether or not a configuration appears in T (S). For instance, a
triangle ∆ is in the Delaunay triangulation of S if and only if the vertices of ∆ are
in S, and no point of S lies in the circumcircle of ∆.

As mentioned above, axiom (iii) follows from (iii′), but not conversely. Ax-
iom (iii) requires a kind of monotonicity: if ∆ occurs in T (S) for some S, then
we cannot destroy it by removing elements from S unless we remove some element
in D(∆).

We may say that the configuration spaces of the first three examples are defined
locally and canonically . The fourth example is canonical , but nonlocal . The last
example is not canonical and cannot be treated with the methods described here.
(Fortunately, this is an artificial example with no practical use—but see the open
problems below.)

HIGHER-MOMENTS AND EXPONENTIAL DECAY LEMMA

The higher-moments bound for configuration spaces generalizes the bound for trape-
zoidal maps, Equation 44.1.2:

THEOREM 44.5.1 Higher-moments bound

Let (X, T , D,K) be a configuration space satisfying axioms (i), (ii), (iii), and let
R be a random sample of X of size r. For any constant c, we have

E

 ∑
∆∈T (R)

|K(∆)|c
 = O((n/r)cE[|T (R)|]).

(Technically, rather than R, a sample R′ of size br/2c should appear on the right,
but E[|T (R′)|] = O(E[|T (R)|]) in all cases of interest). In other words, as far as
the cth-degree average is concerned, the conflict size behaves as if it were O(n/r),
instead of O((n/r) log r) from the pointwise bound.

Let (X, T , D,K) and R be as in Theorem 44.5.1. For any natural number t, we
define Tt(R) to be the subset of configurations of T (R) whose conflict size exceeds
the “natural” value n/r by at least the factor t:

Tt(R) := {∆ ∈ T (S) | |K(∆)| ≥ tn/r}.

The following exponential-decay lemma [AMS98] states that the number of such
configurations decreases exponentially with t:

THEOREM 44.5.2 Exponential decay lemma

Let (X, T , D,K) be a configuration space satisfying axioms (i), (ii), (iii), and let
R be a random sample of X of size r. For any t with 1 ≤ t ≤ r/d (where d is as in
axiom (i)), we have

E[|Tt(R)|] = O(2−t) · E[|T (R′)|],
where R′ ⊆ X denotes a random sample of size br/tc.

The exponential decay lemma implies both the higher-moments bound, by
adding over t, and the pointwise bound, by Markov’s inequality.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1175

RANDOMIZED INCREMENTAL CONSTRUCTION

Many, if not most, randomized incremental algorithms in the literature can be
analyzed using the configuration space framework. Given the set X, the goal of the
randomized incremental algorithm is to compute T (X). This is done by maintaining
T (Xi), for 1 ≤ i ≤ n, where Xi = {x1, x2, . . . , xi} and the xi form a random
permutation of X.

To bound the number of configurations created during the insertion of xi into
Xi−1, we observe that by axiom (iii) these configurations are exactly those ∆ ∈
T (Xi) with xi ∈ D(∆). The expected number of these can be bounded by

d

i
E[|T (Xi)|]

using backwards analysis. Here, d is the maximum degree of the configuration
space.

The expected total change in the conflict graph or history graph can be bounded
by summing |K(∆)| over all ∆ created during the course of the algorithm. Using
axioms (i) to (iii′), we can derive the following bound:

n∑
i=1

d2n− i
i

E[|T (Xi)|]
i

.

(The exact form of this expression depends on the model used.) The book [Mul93]
treats randomized incremental algorithms systematically using the configuration
space framework (assuming axiom (iii′)).

LAZY RANDOMIZED INCREMENTAL CONSTRUCTION

In problems that have nonlocal definition, such as the computation of a single cell
in an arrangement of segments, single cells in arrangements of surface patches, or
zones in arrangements, the update step of a randomized incremental construction
becomes more difficult. Besides the local updates in the neighborhood of the newly
inserted object, there may also be global changes. For instance, when a line segment
is inserted into an arrangement of line segments, it may cut the single cell being
computed into several pieces, only one of which is still interesting. The technique
of lazy randomized incremental construction [BDS95] deals with these problems by
simply postponing the global changes to a few “clean-up” stages. Since the setting
of all these problems is nonlocal, the analysis uses only axioms (i), (ii), (iii).

OPEN PROBLEM

The canonical framework of randomized incremental algorithms sketched above is
sometimes too restrictive. For instance, to make a problem fit into the framework,
one often has to assume that objects are in general position. While many algorithms
could deal with special cases (e.g., four points on a circle in the case of Delaunay
triangulations) directly, the analysis does not hold for those situations, and one
has to resort to a symbolic perturbation scheme to save the analysis. Can a more
relaxed framework for randomized incremental construction be given [Sei93]?

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1176 O. Cheong, K. Mulmuley, and E. Ramos

44.6 DERANDOMIZATION TECHNIQUES

Even when an efficient randomized algorithm for a problem is known, researchers
still find it worthwhile to obtain a deterministic algorithm of the same efficiency.
The reasons for doing this are varied, from scientific curiosity (what is the real power
of randomness?), to practical reasons (truly random bits are quite expensive), to
a preference for “deterministicity” that may not be strictly rational. Sometimes
a deterministic algorithm for a given problem may be obtained by “simulating”
or “derandomizing” a randomized algorithm. Derandomization has turned out to
be a powerful theoretical tool: for several problems the only known worst-case
optimal deterministic algorithm has been obtained by derandomization. The most
famous example is computing the convex hull of n points in d-dimensional space
(Section 26.3).

General derandomization techniques can be used to produce a deterministic
counterpart of random sampling in both configuration spaces and range spaces.
As a result, it is possible to obtain in polynomial time a sample that satisfies the
higher-moment bound, or that is a net or an approximation. Taking advantage
of separability and composition properties of approximations, these constructions
can be made efficient. In most applications, deterministic sampling is the base of
a deterministic divide-and-conquer algorithm or data structure, which is almost as
efficient as the randomized counterpart.

On the other hand, incremental algorithms are considerably harder to deran-
domize: the convex hull algorithm mentioned above is essentially the only success-
ful case. The problem is that in an incremental algorithm each insertion must be
“globally good,” while in the divide-and-conquer case, items are chosen locally in
a neighborhood that shrinks as the algorithm progresses. In some cases, such as
linear programming, a derandomized divide-and-conquer approach leads to a deter-
ministic algorithm with better dependency on the dimension than previously known
methods (prune-and-search), but there still remains a large gap with respect to the
best randomized algorithm (which is an incremental one).

METHOD OF CONDITIONAL PROBABILITIES

The method of conditional probabilities (also called the Raghavan-Spencer
method) [Spe87, Rag88] implements a binary search of the probability space to
determine an event with the desired properties (guaranteed by a probabilistic anal-
ysis). Given a configuration space (X, T , D,K), the goal is to obtain a random
sample of size (approximately) r that satisfies the higher-moments bound. Let
X = {x1, . . . , xn} and Ω be the probability space on {0, 1}n, and consider the
probability distribution on Ω induced by selecting each component equal to 1 inde-
pendently with probability p = r/n (for convenience, we use Bernoulli sampling).
Let F : Ω → R be the random variable that assigns to the vector (q1, . . . , qn) the
value

∑
∆∈T (R) f(|K(∆) ∩ X|), where xi ∈ R iff qi = 1, and f(x) = xk (for the

kth moment; using f(x) = ec(r/n)x with an appropriate constant c, one can achieve
the exponential decay bound). We know that E[F] ≤ M with M = Cf(n/r)t(r),
where t(r) is an upper bound for E[|T (R)|]. The method is based on the following

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1177

relation, for 0 ≤ i < n:

E[F |q1 = v1, . . . qi = vi]

= p · E[F |q1 = v1, . . . qi = vi, qi+1 = 1] +

(1− p) · E[F |q1 = v1, . . . qi = vi, qi+1 = 0]

≥ min{E[F |q1 = v1, . . . qi = vi, qi+1 = 1],E[F |q1 = v1, . . . qi = vi, qi+1 = 0]}

If these conditional expectations can be computed efficiently, then this implies an
efficient procedure to select vi+1 so that

E[F |q1 = v1, . . . qi = vi] ≥ E[F |q1 = v1, . . . qi = vi, qi+1 = vi+1].

Iterating this procedure, one finally obtains a solution (v1, . . . , vn) that satisfies the
probabilistic bound

M ≥ E[F] ≥ E[F |q1 = v1, . . . qn = vn].

If the locality property holds, the conditional probabilities involved can indeed be
computed in polynomial time: Let Xi = {x1, x2, . . . , xi} and Ri = {xj ∈ X : qj =
1, j ≤ i}, then E[F |q1 = v1, . . . qi = vi] is equal to∑

∆∈Π(X)

Pr{∆ ∈ T (R)|q1 = v1, . . . qi = vi}f(|K(∆) ∩X|)

=
∑

∆∈Π(X):D(∆)∩Xi⊆Ri,K(∆)∩Ri=∅

p|D(∆)\Si|(1− p)|K(∆)∩(X\Xi)|f(|K(∆) ∩X|),

which can be approximated with sufficient accuracy. Similarly, (1/r)-nets and (1/r)-
approximations of sizes O(r log r) and O(r2 log r) can be computed in polynomial
time, see Chapter 47.

k-WISE INDEPENDENT DISTRIBUTIONS

The method of conditional probabilities is highly sequential. An approach that is
more suitable for parallel algorithms is to construct a probability space of poly-
nomial size, and to execute the algorithm on each vector of this space. This is
possible, for example, when the variables qi need only be k-wise independent rather
than being fully independent: for any indices i1, . . . , ik, and 0-1 values, v1, . . . , vk,

Pr{qi1 = v1, . . . , qik = vk} = Πk
j=1Pr{qij = vij} = Πk

j=1p
vj (1− p)1−vj .

A probability space and distribution of size O(nk) with such k-wise independence
can be computed effectively [Jof74, KM97]. Let ρ ≥ n be a prime number and
suppose that p1, . . . , pn ∈ [0, 1] satisfy pi = ji/ρ, for some integers ji. Define a
probability space with at most nk points, as follows. For each 〈a0, a1, . . . , ak−1〉 in
{0, 1, . . . , ρ− 1}k, let

Xi = a0 + a1i+ a2i
2 + · · ·+ ak−1i

k−1 mod ρ,

for 1 ≤ i ≤ n, assign probability 1/ρk and associate the vector 〈Y1, . . . , Yn〉 where
Yi = 1 if Xi ∈ {0, 1, . . . , ji − 1} and Yi = 0 otherwise. The 0-1 probability space

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1178 O. Cheong, K. Mulmuley, and E. Ramos

defined by the vectors 〈Y1, . . . , Yn〉 is a k-wise independent 0-1 probability space for
p1, . . . , pn. With this construction, arbitrary probabilities can be approximated
(within a factor of 2) by an appropriate choice of ρ. Using a larger space of
size O(n2k), arbitrary probabilities can be achieved exactly [KM97].

For some randomized algorithms one can show that they still work under k-
wise independency for an appropriate k. For example, a quasi-random permutation
with k-wise independence suffices for the randomized incremental approach to work
[Mul96] (thus O(log n) random bits suffice rather than the Ω(n log n) bits needed
to define a fully random permutation). To verify that k-wise independence suffices,
a tail inequality under k-independence is used [SSS95, BR94]. Let q1, . . . , qn be a
sequence of k-wise independent random variables in {0, 1}, with k ≥ 2 even, let
Q =

∑n
i=1 qi, µ = E[Q] and assume that µ ≥ k, then

Pr{Q = 0} < Ck
µk/2

(44.6.1)

where Ck is a constant depending on k. Let R be a 2k-wise independent ran-
dom sample from X with uniform probability p. For ∆ ∈ Π(X), note that (no
independence assumption needed)

Pr{D(∆) ⊆ R,K(∆) ∩R = ∅} = Pr{D(∆) ⊆ R} · Pr{K(∆) ∩R = ∅|D(∆) ⊆ R}.

Let d be an upper bound on |D(∆)|. The first factor can be computed using 2k-wise
independence assuming 2k ≥ d:

Pr{D(∆) ⊆ R} = p|D(∆)|.

To upper bound the second factor, let t∆ = p|K(∆)|; then using the tail bound
above, for t∆ ≥ k:

Pr{K(∆) ∩R = ∅|D(∆) ⊆ R} ≤ C

t
k−d/2
∆

,

since after fixing D(∆) ⊆ R, the remaining random variables are still (2k − d)-
wise independent. Choosing k so that c ≤ k − d/2 + 2, one can verify that the
cth moment bound holds. Similarly, 1/r-nets and 1/r-approximations with sizes
O(rnδ) and O(r2nδ) can be computed in polynomial time, where δ = O(1/k). It
does not seem possible, however, to achieve the exponential decay bound with a
limited-independence space of polynomial size.

For fixed k, the size of the space can be reduced if a certain deviation from k-
wise independence is allowed [NN93]. Furthermore, the approach of testing all the
vectors in the probability space can be combined with the approach of performing
a binary search so that even a space of superpolynomial size is usable [MNN94,
BRS94]. Still, these approaches do not lead to the exponential decay bound, or to
nets or approximations of size matching the probabilistic analysis.

CONSTRAINT-BASED PROBABILITY SPACES

An alternative approach that is implementable in parallel constructs a probability
distribution tailored to a particular algorithm and even to a specific input [Nis92,
KM94, KK97, MRS01], leading to smaller probability spaces. The approach models

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1179

the sampling process using randomized finite automata (RFA), and fools the
automaton using a probability distribution Dn with support of size E0 that depends
polynomially on the error and on the size of the problem. Once the probability
distribution has been constructed, it is only a matter of testing the algorithm for
each point in Dn.

For each configuration ∆ we construct an RFA M∆ as follows: It consists of
n + 1 levels N∆,j , 0 ≤ j ≤ n, each with two states 〈j,Yes〉 and 〈j,No〉, with
transitions that reflect whether ∆ ∈ T (R): 〈j − 1,No〉 is always connected to
〈j,No〉; if xj ∈ D(∆) then 〈j − 1,Yes〉 is connected to 〈j,Yes〉 under qj = 1 and
to 〈j,No〉 under qj = 0; if xj ∈ K(∆) then 〈j − 1,Yes〉 is connected to 〈j,Yes〉
under qj = 0 and to 〈j,No〉 under qj = 1; if xj 6∈ D(∆) ∪K(∆) then 〈j − 1,Yes〉
is connected to 〈j,Yes〉, and 〈j − 1,No〉 is connected to 〈j,No〉, in either case.
Dn is determined by a recursive approach in which the generic procedure fool(l, l′)
constructs a distribution that fools the transition probabilities between level l and l′

in all the RFAs as follows. It computes, using fool(l, l′′) and fool(l,′′ l′) recursively,
distributions D1 and D2, each of size at most E0(1+o(1)), that fool the transitions
between states in levels l and l′′ = b(l + l′)/2c, and between states in levels l′′ and
l; a procedure reduce(D1 ×D2) then combines D1 and D2 into a distribution D of
size at most E0(1 + o(1)) that fools the transitions between states in levels l and l′

in all the RFAs. Let D̃ = D1 ×D2 be the product distribution with support(D̃) =
{w1w2 : wi ∈ support(Di)} and PrD̃{w1w2} = PrD1{w1}PrD2{w2}, a randomized

version of reduce is to retain each w ∈ D̃ with probability q(w) = E0/|support(D̃)|
into support(D) with PrD{w} = PrD̃{w}/q(w). Thus, for all pairs of states s, t in
the RFAs the transition probabilities are preserved in expectation:

E[PrD{s→ t}] =
∑

w : s
w→t

PrD̃{w}
q(w)

q(w) = PrD̃{s→ t}, (44.6.2)

where the sum is over all the strings w that lead from state s to state t. This
selection also implies that the expected size of support(D) is

∑
w q(w) = E0. This

randomized combining can be derandomized using a 2-wise independent probability
space. The bottom of the recursion is reached when the number of levels between
l and l′ is at most logE0, and then the distribution (of size E0) is implemented by
logE0 unbiased bits. E0 depends polynomially on 1/δ, where δ is the relative error
that is allowed for the transition probabilities. Taking δ as a small constant suffices
to obtain a constant approximation of the moment bounds.

APPLICATIONS

Some interesting examples for which optimal deterministic algorithms have been
obtained using derandomization are the following:

ε-nets and ε-approximations: See Chapter 47.

Convex hulls: The only optimal deterministic algorithm for the computation of
the convex hull of n points in Rd space is the derandomization of a randomized-
incremental algorithm. The reader is referred to [BCM99] for the details (this
reference is much more readable than the original paper [Cha93]) (Chapter 26).

Output-sensitive convex hull in Rd: An optimal algorithm for d = 3 was ob-
tained using derandomization [CM95]; afterward a surprisingly simple solution
avoiding derandomization was found [Cha96].

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1180 O. Cheong, K. Mulmuley, and E. Ramos

Diameter of a point set in R3: After a sequence of improvements, an opti-
mal algorithm using derandomization was found [Ram01]. Currently, the best
solution that avoids derandomization has a running time with an extra log n
factor [Bes01].

Linear programming: In Rd, the best deterministic solution is achieved through
derandomization and has running time O(Cdn) with Cd = exp(O(d log d))
[CM96, Cha16]; in contrast, it is possible to achieve Cd ≈ exp(

√
d) with ran-

domization [MSW96] (Chapter 49).

Segment intersection: A first algorithm for reporting intersections between n
line segments in O(n) space and optimal time used derandomization [AGR95],
followed shortly by a relatively simple algorithm that avoids derandomiza-
tion [Bal95]. Optimal parallel algorithms have been obtained with derandom-
ization and have not been matched by other approaches.

OPEN PROBLEMS

Is derandomization truly necessary to obtain an optimal algorithm in cases such as
the convex hull in d dimensions or the diameter in dimension 3?

44.7 OPTIMIZATION

In geometric optimization we seek to optimize some measure on a geometric struc-
ture that satisfies given constraints, such as the length of a tour visiting given
points, or the area of a convex container into which given shapes can be translated.

PARAMETRIC SEARCH AND RANDOMIZATION

Parametric search is a technique that allows us to take a decision algorithm
for the problem (that is, an algorithm that takes a parameter r and tells us if
a solution of quality better than r exists), and to convert it into an algorithm
solving the optimization problem. Several geometric examples can be found in
[CEGS93, AST94].

In many applications of parametric searching, it can be considered as a search
among the vertices of an arrangement, where each vertex determines a critical value
of the parameter r. If we could compute these vertices efficiently, we could use the
decision algorithm to perform a binary search—but the arrangement is too large to
be built explicitly.

If we can randomly sample vertices of some range of this (implicit) arrangement,
then parametric search can be replaced by randomization to obtain a much simpler
algorithm. A classic example is the slope selection problem [Mat91].

Alternatively, we may be able to guide the search using an appropriate cutting
of this arrangement, obtaining a deterministic algorithm that is much simpler than
using parametric search [BC98].

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1181

CHAN’S TECHNIQUE

Another randomized alternative to parametric search is a simple technique by
Chan [Cha99]. Again, it assumes that we have an algorithm to solve the deci-
sion version of the problem, and in addition requires that we can split the problem
into a constant number k of subproblems smaller by a constant fraction. Then the
optimization problem can be solved as follows: Split the problem P into k subprob-
lems P1, P2, . . . , Pk, pick a random permutation of the Pi, and set r to the solution
for P1. For i ∈ {2, . . . , k}, use the decision algorithm to determine if the solution
for Pi is better than r. If it is, recursively compute the solution for Pi and set r to
this solution.

The final value of r is the optimal solution for P , the algorithm also determines
a constant-size subset that determines this optimum. If the running time of the
decision algorithm is at least polynomial, then the expected running time of this
procedure asymptotically matches the running time of the decision algorithm.

A simple example is determining the closest pair, or more generally the b-tuple
minimizing some measure, in a given set of points P . Indeed, we can arbitrarily
partition P into b + 1 sets Q1, . . . , Qb+1 of roughly equal size, and define the sub-
problem Pi = P \Qi. Then k = b+ 1 and each subproblem’s size is b/(b+ 1) of the
original problem’s size.

This technique was generalized for certain families of implicit LP-type prob-
lems [Cha04].

44.8 MONTE CARLO ALGORITHMS

Monte Carlo algorithms, that is, algorithms that are allowed to fail or report an
incorrect answer with a small probability, used to be uncommon in computational
geometry, but started to appear more frequently since the early 2000s (Chapter 48
also mentions several Monte Carlo algorithms).

A typical Monte Carlo algorithm in computational geometry takes a random
sample R of some input set S, and proceeds under the assumption that R is an
ε-approximation for S. This is true with high probability, but if the assumption
fails, an incorrect result can be returned.

As an example, consider the problem of computing, given a simple polygon P ,
a point p inside P that maximizes the area of P visible from p. A naive approach
would simply try many random points p ∈ P , compute their visibility region, and
choose the best one. However, the probability of finding a good point can be
arbitrarily small, and we can do better by using an ε-approximation to estimate
the visibility region of a point [CEHP07]: We uniformly sample a set S of points
from P . We compute the visibility region V (s) of each point s ∈ S, take the
arrangement of all these regions, and choose a point p∗ in the most heavily covered
cell of this arrangement.

This point p maximizes the number of points in S visible from p. Since with
high probability, S is an ε-approximation for the points in P , that is, the number
of points of S visible from a point p is an estimate for the area of P visible from p,
this implies that the area seen by p∗ is a good approximation for the largest area
that any point in P can see.

The technique can be improved by observing that we do not actually need an

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1182 O. Cheong, K. Mulmuley, and E. Ramos

ε-approximation—we need that S is a good approximation only for the vertices of
the arrangement of the visibility regions V (s). We can also make the size of S
dependent on the value of the optimal solution, see [CEHP07].

Similar ideas have been used in shape matching [CEHP07, ASS10, AS12]. Rela-
tive (p, ε)-approximations help to achieve a guaranteed relative error with a sample
of small size [HPS11].

44.9 BETTER GUARANTEES

Bounds for the expected performance of randomized algorithms are usually avail-
able. Sometimes stronger results are desired. If the analysis of the algorithm
cannot be extended to provide such bounds, then some techniques may help to
achieve them:

Randomized space vs. deterministic space. Any randomized algorithm using
expected space S and expected time T can be converted to an algorithm that uses
deterministic space 2S, and whose expected running time is at most 2T . We simply
need to maintain a count of the memory allocated by the algorithm. Whenever it
exceeds 2S, we stop the computation and restart it again with fresh choices for the
random variables. The expected number of retrials is one.

Tail estimates. The knowledge that the expected running time of a given pro-
gram is one second does not exclude the possibility that it sometimes takes one
hour. Markov’s inequality implies that the probability that this happens is at most
1/3600. While this seems innocuous, it implies that it is likely to occur if we repeat
this particular computation, say, 10000 times.

For randomized incremental construction, better tail estimates can sometimes
be proven [CHPR16, Lemma 3.4]. In particular, bounds are known for segment
intersection in the plane [MSW93a] (see also [BCKO08, Section 6.4]) and for LP-
type optimization [GW00]. Tail estimates are also available for the space complexity
of randomized incremental construction [CMS93, MSW93b].

In all other cases, one can still apply a simple modification to the algorithm to
yield a stronger bound. We run it for two seconds. If it does not finish the compu-
tation within two seconds, then we abandon the computation and restart with fresh
choices for the random variables. Clearly, the probability that the algorithm does
not terminate within one hour is at most 2−1800. Alt et al. [AGM+96] work out
this technique, which is a special case of success amplification [Hro05, Chapter 5],
in detail.

44.10 PROBABILISTIC PROOF TECHNIQUES

Randomized algorithms are related to probabilistic proofs and constructions in
combinatorics, which precede them historically. Conversely, the concepts developed
to design and analyze randomized algorithms in computational geometry can be
used as tools in proving purely combinatorial results. Many of these results are
based on the following theorem:

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1183

THEOREM 44.10.1

Let (X, T , D,K) be a configuration space satisfying axioms (i), (ii), (iii), and (iii ′)
of Section 44.5. For S ⊆ X and 0 ≤ k ≤ n, let

Πk(S) := {∆ ∈ Π(X)
∣∣ |K(∆) ∩ S| ≤ k }

denote the set of configurations with at most k conflicts in S.
Then |Πk(S)| = O(kd)E[|T (R)|], where R is a random sample of S of size n/k,

and d is as in axiom (i).

Note that Π0(S) = T (S). The theorem relates the number of configurations
with at most k conflicts to those without conflict.

An immediate application is to prove a bound on the number of vertices of
level at most k in an arrangement of lines in the plane (the level of a vertex is the
number of lines lying above it; see Section 20.2). We define a configuration space
(X, T , D,K) where X is the set of lines, T (S) is the set of vertices of the upper
envelope of the lines, D(∆) are the two lines forming the vertex ∆ (so d = 2), and
K(∆) is the set of lines lying above ∆. Theorem 44.10.1 implies that the number
of vertices of level up to k is bounded by O(nk). The same argument works in any
dimension.

Sharir and others have proved a number of combinatorial results using this
technique [Sha94, AES99, ASS96, SS97]. They define a configuration space and
need to bound |T (S)|. They do this by proving a geometric relationship between
the configurations with zero conflicts (the ones appearing in T (S)) and the con-
figurations with at most k conflicts. Applying Theorem 44.10.1 yields a recursion
that bounds |T (S)| in terms of |T (R)|. A refined approach that uses a sample of
size n− 1 (instead of n/k) has been suggested by Tagansky [Tag96].

Sharir [Sha03] reviews this technique and gives a new proof for Theorem 44.10.1
based on the Crossing lemma (Chapter 28).

44.11 SOURCES AND RELATED MATERIAL

SURVEYS AND BOOKS

[BCKO08]: This textbook on computational geometry contains a gentle introduc-
tion to randomized incremental construction for several problems.

[HP11]: This monograph covers approximation algorithms in computational geom-
etry and includes many randomized algorithms.

[Cla92, Mul00]: General surveys of randomized algorithms in computational geom-
etry.

[Sei93]: An introduction to randomized incremental algorithms using backwards
analysis.

[GS93]: Surveys computations with arrangements, including randomized algorithms.

[AS01] Surveys randomized techniques in geometric optimization problems.

[Mul93]: This monograph is an extensive treatment of randomized algorithms in
computational geometry.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1184 O. Cheong, K. Mulmuley, and E. Ramos

[Mat00]: An introduction to derandomization for geometric algorithms, with many
references.

[MR95]: A book on randomized algorithms and their analysis in computer science,
including derandomization techniques.

[AS16]: This monograph covers probabilistic proof techniques mostly in combina-
torics, and includes some algorithmic aspects, geometric results, and derandomiza-
tion.

[HP09]: A survey of ε-samples, approximations, and relative (p, ε)-approximations.

RELATED CHAPTERS

Because randomized algorithms have been used successfully in nearly all areas of
computational geometry, they are mentioned throughout Parts C and D of this
Handbook. Areas where randomization plays a particularly important role include:

Chapter 26: Convex hull computations
Chapter 28: Arrangements
Chapter 40: Range searching
Chapter 47: Epsilon-approximations and epsilon-nets
Chapter 48: Coresets and sketches
Chapter 49: Linear programming

REFERENCES

[AES99] P.K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels in

3-dimensional arrangements and its applications. SIAM J. Comput., 29:912–953, 1999.

[AGM+96] H. Alt, L. Guibas, K. Mehlhorn, R. Karp, and A. Wigderson. A method for obtaining

randomized algorithms with small tail probabilities. Algorithmica, 16:543–547, 1996.

[AGR95] N.M. Amato, M.T. Goodrich, and E.A. Ramos. Computing faces in segment and

simplex arrangements. In Proc. 27th ACM Sympos. Theory Comput., pages 672–682,

1995.

[AMS98] P.K. Agarwal, J. Matoušek, and O. Schwarzkopf. Computing many faces in arrange-

ments of lines and segments. SIAM J. Comput., 27:491–505, 1998.

[AS01] P.K. Agarwal and S. Sen. Randomized algorithms for geometric optimization prob-

lems. In S. Rajasekaran, P.M. Pardalos, J.H. Reif, and J. Rolim, editors, Handbook of

Randomized Computing, pages 151–201, Kluwer Academic, Boston, 2001.

[AS12] H. Alt and L. Scharf. Shape matching by random sampling. Theoret. Comput. Sci.,

442:2–12, 2012.

[AS16] N. Alon and J.H. Spencer. The Probabilistic Method, 4th edition. John Wiley & Sons,

New York, 2016.

[ASS96] P.K. Agarwal, O. Schwarzkopf, and M. Sharir. The overlay of lower envelopes and its

applications. Discrete Comput. Geom., 15:1–13, 1996.

[ASS10] H. Alt, L. Scharf, and D. Schymura. Probabilistic matching of planar regions. Comput.

Geom., 43:99–114, 2010.

[AST94] P.K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in

geometric optimization. J. Algorithms, 17:292–318, 1994.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 44: Randomization and derandomization 1185

[Bal95] I.J. Balaban. An optimal algorithm for finding segment intersections. In Proc. 11th

Sympos. Comput. Geom., pages 211–219, ACM Press, 1995.

[BC98] H. Brönnimann and B. Chazelle. Optimal slope selection via cuttings. Comput. Geom.,

10:23–29, 1998.

[BCKO08] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications, 3rd edition. Springer, Berlin, 2008.

[BCM99] H. Brönnimann, B. Chazelle, and J. Matoušek. Product range spaces, sensitive sam-

pling, and derandomization. SIAM J. Comput., 28:1552–1575, 1999.

[BDS95] M. de Berg, K. Dobrindt, and O. Schwarzkopf. On lazy randomized incremental

construction. Discrete Comput. Geom., 14:261–286, 1995.

[Bes01] S. Bespamyatnikh. An efficient algorithm for the three-dimensional diameter problem.

Discrete Comput. Geom., 25:235–255, 2001.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proc. 35th

IEEE Sympos. Found. Comp. Sci., pages 276–287, 1994.

[BRS94] B. Berger, J. Rompel, and P.W. Shor. Efficient NC algorithms for set cover with

applications to learning and geometry. J. Comput. Syst. Sci., 49:454–477, 1994.

[CEGS93] B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir. Diameter, width, closest

line pair and parametric searching. Discrete Comput. Geom., 10:183–196, 1993.

[CEHP07] O. Cheong, A. Efrat, and S. Har-Peled. Finding a guard that sees most and a shop

that sells most. Discrete Comput. Geom., 37:545–563, 2007.

[Cha93] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete

Comput. Geom., 10:377–409, 1993.

[Cha96] T.M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimen-

sions. Discrete Comput. Geom., 16:361–368, 1996.

[Cha99] T.M. Chan. Geometric applications of a randomized optimization technique. Discrete

Comput. Geom., 22:547–567, 1999.

[Cha04] T.M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proc.

15th ACM-SIAM Sympos. Discrete Algorithms, pages 430–436, 2004.

[Cha12] T.M. Chan. Optimal partition trees. Discrete Comput. Geom., 47:661–690, 2012.

[Cha16] T.M. Chan. Improved deterministic algorithms for linear programming in low di-

mensions. In Proc. 27th ACM-SIAM Sympos. Discrete Algorithms, pages 1213–1219,

2016.

[CHPR16] H.-C. Chang, S. Har-Peled, and B. Raichel. From proximity to utility: A Voronoi

partition of Pareto optima. Discrete Comput. Geom., 56:631–656, 2016.

[Cla92] K.L. Clarkson. Randomized geometric algorithms. In D.-Z. Du and F.K. Hwang, edi-

tors, Computing in Euclidean Geometry, vol. 1 of Lecture Notes Series on Computing,

pages 117–162, World Scientific, Singapore, 1992.

[CM95] B. Chazelle and J. Matoušek. Derandomizing an output-sensitive convex hull algo-

rithm in three dimensions. Comput. Geom., 5:27–32, 1995.

[CM96] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization

problems in fixed dimension. J. Algorithms, 21:579–597, 1996.

[CMS93] K.L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental

constructions. Comput. Geom., 3:185–212, 1993.

[CT16] T.M. Chan and K. Tsakalidis. Optimal deterministic algorithms for 2-d and 3-d

shallow cuttings. Discrete Comput. Geom., 2016.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1186 O. Cheong, K. Mulmuley, and E. Ramos

[DMT92] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation in

logarithmic expected time per operation. Comput. Geom., 2:55–80, 1992.

[GS93] L.J. Guibas and M. Sharir. Combinatorics and algorithms of arrangements. In J. Pach,

editor, New Trends in Discrete and Computational Geometry, vol. 10 of Algorithms

and Combin., pages 9–36. Springer-Verlag, Berlin, 1993.

[GW00] B. Gärtner and E. Welzl. Random sampling in geometric optimization: New insights

and applications. In Proc. 16th Sympos. Comput. Geom., pages 91–99, ACM Press,

2000.

[HP00] S. Har-Peled. Constructing planar cuttings in theory and practice. SIAM J. Comput.,

29:2016–2039, 2000.

[HP09] S. Har-Peled. Carnival of samplings: Nets, approximations, relative and sensitive.

Preprint, arXiv:0908.3716, 2009.

[HP11] S. Har-Peled. Geometric Approximation Algorithms. AMS, Providence, 2011.

[HPS11] S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry. Discrete

Comput. Geom., 45:462–496, 2011.

[Hro05] J. Hromkovič. Design and Analysis of Randomized Algorithms. Springer, Berlin, 2005.

[Jof74] A. Joffe. On a set of almost deterministic k-independent random variables. Ann.

Probab., 2:161–162, 1974.

[KK97] D.R. Karger and D. Koller. (De)randomized construction of small sample spaces in

NC. J. Comput. Syst. Sci., 55:402–413, 1997.

[KM94] D. Koller and N. Megiddo. Constructing small sample spaces satisfying given con-

straints. SIAM J. Discrete Math., 7:260–274, 1994.

[KM97] H. Karloff and Y. Mansour. On construction of k–wise independent random variables.

Combinatorica, 17:91–107, 1997.

[Mat91] J. Matoušek. Randomized optimal algorithm for slope selection. Inform. Process.

Lett., 39:183–187, 1991.

[Mat00] J. Matoušek. Derandomization in computational geometry. In J.-R. Sack and J. Ur-

rutia, editors, Handbook of Computational Geometry, pages 559–595, North-Holland,

Amsterdam, 2000.

[MNN94] R. Motwani, J. Naor, and M. Naor. The probabilistic method yields deterministic

parallel algorithms. J. Comput. Syst. Sci., 49:478–516, 1994.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.

[MRS01] S. Mahajan, E.A. Ramos, and K.V. Subrahmanyam. Solving some discrepancy prob-

lems in NC. Algorithmica, 29:371–395, 2001.

[MSW93a] K. Mehlhorn, M. Sharir, and E. Welzl. Tail estimates for the efficiency of randomized

incremental algorithms for line segment intersection. Comput. Geom., 3:235–246, 1993.

[MSW93b] K. Mehlhorn, M. Sharir, and E. Welzl. Tail estimates for the space complexity of

randomized incremental algorithms. Comput. Geom., 4:185–246, 1993.

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear program-

ming. Algorithmica, 16:498–516, 1996.

[Mul91a] K. Mulmuley. Randomized multidimensional search trees: Dynamic sampling. In 7th

Sympos. Comput. Geom., pages 121–131, ACM Press, 1991.

[Mul91b] K. Mulmuley. Randomized multidimensional search trees: Further results in dynamic

sampling. In 32nd IEEE Sympos. Found. Comp. Sci., pages 216–227, 1991.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

arXiv:0908.3716

Chapter 44: Randomization and derandomization 1187

[Mul91c] K. Mulmuley. Randomized multidimensional search trees: Lazy and dynamic shuffling.

In 32nd IEEE Sympos. Found. Comp. Sci., pages 180–196, 1991.

[Mul93] K. Mulmuley. Computational Geometry: An Introduction through Randomized Algo-

rithms. Prentice Hall, Englewood Cliffs, 1993.

[Mul96] K. Mulmuley. Randomized geometric algorithms and pseudorandom generators. Al-

gorithmica, 16:450–463, 1996.

[Mul00] K. Mulmuley. Randomized algorithms in computational geometry. In J.-R. Sack

and J. Urrutia, editors, Handbook of Computational Geometry, pages 703–724, North-

Holland, Amsterdam, 2000.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,

12:449–461, 1992.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and ap-

plications. SIAM J. Comput., 22:838–856, 1993.

[PT13] J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. J. Amer.

Math. Soc., 26:645–658, 2013.

[Rab76] M.O. Rabin. Probabilistic algorithms. In J. Traub, editor, Algorithms and Complexity,

pages 21–39. Academic Press, New York, 1976.

[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating

packing integer programs. J. Comput. Syst. Sci., 37:130–143, 1988.

[Ram01] E.A. Ramos. An optimal deterministic algorithm for computing the diameter of a

three-dimensional point set. Discrete Comput. Geom., 26:233–244, 2001.

[Sch91] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proc.

32nd IEEE Sympos. Found. Comp. Sci., pages 197–206, 1991.

[Sei91] R. Seidel. A simple and fast incremental randomized algorithm for computing trape-

zoidal decompositions and for triangulating polygons. Comput. Geom., 1:51–64, 1991.

[Sei93] R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, edi-

tor, New Trends in Discrete and Computational Geometry, vol. 10 of Algorithms and

Combin., pages 37–68. Springer-Verlag, Berlin, 1993.

[Sha94] M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions.

Discrete Comput. Geom., 12:327–345, 1994.

[Sha03] M. Sharir. The Clarkson-Shor technique revisited and extended. Combin. Probab.

Comput., 12:191–201, 2003.

[Spe87] J. Spencer. Ten Lectures on the Probabilistic Method. CBMS-NSF. SIAM, 1987.

[SS97] O. Schwarzkopf and M. Sharir. Vertical decomposition of a single cell in a three-

dimensional arrangement of surfaces and its applications. Discrete Comput. Geom.,

18:269–288, 1997.

[SSS95] J.P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications

with limited independence. SIAM J. Discrete Math., 8:223–250, 1995.

[Tag96] B. Tagansky. A new technique for analyzing substructures in arrangements of piecewise

linear surfaces. Discrete Comput. Geom., 16:455–479, 1996.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

