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INTRODUCTION

A central problem in computational geometry, range searching arises in many appli-
cations, and a variety of geometric problems can be formulated as range-searching
problems. A typical range-searching problem has the following form. Let S be a
set of n points in Rd, and let R be a family of subsets of Rd; elements of R are called
ranges. Typical examples of ranges include rectangles, halfspaces, simplices, and
balls. Preprocess S into a data structure so that for a query range γ ∈ R, the points
in S ∩ γ can be reported or counted efficiently. A single query can be answered in
linear time using linear space, by simply checking for each point of S whether it
lies in the query range. Most of the applications, however, call for querying the
same set S numerous times, in which case it is desirable to answer a query faster
by preprocessing S into a data structure.

Range counting and range reporting are just two instances of range-searching
queries. Other examples include range-emptiness queries: determine whether S ∩
γ = ∅; and range-min/max queries: each point has a weight and one must return the
point in the query range with the minimum/maximum weight. Many different types
of range-searching queries can be encompassed in the following general formulation
of the range-searching problem:

Let (S,+) be a commutative semigroup. Each point p ∈ S is assigned a weight
w(p) ∈ S. For any subset S′ ⊆ S, let w(S′) =

∑
p∈S′ w(p), where addition is taken

over the semigroup.1 For a query range γ ∈ R, compute w(S ∩ γ). For example,
counting queries can be answered by choosing the semigroup to be (Z,+), where +
denotes standard integer addition, and setting w(p) = 1 for every p ∈ S; emptiness
queries by choosing the semigroup to be ({0, 1},∨) and setting w(p) = 1; reporting
queries by choosing the semigroup to be (2S ,∪) and setting w(p) = {p}; and range-
max queries by choosing the semigroup to be (R,max) and choosing w(p) to be the
weight of p.

A more general (decomposable) geometric-searching problem can be defined
as follows: Let S be a set of objects in Rd (e.g., points, hyperplanes, balls, or
simplices), (S,+) a commutative semigroup, w : S → S a weight function, R a set
of ranges, and ♦ ⊆ S × R a “spatial” relation between objects and ranges. For a
query range γ ∈ R, the goal is to compute

∑
p♦γ w(p). Range searching is a special

case of this problem in which S is a set of points in Rd and ♦=∈. Another widely
studied searching problem is intersection searching, where p ♦ γ if p intersects
γ. As we will see below, range-searching data structures are useful for many other
geometric searching problems.

The performance of a data structure is measured by the time spent in answer-
ing a query, called the query time and denoted by Q(n); by the size of the data
structure, denoted by S(n); and by the time spent in constructing in the data struc-

1Since S need not have an additive identity, we may need to assign a special value nil to the
empty sum.
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ture, called the preprocessing time and denoted by P (n). Since the data structure
is constructed only once, its query time and size are generally more important than
its preprocessing time. If a data structure supports insertion and deletion opera-
tions, its update time is also relevant. The query time of a range-reporting query
on any reasonable machine depends on the output size, so the query time for a
range-reporting query consists of two parts—search time, which depends only on n
and d, and reporting time, which depends on n, d, and the output size. Throughout
this chapter, k will be used to denote the output size.

We assume d to be a small constant, and big-O and big-Ω notation hide con-
stants depending on d. The dependence on d of the performance of almost all
the data structures mentioned in this chapter is exponential, which makes them
unsuitable in practice for large values of d.

The size of any range-searching data structure is at least linear, since it has to
store each point (or its weight) at least once. Assuming the coordinates of input
points to be real numbers, the query time in any reasonable model of computation
such as pointer machines, RAM, or algebraic decision trees is Ω(log n) even when
d = 1 (faster query time is possible if the coordinates are integers, say, bounded by
nO(1)). Therefore, a natural question is whether a linear-size data structure with
logarithmic query time exists for range searching. Although near-linear-size data
structures are known for orthogonal range searching in any fixed dimension that
can answer a query in polylogarithmic time, no similar bounds are known for range
searching with more complex ranges such as simplices or disks. In such cases, one
seeks a trade-off between the query time and the size of the data structure—how fast
can a query be answered using O(npolylog(n)) space, how much space is required to
answer a query in O(polylog(n)) time, and what kind of space/query-time trade-off
can be achieved?

40.1 MODELS OF COMPUTATION

Most geometric algorithms and data structures are implicitly described in the fa-
miliar random access machine (RAM) model, or in the real RAM model. In
the traditional RAM model, if the coordinates are integers in the range [0:U ],2 for
some U ≥ n, then memory cells can contain arbitrary ω := O(logU) bit long inte-
gers, called words, which can be added, multiplied, subtracted, divided (computing
bx/yc), compared, and used as pointers to other memory cells in constant time. The
real RAM model allows each memory cell to store arbitrary real numbers, and it
supports constant-time arithmetic and relational operations between two real num-
bers, though conversions between integers and reals are not allowed. In the case
of range searching over a semigroup other than integers, memory cells are allowed
to contain arbitrary values from the semigroup, but only the semigroup-addition
operations can be performed on them.

Many range-searching data structures are described in the more restrictive
pointer-machine model. The main difference between the RAM and the pointer-
machine models is that on a pointer machine, a memory cell can be accessed only
through a series of pointers, while in the RAM model, any memory cell can be
accessed in constant time. In the basic pointer-machine model, a data structure

2For b ≥ a, we use [a:b] to denote the set of integers between a and b.
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is a directed graph with out-degree 2; each node is associated with a label, which
is an integer between 0 and n. Nonzero labels are indices of the points in S, and
the nodes with label 0 store auxiliary information. The query algorithm traverses
a portion of the graph and visits at least one node with label i for each point pi
in the query range. Chazelle [Cha88] defines several generalizations of the pointer-
machine model that are more appropriate for answering counting and semigroup
queries. In these models, nodes are labeled with arbitrary O(log n)-bit integers, and
the query algorithm is allowed to perform arithmetic operations on these integers.

The cell probe model is the most basic model for proving lower bounds on
data structures [Yao81]. In this model, a data structure consists of a set of memory
cells, each storing ω bits. Each cell is identified by an integer address, which fits in
ω bits. The data structure answers a query by probing a number of cells from the
data structure and returns the correct answer based on the contents of the probed
cells. It handles an update operation by reading and updating (probing) a number
of cells to reflect the changes. The cost of an operation is the number of cells probed
by the data structure to perform that operation.

The best lower bound on the query time one can hope to prove in the cell probe
model is Ω(polylog(n)), which is far from the best-known upper bounds. Exten-
sive work has been done on proving lower bounds in the semigroup arithmetic
model, originally introduced by Fredman [Fre81a] and refined by Yao [Yao85]. In
this model, a data structure can be regarded informally as a set of precomputed
partial sums in the underlying semigroup. The size of the data structure is the
number of sums stored, and the query time is the minimum number of semigroup
operations required (on the precomputed sums) to compute the answer to a query.
The query time ignores the cost of various auxiliary operations, including the cost
of determining which of the precomputed sums should be added to answer a query.

The informal model we have just described is much too powerful. For exam-
ple, the optimal data structure for range-counting queries in this semigroup model
consists of the n+ 1 integers 0, 1, . . . , n. A counting query can be answered by sim-
ply returning the correct answer. Since no additions are required, a query can be
answered in zero “time,” using a linear-size data structure. The notion of faithful
semigroup circumvents this problem: A commutative semigroup (S,+) is faithful
if for each n > 0, for any sets of indices I, J ⊆ [1:n] where I 6= J , and for ev-
ery sequence of positive integers αi, βj (i ∈ I, j ∈ J), there are semigroup values
s1, s2, . . . , sn ∈ S such that

∑
i∈I αisi 6=

∑
j∈J βjsj . For example, (Z,+), (R,min),

(N, gcd), and ({0, 1},∨) are faithful, but ({0, 1},+ mod 2) is not faithful.
Let S = {p1, p2, . . . , pn} be a set of objects, S a faithful semigroup, R a set of

ranges, and ♦ a relation between objects and ranges. (Recall that in the standard
range-searching problem, the objects in S are points, and ♦ is containment.) Let
x1, x2, . . . , xn be a set of n variables over S, each corresponding to an object in S.
A generator g(x1, . . . , xn) is a linear form

∑n
i=1 αixi, where αi’s are non-negative

integers, not all zero. (In practice, the coefficients αi are either 0 or 1.) A storage
scheme for (S,S,R,♦) is a collection of generators {g1, g2, . . . , gs} with the following
property: For any query range γ ∈ R, there is a set of indices Iγ ⊆ [1:s] and a set
of labeled nonnegative integers {βi | i ∈ Iγ} such that the linear forms

∑
pi♦γ

xi
and

∑
i∈Iγ βigi are identically equal. In other words, the equation∑

pi♦γ

w(pi) =
∑
i∈Iγ

βigi(w(p1), w(p2), . . . , w(pn))
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holds for any weight function w : S → S. (Again, in practice, βi = 1 for all i ∈ Iγ .)
The size of the smallest such set Iγ is the query time for γ; the time to actually
choose the indices Iγ is ignored. The space used by the storage scheme is measured
by the number of generators. There is no notion of preprocessing time in this model.

A serious weakness of the semigroup model is that it does not allow subtractions
even if the weights of points belong to a group (e.g., range counting). Therefore
the group model has been proposed in which each point is assigned a weight from
a commutative group and the goal is to compute the group sum of the weights of
points lying in a query range. The data structure consists of a collection of group
elements and auxiliary data, and it answers a query by adding and subtracting a
subset of the precomputed group elements to yield the answer to the query. The
query time is the number of group operations performed [Fre82, Cha98].

The lower-bound proofs in the semigroup model have a strong geometric flavor
because subtractions are not allowed: the query algorithm can use a precomputed
sum that involves the weight of a point p only if p lies in the query range. A typical
proof basically reduces to arguing that not all query ranges can be “covered” with a
small number of subsets of input objects [Cha01]. Unfortunately, no such property
holds for the group model, which makes proving lower bounds in the group model
much harder. Notwithstanding recent progress, the known lower bounds in the
group model are much weaker than those under the semigroup model.

Almost all geometric range-searching data structures are constructed by subdi-
viding space into several regions with nice properties and recursively constructing
a data structure for each region. Queries are answered with such a data structure
by performing a depth-first search through the resulting recursive space partition.
The partition-graph model, introduced by Erickson [Eri96a, Eri96b], formalizes
this divide-and-conquer approach. This model can be used to study the complexity
of emptiness queries, which are trivial in semigroup and pointer-machine models.

We conclude this section by noting that most of the range-searching data struc-
tures discussed in this paper (halfspace range-reporting data structures being a no-
table exception) are based on the following general scheme. Given a point set S,
the structure precomputes a family F = F(S) of canonical subsets of S and stores
the weight w(C) =

∑
p∈C w(p) of each canonical subset C ∈ F. For a query range

γ, the query procedure determines a partition Cγ = C(S, γ) ⊆ F of S ∩ γ and adds
the weights of the subsets in Cγ to compute w(S ∩ γ). We refer to such a data
structure as a decomposition scheme.

There is a close connection between the decomposition schemes and the storage
schemes of the semigroup model described earlier. Each canonical subset C =
{pi | i ∈ I} ∈ F, where I ⊆ [1:n], corresponds to the generator

∑
i∈I xi. How

exactly the weights of canonical subsets are stored and how Cγ is computed depends
on the model of computation and on the specific range-searching problem. In
the semigroup (or group) arithmetic model, the query time depends only on the
number of canonical subsets in Cγ , regardless of how they are computed, so the
weights of canonical subsets can be stored in an arbitrary manner. In more realistic
models of computation, however, some additional structure must be imposed on
the decomposition scheme in order to efficiently compute Cγ . In a hierarchical
decomposition scheme, the canonical subsets and their weights are organized in a
tree T . Each node v of T is associated with a canonical subset Cv ∈ F, and if
w is a child of v in T then Cw ⊆ Cv. Besides the weight of Cv, some auxiliary
information is also stored at v, which is used to determine whether Cv ∈ Cγ for
a query range γ. If the weight of each canonical subset can be stored in O(1)
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memory cells and if one can determine in O(1) time whether Cw ∈ Cγ where w
is a descendent of a given node v, the hierarchical decomposition scheme is called
efficient. The total size of an efficient decomposition scheme is simply O(|F|). For
range-reporting queries, in which the “weight” of a canonical subset is the set itself,
the size of the data structure is O(

∑
C∈F |C|), but it can be reduced to O(|F|) by

storing the canonical subsets implicitly. Finally, let r > 1 be a parameter, and
set Fi = {C ∈ F | ri−1 ≤ |C| ≤ ri}. A hierarchical decomposition scheme is
called r-convergent if there exist constants α ≥ 1 and β > 0 so that the degree of
every node in T is O(rα) and for all i ≥ 1, |Fi| = O((n/ri)α) and, for all query
ranges γ, |Cγ ∩ Fi| = O((n/ri)β), i.e., the number of canonical subsets in the data
structure and in any query output decreases exponentially with their size. We
will see below in Section 40.5 that r-convergent hierarchical decomposition schemes
can be cascaded together to construct multi-level structures that answer complex
geometric queries.

To compute
∑
pi∈γ w(pi) for a query range γ using a hierarchical decomposition

scheme T , a query procedure performs a depth-first search on T , starting from its
root. At each node v, using the auxiliary information stored at v, the procedure
determines whether γ contains Cv, whether γ crosses Cv (i.e., γ intersects Cv but
does not contain Cv), or whether γ is disjoint from Cv. If γ contains Cv, then Cv is
added to Cγ (rather, the weight of Cv is added to a running counter). Otherwise,
if γ intersects Cv, the query procedure identifies a subset of children of v, say
{w1, . . . , wa}, so that the canonical subsets Cwi ∩ γ, for 1 ≤ i ≤ a, form a partition
of Cv ∩ γ. Then the procedure searches each wi recursively. The total query time
is O(log n + |Cγ |) if the decomposition scheme is r-convergent for some constant
r > 1 and constant time is spent at each node visited.

40.2 ORTHOGONAL RANGE SEARCHING

Query ranges in d-dimensional orthogonal range searching are axis-aligned rect-
angles of the form

∏d
i=1[ai, bi]. Multi-key searching in database systems can be

formulated as orthogonal range searching. For example, the points of S may corre-
spond to employees of a company, each coordinate corresponding to a key such as
age and salary. A query of the form—report all employees between the ages of 30
and 40 who earn between $50, 000 and $75, 000—can be formulated as an orthogonal
range-reporting query with query rectangle being [30, 40]× [5× 104, 7.5× 104].

UPPER BOUNDS

Most orthogonal range-searching data structures with polylog(n) query time un-
der the pointer-machine model are based on range trees, introduced by Bentley
[Ben80]. For a set S of n points in R2, the range tree T of S is a minimum-height
binary tree with n leaves whose ith leftmost leaf stores the point of S with the
ith smallest x-coordinate. Each interior node v of T is associated with a canonical
subset Cv ⊆ S containing the points stored at leaves in the subtree rooted at v. Let
av (resp. bv) be the smallest (resp. largest) x-coordinate of any point in Cv. The
interior node v stores the values av and bv and the set Cv in an array sorted by the
y-coordinates of its points. The size of T is O(n log n), and it can be constructed

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1062 P.K. Agarwal

in time O(n log n). The range-reporting query for a rectangle R = [a1, b1]× [a2, b2]
can be answered by traversing T in a top-down manner as follows. Suppose a node
v is being visited by the query procedure. If v is a leaf and R contains the point of
Cv, then report the point. If v is an interior node and the interval [av, bv] does not
intersect [a1, b1], there is nothing to do. If [av, bv] ⊆ [a1, b1], report all the points of
Cv whose y-coordinates lie in the interval [a2, b2], by performing a binary search.
Otherwise, recursively visit both children of v. The query time of this procedure
is O(log2 n + k), which can be improved to O(log n + k) using fractional cascad-
ing [BCKO08]. A d-dimensional range tree can be extended to Rd+1 by using a
multi-level structure and by paying a log n factor in storage and query time.

Since the original range-tree paper by Bentley, several data structures with
improved bounds have been proposed; see Table 40.2.1 for a summary of known
results. If queries are “3-sided rectangles” in R2, say, of the form [a1, b1]× [a2,∞),
then a priority search tree of size O(n) can answer a range-reporting query in
time O(log n+ k) [McC85]. Chazelle [Cha86] showed that an orthogonal range re-
porting query in R2 can be answered in O(log n + k) time using O(nLg n) space,
where Lg n = loglogn n = log n/ log log n, by constructing a range tree of O(log n)
fanout and storing additional auxiliary structures at each node. For d = 3, Af-
shani et al. [AAL10] proposed a data structure of O(nLg2 n) size with O(log n+k)
query time. Afshani et al. [AAL09, AAL10] presented a recursive data struc-
ture for orthogonal range reporting, based on range tree, that can be extended
from Rd to Rd+1 by paying a cost of Lg n in both space and query time. For
d = 4, a query thus can be answered in O(log nLg n + k) time using O(nLg3 n)
space. Afshani et al. [AAL12] presented a slightly different data structure of size
O(nLg4 n) that answers a 4D query in O(log n

√
Lg n + k) time. For d ≥ 4, a

query can be answered in O(log(n) Lgd−3 n+ k) time using O(nLgd−1 n) space, or

in O(log(n) Lgd−4+1/(d−2) n + k) time using O(nLgd n) space. The preprocessing
time of these data structures is O(n log2 nLgd−3 n) and O(n log3 nLgd−3 n), respec-
tively [AT14]. More refined bounds on the query time can be found in [AAL10].

There is extensive work on range-reporting data structures in the RAM model
when S ⊂ [0:U ]d for some integer U ≥ n, assuming that each memory cell can
store a word of length ω = O(logU). For d = 1, a range-reporting query can be
answered in O(logω+k) time using the van Emde Boas tree of linear size [EBKZ77].
Alstrup et al. [ABR01] proposed a linear-size data structure that can answer a range
reporting query in O(k + 1) time. In contrast, any data structure of size nO(1) for
finding the predecessor in S of a query point has Ω(logω) query time [Ajt88].

Using standard techniques, the universe [0:U ]d can be reduced to [0:n]d by
paying O(n) space and O(log logU) additional time in answering a query. So for
d ≥ 2, we assume that U = n and that the coordinates of the query rectangle are
also integers in the range [0:n]; we refer to this setting as the rank space.

For d = 2, the best known approach can answer a range-reporting query in
O((1 + k) log log n) time using O(n log log n) space, in O((1 + k) logε n) time using
O(n) space, or in O(log log n + k) time using O(n logε n) space [CLP11], where
ε > 0 is an arbitrarily small constant. For d = 3, a query can be answered in
O(log log n + k) time using O(n log1+ε n) space; if the query range is an octant,
then the size of the data structure is only linear. These data structures can be
extended to higher dimensions by paying a factor of log1+ε n in space and Lg n in
query time per dimension. Therefore a d-dimensional query can be answered in
O(Lgd−3 n log log n+ k) using O(n logd−2+ε n) space.
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The classical range-tree data structure can answer a 2D range-counting query
in O(log n) time using O(n log n) space. Chazelle [Cha88] showed that the space
can be improved to linear in the generalized pointer-machine or the RAM model
by using a compressed range tree. For d ≥ 2, by extending Chazelle’s technique,
a range-counting query in the rank space can be answered in O(Lgd−1 n) time
using O(nLgd−2 n) space [JMS04]. Such a data structure can be constructed in

time O(n logd−2+1/d n) [CP10]. Chan and Wilkinson [CW13] presented an adaptive
data structure of O(n log log n) size that can answer a 2D range-counting query in
O(log log n + Lg k), where k is the number of points in the query range. Their
technique can also be used to answer range-counting queries approximately: it
returns a number k′ with k ≤ k′ ≤ (1 + δ)k, for a given constant δ > 0, in
O(log log n) time using O(n log log n) space, or in O(logε n) time using O(n) space.
If an additive error of εn is allowed, then an approximate range-counting query can
be answered using O( 1

ε log( 1
ε ) log log( 1

ε ) log n) space, and this bound is tight within
O(log log 1

ε ) factor [WY13].
In an off-line setting, where all queries are given in advance, n d-dimensional

range-counting queries can be answered in O(n logd−2+1/d n) time [CP10].
All the data structures discussed above can handle insertion/deletion of points

using the standard partial-rebuilding technique [Ove83]. If the preprocessing time
of the data structure is P (n), then a point can be inserted into or deleted from the
data structure in O((P (n)/n) log n) amortized time. The update time can be made
worst-case using the known de-amortization techniques [DR91]. Faster dynamic
data structures have been developed for a few cases, especially under the RAM
model when S ⊆ [0:U ]d and d = 1, 2. For example, Mortensen et al. [MPP05]
dynamized the 1D range-reporting data structure with O(logω) update time and
O(log logω + k) query time.

TABLE 40.2.1 Orthogonal range reporting upper bounds; h ∈ [1, logε n] and Lg n = logn
log logn .

d
Pointer Machine RAM

S(n) Q(n) S(n) Q(n)

d = 1 n logn+ k n 1 + k

d = 2 nLgn logn+ k
nh log logn log logn+ k logh logn

n logh logn (1 + k)h log logn

d = 3 nLg2 n logn+ k n log1+ε n log logn+ k

d = 4

nLg3 n lognLgn+ k
n log2+ε n logn+ k

nLg4 n lognLg1/2 n+ k

d ≥ 4

nLgd−1 n lognLgd−3 n+ k

n logd−2+ε n lognLgd−4 n+ knLgd n lognLgα n+ k

α = d− 4 + 1
d−2

LOWER BOUNDS

Semigroup model. Fredman [Fre80, Fre81a] was the first to prove nontrivial lower
bounds on orthogonal range searching, but in a dynamic setting in which points can
be inserted and deleted. He showed that a mixed sequence of n insertions, deletions,
and queries takes Ω(n logd n) time under the semigroup model. Chazelle [Cha90b]
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proved lower bounds for the static version of orthogonal range searching, which
almost match the best upper bounds known. He showed that there exists a set
S of n weighted points in Rd, with weights from a faithful semigroup, such that
the worst-case query time, under the semigroup model, for an orthogonal range-
searching data structure of size nh is Ω((logh n)d−1). If the data structure also
supports insertions of points, the query time is Ω((logh n)d). These lower bounds
hold even if the queries are orthants instead of rectangles, i.e., for the so-called
dominance queries. In fact, they apply to answering the dominance query for a
randomly chosen query point. It should be pointed out that the bounds in [Cha90b]
assume the weights of points in S to be a part of the input, i.e., the data structure
is not tailored to a special set of weights. It is conceivable that a faster algorithm
can be developed for answering orthogonal range-counting queries, exploiting the
fact that the weight of each point is 1 in this case.

Group model. Pǎtraşcu [Pǎt07] proved that a dynamic data structure in the group
model for 2D dominance counting queries that supports updates in expected time tu
requires Ω(( logn

log(tu logn) )2) expected time to answer a query. Larsen [Lar14] proved

lower bounds for dynamic range searching data structures in the group model in
terms of combinatorial discrepancy of the underlying set system. For d-dimensional
orthogonal range searching, any dynamic data structure with the worst-case tu and
tq update and query time, respectively, requires tutq = Ω(logd−1

ω n) [LN12].

Cell-probe model. Pǎtraşcu [Pǎt07, Pǎt11] and Larsen [Lar12] also proved lower
bounds on orthogonal range searching in the cell probe model. In particular,
Pǎtraşcu proved that a data structure for 2D dominance counting queries that
uses nh space requires Ω(loghω n) query time, where ω = Ω(log n) is the size of
each memory cell. He also proved the same lower bound for 4D orthogonal range
reporting. Note that for h = npolylog n and ω = log n, the query time is Ω(Lg n)
using O(n polylog n) space, which almost matches the best known upper bound of
O(log n + k) using O(n log2+ε n) space. In contrast, a 3D orthogonal range query
can be answered in O(log log n+ k) time using O(n log1+ε n) space.

Larsen [Lar12] proved that a dynamic data structure for the 2D weighted
range counting problem with tu worst-case update time has Ω((logωtu n)2) expected
query time; the weight of each point is an O(log n)-bit integer. Note that for
tu = polylog(n) and ω = Θ(log n), the expected query time is Ω(Lg2 n).

Pointer-machine model. For range reporting queries, Chazelle [Cha90a] proved
that the size of any data structure on a pointer machine that answers a d-dimensional
range-reporting query in O(polylog(n) + k) time is Ω(nLgd−1 n). Notice that this
lower bound is greater than the known upper bound for answering two-dimensional
reporting queries on the RAM model. Afshani et al. [AAL10, AAL12] adapted
Chazelle’s technique to show that a data structure for range-reporting queries that

uses nh space requires Ω(log(n) log
bd/2c−2
h n+ k) time to answer a query.

Off-line searching. These lower bounds do not hold for off-line orthogonal range
searching, where given a set of n weighted points in Rd and a set of n rectangles,
one wants to compute the weight of points in each rectangle. Chazelle [Cha97]
proved that the off-line version takes Ω(nLgd−1 n) time in the semigroup model
and Ω(n log log n) time in the group model. For d = Ω(log n) (resp. d = Ω(Lg n)),
the lower bound for the off-line range-searching problem in the group model can be
improved to Ω(n log n) (resp. Ω(nLg n)) [CL01].
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PRACTICAL DATA STRUCTURES

None of the data structures described above are used in practice, even in two dimen-
sions, because of the polylogarithmic overhead in their size. For a data structure to
be used in real applications, its size should be at most cn, where c is a very small
constant, the time to answer a typical query should be small—the lower bounds
mentioned earlier imply that we cannot hope for small worst-case bounds—and it
should support insertions and deletions of points. Keeping these goals in mind, a
plethora of data structures have been proposed.

Many practical data structures construct a recursive partition of space, typi-
cally into rectangles, and a tree induced by this partition. The simplest example
of this type of data structure is the quad tree [Sam90]. A quad tree in R2 is a
4-way tree, each of whose nodes v is associated with a square Rv. Rv is partitioned
into four equal-size squares, each of which is associated with one of the children
of v. The squares are partitioned until at most one point is left inside a square.
A range-search query can be answered by traversing the quad tree in a top-down
fashion. Because of their simplicity, quad trees are one of the most widely used
data structures for a variety of problems. One disadvantage of quad trees is that
arbitrarily many levels of partitioning may be required to separate tightly clustered
points. The compressed quad tree guarantees its size to be linear, though the
depth can be linear in the worst case [Sam90].

Quad trees and their variants construct a grid on a square containing all the
input points. One can instead partition the enclosing rectangle into two rectangles
by drawing a horizontal or a vertical line and partitioning each of the two rectan-
gles independently. This is the idea behind the kd-tree data structure of Bentley
[Ben75]. In particular, a kd-tree is a binary tree, each of whose nodes v is associated
with a rectangle Rv. If Rv does not contain any point in its interior, v is a leaf.
Otherwise, Rv is partitioned into two rectangles by drawing a horizontal or vertical
line so that each rectangle contains at most half of the points; splitting lines are
alternately horizontal and vertical. A kd-tree answers a d-dimensional orthogonal
range-reporting query in O(n1−1/d + k) using linear space; in fact, each point is
stored only once.

Inserting/deleting points dynamically into a kd-tree is expensive, so a few vari-
ants of kd-trees have been proposed that can update the structure in O(polylog n)
time and can answer a query in O(

√
n + k) time. On the practical side, many

alternatives of kd-trees have been proposed to optimize space and query time, most
notably buddy tree [SRF87] and hB-tree [LS90, ELS97]. A buddy tree is a combi-
nation of quad- and kd-trees in the sense that rectangles are split into sub-rectangles
only at some specific locations, which simplifies the split procedure. In an hB-tree,
the region associated with a node is allowed to be R1\R2 where R1 and R2 are rect-
angles. The same idea has been used in the BBd-tree, a data structure developed
for answering approximate nearest-neighbor and range queries [AMN+98].

Several extensions of kd-trees, such as random projection trees [DF08], ran-
domized partition trees [DS15], randomly oriented kd-trees [Vem12], and cover
trees [BKL06], have been proposed to answer queries on a set S of points in Rd
when d is very high but the intrinsic dimension of S is low. A popular notion of
intrinsic dimension of S is its doubling dimension, i.e., the smallest integer b such
that for every x ∈ Rd and for every r > 0, the points of S within distance r from x
can be covered by 2b balls of radius r/2. The performance of these data structures
on certain queries depends exponentially only on the doubling dimension of S.
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PARTIAL-SUM QUERIES

Partial-sum queries require preprocessing a d-dimensional array A with n entries, in
an additive semigroup, into a data structure, so that for a d-dimensional rectangle
γ = [a1, b1]× · · · × [ad, bd], the sum

σ(A, γ) =
∑

(k1,k2,...,kd)∈γ

A[k1, k2, . . . , kd]

can be computed efficiently. In the off-line version, given A and m rectangles
γ1, γ2, . . . , γm, we wish to compute σ(A, γi) for each i. Partial-sum queries are
a special case of orthogonal range queries, where the points lie on a regular d-
dimensional lattice.

Partial-sum queries are widely used for on-line analytical processing (OLAP)
of commercial databases. OLAP allows companies to analyze aggregate databases
built from their data warehouses. A popular data model for OLAP applications is
the multidimensional database called data cube [GBLP96] that represents the data
as a d-dimensional array. An aggregate query on a data cube can be formulated
as a partial-sum query. Driven by this application, several heuristics have been
proposed to answer partial-sum queries on data cubes; see [HBA97, VW99] and the
references therein.

If the sum is a group operation, then the query can be answered in O(1) time
in any fixed dimension by maintaining the prefix sums and using the inclusion-
exclusion principle. Yao [Yao82] showed that, for d = 1, a partial-sum query
where sum is a semigroup operation can be answered in O(α(n)) time using O(n)
space; here α(n) is the inverse Ackermann function. If the sum operation is max
or min, then a partial-sum query can be answered in O(1) time under the RAM
model [FH06, Vui80].

For d > 1, Chazelle and Rosenberg [CR89] developed a data structure of size
O(n logd−1 n) that can answer a partial-sum query in time O(α(n) logd−2 n). They
also showed that the off-line version that answers m given partial-sum queries on
n points takes Ω(n+mα(m,n)) time for any fixed d ≥ 1. If the values in the array
can be updated, then Fredman [Fre82] proved a lower bound of Ω(log n/ log log n)
on the maximum of update and query time. The lower bound was later improved
to Ω(log n) by Pǎtraşcu and Demaine [PD06].

RANGE-STATISTICS QUERIES

The previous subsections focused on two versions of range searching—reporting and
counting. In many applications, especially when the input data is large, neither of
the two is quite satisfactory—there are too many points in the query range to
report, and a simple count (or weighted sum) of the number of points gives too
little information. There is recent work on computing some statistics on points
lying in a query rectangle, mostly for d = 1, 2.

Let S be a set of weighted points. The simplest range statistics query is
the range min/max query: return a point of the minimum/maximum weight in
a query rectangle. If the coordinates of input points are real numbers, then the
classical range tree can answer a range min/max query in time O(logd−1 n) us-
ing O(n logd−1 n) space. Faster data structures have been developed for answering
range-min/max queries in the rank space. For d = 1, as mentioned above, a range
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min/max query can be answered in O(1) time using O(n) space in the RAM model.
For d = 2, a range min/max query can be answered in O(log log n) time using
O(n logε n) space [CLP11].

Recently, there has been some work on the range-selection query for d = 1: let
S = [1:n] and wi be the weight of point i. Given an interval [i:j] and an integer r ∈
[1:j−i+1], return the r-th smallest value in wi, . . . , wj . Chan and Wilkinson [CW13]
have described a data structure of linear size that can answer the query in time
O(1 + logω r) in the ω-bit RAM model, and Jørgensen and Larsen [JL11] proved
that this bound is tight in the worst case, i.e., any data structure that uses nh
space, where h ≥ 1 is a parameter, requires Ω(logωh n) time to answer a query. For
d ≥ 2, Chan and Zhou [CZ15] showed that a range-selection query can be answered
in O(Lgd n) time using O(nLgd−1 n) space, where as before Lg n = log n/ log log n.
A variant of range-selection query is the top-r query where the goal is to report
the r points inside a query range with largest/smallest weights. By adapting the
range-reporting structures, several data structures for answering top-r queries have
been proposed [RT15, RT16]. For example, a 2D orthogonal top-r query can be
answered in time O(log n+ r) using O(nLg n) space.

A 1D range-mode query, i.e., given an interval [i:j] return the mode of wi, . . . , wj ,

can be computed in O(
√
n/ log n) time [CDL+14]. A close relationship between

range-mode queries and Boolean matrix multiplication implies that any data struc-
ture for range-mode queries must have either Ω(nt/2) preprocessing time or Ω(nt/2−1)
query time in the worst case, where t is the exponent in the running time of a
matrix-multiplication algorithm; the best known matrix-multiplication algorithm
has exponent 2.3727.

Rahul and Janardan [RJ12] considered the problem of reporting the set of
maximal points (i.e., the points that are not dominated by any other point) in
a query range, the so-called skyline query. They presented a data structure of
size O(n logd+1 n) that can report all maximal points in a query rectangle in time
O(k logd+2 n). For d = 2, Brodal and Larsen [BL14] show that a skyline-reporting
query in the rank space can be answered in O(Lg n + k) time using O(n logε n)
space or in O(Lg n+ k log log n) time using O(n log log n) space. They also propose
a linear-size data structure that answers a skyline-counting query in O(Lg n) time,
and show that this bound is optimal in the worst case.

OPEN PROBLEMS

1. For d > 2, prove a lower bound on the query time for orthogonal range
counting that depends on d.

2. Can a range-reporting query for d = 4, 5 under the pointer-machine model be
answered in O(log n+ k) time using n polylog(n)) space?

3. How fast a skyline-counting query be answered for d ≥ 3?

40.3 SIMPLEX RANGE SEARCHING

Unlike orthogonal range searching, no simplex range-searching data structure is
known that can answer a query in polylogarithmic time using near-linear storage.
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In fact, the lower bounds stated below indicate that there is little hope of obtaining
such a data structure, since the query time of a linear-size data structure, under
the semigroup model, is roughly at least n1−1/d (thus only saving a factor of n1/d

over the naive approach). Because the size and query time of any data structure
have to be at least linear and logarithmic, respectively, we consider these two ends
of the spectrum: (i) What is the size of a data structure that answers simplex range
queries in logarithmic time? (ii) How fast can a simplex range query be answered
using a linear-size data structure?

GLOSSARY

Arrangement: The arrangement of a set H of hyperplanes in Rd, denoted by
A(H), is the subdivision of Rd into cells, each being a maximal connected set
contained in the intersection of a fixed subset of H and not intersecting any other
hyperplane of H.

Level: The level of a point p with respect to a set H of hyperplanes is the number
of hyperplanes of H that lie below p.

Duality: The dual of a point (a1, . . . , ad) ∈ Rd is the hyperplane xd = −a1x1 −
· · · − ad−1xd−1 + ad, and the dual of a hyperplane xd = b1x1 + · · · + bd is the
point (b1, . . . , bd−1, bd).

1/r-cutting: Let H be a set of n hyperplanes in Rd, and let r ∈ [1, n] be a
parameter. A (1/r)-cutting of H is a set Ξ of (relatively open) disjoint simplices
covering Rd so that at most n/r hyperplanes of H cross (i.e., intersect but do
not contain) each simplex of Ξ.

Shallow cutting: Let H be a set of n hyperplanes in Rd, and let r ∈ [1, n] and
q ∈ [0:n − 1] be two parameters. A shallow (1/r)-cutting of H is a set Ξ of
(relatively open) disjoint simplices covering all points with level (with respect to
H) at most q so that at most n/r hyperplanes of H cross each simplex of Ξ.

DATA STRUCTURES WITH LOGARITHMIC QUERY TIME

For simplicity, consider the following halfspace range-counting problem: Preprocess
a set S of n points in Rd into a data structure so that the number of points of S that
lie above a query hyperplane can be counted quickly. Using the duality transform,
the above halfspace range-counting problem can be reduced to the following point-
location problem: Given a set H of n hyperplanes in Rd, determine the number of
hyperplanes of H lying above a query point q. Since the same subset of hyperplanes
lies above all points of a single cell of A(H), the number of hyperplanes of H lying
above q can be reported by locating the cell of A(H) that contains q. The following
theorem of Chazelle [Cha93] leads to an O(log n) query-time data structure for
halfspace range counting.

THEOREM 40.3.1 Chazelle [Cha93]

Let H be a set of n hyperplanes and r ≤ n a parameter. Set s = dlog2 re. There
exist s cuttings Ξ1, . . . ,Ξs so that Ξi is a (1/2i)-cutting of size O(2id), each simplex
of Ξi is contained in a simplex of Ξi−1, and each simplex of Ξi−1 contains a constant
number of simplices of Ξi. Moreover, Ξ1, . . . ,Ξs can be computed in time O(nrd−1).
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Choose r = d n
log2 n

e. Construct the cuttings Ξ1, . . . ,Ξs, for s = dlog2 re; for

each simplex 4 ∈ Ξi, for i < s, store pointers to the simplices of Ξi+1 that are
contained in4; and for each simplex4 ∈ Ξs, store H4 ⊆ H, the set of hyperplanes
that intersect 4, and k4, the number of hyperplanes of H that lie above 4. Since

|Ξs| = O(rd), the total size of the data structure is O(nrd−1) = O(nd/ logd−1 n).
For a query point q ∈ Rd, by traversing the pointers, find the simplex 4 ∈ Ξs that
contains q, count the number of hyperplanes of H4 that lie above q, and return k4
plus this quantity. The total query time is O(log n). The space can be reduced to
O(nd/ logd n) while keeping the query time to be O(log n) [Mat93].

The above approach can be extended to the simplex range-counting problem:
store the solution of every combinatorially distinct simplex (two simplices are com-
binatorially distinct if they do not contain the same subset of S). Since there
are Θ(nd(d+1)) combinatorially distinct simplices, such an approach will require
Ω(nd(d+1)) storage. Chazelle et al. [CSW92] proposed a data structure of size
O(nd+ε), for any ε > 0, using a multi-level data structure (see Section 40.5), that
can answer a simplex range-counting query in O(log n) time. The space bound can
be reduced to O(nd) by increasing the query time to O(logd+1 n) [Mat93].

LINEAR-SIZE DATA STRUCTURES

Most of the linear-size data structures for simplex range searching are based on
partition trees, originally introduced by Willard [Wil82] for a set of points in the
plane. Roughly speaking, a partition tree is a hierarchical decomposition scheme (in
the sense described at the end of Section 40.1) that recursively partitions the points
into canonical subsets and encloses each canonical subset by a simple convex region
(e.g., simplex), so that any hyperplane crosses only a fraction of the regions asso-
ciated with the “children” of a canonical subset. A query is answered as described
in Section 40.1. The query time depends on the maximum number of regions asso-
ciated the with the children of a node that a hyperplane can cross. The partition
tree proposed by Willard partitions each canonical subsets into four children, each
contained in a wedge so that any line crosses at most three of them. As a result,
the time spent in reporting all k points lying inside a triangle is O(nα + k), where
α = log4 3 ≈ 0.793. A major breakthrough in simplex range searching was made by
Haussler and Welzl [HW87]. They formulated range searching in an abstract setting
and, using elegant probabilistic methods, gave a randomized algorithm to construct
a linear-size partition tree with O(nα) query time, where α = 1− 1

d(d−1)+1 + ε for

any ε > 0. The best known linear-size data structure for simplex range search-
ing, which almost matches the lower bounds mentioned below, was first given by
Matoušek [Mat93] and subsequently simplified by Chan [Cha12]. These data struc-
tures answer a simplex range-counting (resp. range-reporting) query in Rd in time
O(n1−1/d) (resp. O(n1−1/d + k)), and are based on the following theorem.

THEOREM 40.3.2 Matoušek [Mat92a]

Let S be a set of n points in Rd, and let 1 < r ≤ n/2 be a given parameter. Then
there exists a family of pairs Π = {(S1,∆1), . . . , (Sm,∆m)} such that Si ⊆ S lies
inside simplex ∆i, n/r ≤ |Si| ≤ 2n/r, Si ∩ Sj = ∅ for i 6= j, and every hyperplane
crosses at most cr1−1/d simplices of Π; here c is a constant. If r is a constant, then
Π can be constructed in O(n) time.
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Using this theorem, a partition tree T can be constructed as follows. Each
interior node v of T is associated with a subset Sv ⊆ S and a simplex ∆v containing
Sv; the root of T is associated with S and Rd. Choose r to be a sufficiently
large constant. If |S| ≤ 4r, T consists of a single node, and it stores all points
of S. Otherwise, we construct a family of pairs Π = {(S1,∆1), . . . , (Sm,∆m)}
using Theorem 40.3.2. We recursively construct a partition tree Ti for each Si
and attach Ti as the ith subtree of u. The root of Ti also stores ∆i. The total
size of the data structure is linear, and it can be constructed in time O(n log n).
Since any hyperplane crosses at most cr1−1/d simplices of Π, the query time of
simplex range reporting is O(n1−1/d+logr c+k); the logr c term in the exponent can
be reduced to any arbitrarily small positive constant ε by choosing r sufficiently
large. Although the query time can be improved to O(n1−1/d polylog(n) + k) by
choosing r to be nε, a stronger version of Theorem 40.3.2 that builds a simplicial
partition hierarchically analogous to Theorem 40.3.1, instead of building it at each
level independently, leads to a linear-size data structure with O(n1−1/d + k) query
time. Chan’s (randomized) algorithm [Cha12] constructs a hierarchical simplicial
partition in which the (relative) interiors of simplices at every level are pairwise-
disjoint and they together induce a hierarchical partition of Rd. A space/query-time
trade-off for simplex range searching can be attained by combining the linear-size
and logarithmic query-time data structures.

If the points in S lie on a b-dimensional algebraic surface of constant degree,
a simplex range-counting query can be answered in time O(n1−γ+ε) using linear
space, where γ = 1/b(d+ b)/2c [AM94].

HALFSPACE RANGE REPORTING

A halfspace range-reporting query can be answered more quickly than a simplex
range-reporting query using shallow cutting. For simplicity, throughout this sub-
section we assume the query halfspace to lie below its bounding hyperplane. We
begin by discussing a simpler problem: the halfspace-emptiness query, which
asks whether a query halfspace contains any input point. By the duality transform,
the halfspace-emptiness query in Rd can be formulated as asking whether a query
point q ∈ Rd lies below all hyperplanes in a given set H of hyperplanes in Rd. This
query is equivalent to asking whether q lies inside a convex polyhedron P(H), de-
fined by the intersection of halfspaces lying below the hyperplanes of H. For d ≤ 3,
a point-location query in P(H) can be answered optimally in O(log n) time using
O(n) space and O(n log n) preprocessing since P(H) has linear size [BCKO08]. For
d ≥ 4, point-location query in P(H) becomes more challenging, and the query is
answered using a shallow-cutting based data structure. The following theorem by
Matoušek can be used to construct a point-location data structure for P(H):

THEOREM 40.3.3 Matoušek [Mat92b]

Let H be a set of n hyperplanes and r ≤ n a parameter. A shallow (1/r)-cutting of
level 0 with respect to H of size O(rbd/2c) can be computed in time O(nrc), where
c is a constant depending on d.

Choose r to be a sufficiently large constant, and compute a shallow (1/r)-
cutting Ξ of level 0 of H using Theorem 40.3.3. For each simplex 4 ∈ Ξ, let
H4 ⊆ H be the set of hyperplanes that intersect 4. Recursively, construct the
data structure for H4; the recursion stops when |H4| ≤ r. The size of the data
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structure is O(nbd/2c+ε), where ε > 0 is an arbitrarily small constant, and it can
be constructed in O(nbd/2c+ε) time. If a query point q does not lie in a simplex of
Ξ, then one can conclude that q 6∈ P(H) and thus stop. Otherwise, if q lies in a
simplex 4 ∈ Ξ, recursively determine whether q lies below all the hyperplanes of
H4. The query time is O(log n). Matoušek and Schwarzkopf [MS92] showed that

the space can be reduced to O( nbd/2c

logbd/2c−ε n
).

A linear-size data structure can be constructed for answering halfspace-empti-
ness queries by constructing a simplicial partition analogous to Theorem 40.3.2 but
with the property that a hyperplane that has at most n/r points above it crosses
O(r1−1/bd/2c) simplices. By choosing r appropriately, a linear-size data structure
can be constructed in O(n1+ε) time that answers a query in n1−1/bd/2c2O(log∗ n)

time; the construction time can be reduced to O(n log n) at the cost of increas-
ing the query time to O(n1−1/bd/2c polylog(n)). For even dimensions, a linear-size
data structure with query time O(n1−1/bd/2c) can be constructed in O(n log n)
randomized-expected time [Cha12].

The halfspace-emptiness data structure can be adapted to answer halfspace
range-reporting queries. For d = 2, Chazelle et al. [CGL85] presented an optimal
data structure with O(log n + k) query time, O(n) space, and O(n log n) prepro-
cessing time. For d = 3, after a series of papers with successive improvements, a
linear-size data structure with O(log n + k) query times was proposed by Afshani
and Chan [AC09]; this structure can be constructed in O(n log n) time [CT15].
Table 40.3.1 summarizes the best known bounds for halfspace range reporting in
higher dimensions; halfspace-reporting data structures can also answer halfspace-
emptiness queries without the output-size term in their query time.

TABLE 40.3.1 Near-linear-size data structures for

halfspace range reporting/emptiness.

d S(n) Q(n) NOTES

d = 2 n logn+ k reporting

d = 3 n logn+ k reporting

d > 3

nbd/2c logc n logn+ k reporting
nbd/2c

logbd/2c−ε n
logn emptiness

n n1−1/bd/2c logc n+ k reporting

n n1−1/bd/2c2O(log∗ n) emptiness

even d n n1−1/bd/2c + k reporting

Finally, we comment that halfspace-emptiness data structures have been adapted
to answer halfspace range-counting queries approximately. For example, a set S of
n points in R3 can be preprocessed, in O(n log n) time, into a linear-size data struc-
ture that for a query halfspace γ in R3, can report in O(log n) time a number t
such that |γ ∩ S| ≤ t ≤ (1 + δ)|γ ∩ S|, where δ > 0 is a constant [AC09, AHZ10].
For d > 3, such a query can be answered in O((nt )1−1/bd/2c polylog(n)) time using
linear space [Rah17].
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LOWER BOUNDS

Fredman [Fre81b] showed that a sequence of n insertions, deletions, and halfplane
queries on a set of points in the plane requires Ω(n4/3) time, under the semigroup
model. His technique, however, does not extend to static data structures. In a sem-
inal paper, Chazelle [Cha89] proved an almost matching lower bound on simplex
range searching under the semigroup model. He showed that any data structure of
size m, for n ≤ m ≤ nd, for simplex range searching in the semigroup model requires
a query time of Ω(n/

√
m) for d = 2 and Ω(n/(m1/d log n)) for d ≥ 3 in the worst

case. His lower bound holds even if the query ranges are wedges or strips. For half-

spaces, Arya et al. [AMX12] proved a lower bound of Ω(( n
logn

1− 1
d+1m−

1
d+1 )) on the

query time under the semigroup model. They also showed that if the semigroup is
integral (i.e., for all non-zero elements of the semigroup and for all k ≥ 2, the k-fold

sum x+ · · ·+x 6= x), then the lower bound can be improved to Ω( n
m1/d log−1− 2

d n).
A few lower bounds on simplex range searching have been proved under the

group model. Chazelle [Cha98] proved an Ω(n log n) lower bound for off-line half-
space range searching under the group model. Exploiting a close-connection be-
tween range searching and discrepancy theory, Larsen [Lar14] showed that for any
dynamic data structure for halfspace range searching with tu and tq update and
query time, respectively, tu · tq = Ω(n1−1/d).

The best-known lower bound for simplex range reporting in the pointer-machine
model is by Afshani [Afs13] who proved that the size of any data structure that an-

swers a simplex range reporting query in time O(tq+k) is Ω(( ntq )d/2O(
√

log tq)). His

technique also shows that the size of any halfspace range-reporting data structure

in dimension d(d+ 3)/2 has size Ω(( ntq )d/2O(
√

log tq)).

A series of papers by Erickson established the first nontrivial lower bounds
for on-line and off-line emptiness query problems, in the partition-graph model of
computation. He first considered this model for Hopcroft’s problem—Given a
set of n points and m lines, does any point lie on a line?—for which he obtained
a lower bound of Ω(n logm + n2/3m2/3 + m log n) [Eri96b], almost matching the
best known upper bound O(n logm+n2/3m2/32O(log∗(n+m)) +m log n), due to Ma-
toušek [Mat93]. He later established lower bounds on a trade-off between space
and query time, or preprocessing and query time, for on-line hyperplane emptiness
queries [Eri00]. For d-dimensional hyperplane queries, Ω(nd/ polylog(n)) prepro-
cessing time is required to achieve polylogarithmic query time, and the best possible
query time is Ω(n1/d/ polylog(n)) if O(n polylog(n)) preprocessing time is allowed.
For d = 2, if the preprocessing time is tp, the query time is Ω(n/

√
tp).

OPEN PROBLEMS

1. Prove a near-optimal lower bound on static simplex range searching in the
group model.

2. Prove an optimal lower bound on halfspace range reporting in the pointer-
machine model.

3. Can a halfspace range counting query be answered more efficiently if query
hyperplanes satisfy certain properties, e.g., they are tangent to Sd−1?
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40.4 SEMIALGEBRAIC RANGE SEARCHING

GLOSSARY

Semialgebraic set: A semialgebraic set is a subset of Rd obtained from a finite
number of sets of the form {x ∈ Rd | g(x) ≥ 0}, where g is a d-variate polynomial
with real coefficients, by Boolean operations (union, intersection, and comple-
ment). A semialgebraic set has constant description complexity if the dimension,
the number of polynomials defining the set, as well as the maximum degree of
these polynomials are all constants.

Tarski cell: A semialgebraic cell of constant description complexity.

Partitioning polynomial: For a set S ⊂ Rd of n points and a real parameter r,
1 < r ≤ n, an r-partitioning polynomial for S is a nonzero d-variate polynomial
f such that each connected component of Rd \Z(f) contains at most n/r points
of S, where Z(f) := {x ∈ Rd | f(x) = 0} denotes the zero set of f . The
decomposition of Rd into Z(f) and the connected components of Rd \ Z(f) is
called a polynomial partition (induced by f).

So far we have assumed the ranges to be bounded by hyperplanes, but many appli-
cations require ranges to be defined by non-linear functions. For example, a query
of the form, for a given point p and a real number r, find all points of S lying
within distance r from p, is a range-searching problem with balls as ranges. A more
general class of ranges can be defined as follows.

Let Γd,∆,s denote the family of all semialgebraic sets in Rd defined by at most
s polynomial inequalities of degree at most ∆ each. The range-searching prob-
lem in which query ranges belong to Γd,∆,s for constants d,∆, s, is referred to as
semialgebraic range searching.

It suffices to consider the ranges bounded by a single polynomial because the
ranges bounded by multiple polynomials can be handled using multi-level data
structures. We therefore assume the ranges to be of the form

Γf (a) = {x ∈ Rd | f(x, a) ≥ 0},

where f is a (d+p)-variate polynomial specifying the type of ranges (disks, cylinders,
cones, etc.), and a is a p-tuple specifying a specific range of the given type (e.g., a
specific disk). We describe two approaches for answering such queries.

LINEARIZATION

One approach to answering Γf -range queries is the linearization method. The
polynomial f(x, a) is represented in the form

f(x, a) = ψ0(a) + ψ1(a)ϕ1(x) + · · ·+ ψλ(a)ϕλ(x),

where ϕ1, . . . , ϕλ, ψ0, . . . , ψλ are real functions. A point x ∈ Rd is mapped to the
point

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕλ(x)) ∈ Rλ.
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TABLE 40.4.1 Semialgebraic range searching; λ is the dimension

of linearization.

d RANGE S(n) Q(n) NOTES

d = 2
disk n

√
n logn Counting

logn+ k Reporting

Tarski cell n
√
npolylog(n) Counting

d ≥ 3 ball n
n1− 1

d
+ε Counting

n
1− 1
dd/2e polylog(n) + k Reporting

d = 2t− 1 ball n n1− 1
t + k Reporting

d ≥ 3 Tarski cell n
n1−1/d polylog(n)

Counting
n1− 1

λ
+ε

Then a range Γf (a) = {x ∈ Rd | f(x, a) ≥ 0} maps to a halfspace

ϕ#(a) : {y ∈ Rλ | ψ0(a) + ψ1(a)y1 + · · ·+ ψλ(a)yλ ≥ 0};

λ is called the dimension of linearization. For example, a set of spheres in Rd
admit a linearization of dimension d + 1, using the well-known lifting transform.
Agarwal and Matoušek [AM94] have described an algorithm for computing a lin-
earization of the smallest dimension under certain assumptions on ϕi’s and ψi’s. If
f admits a linearization of dimension λ, a Γf -range query can be answered using a
λ-dimensional halfspace range-searching data structure.

ALGEBRAIC METHOD

Agarwal and Matoušek [AM94] had also proposed an approach for answering Γf -
range queries, by extending Theorem 40.3.2 to Tarski cells and by constructing
partition trees using this extension. The query time of this approach depends on
the complexity of the so-called vertical decomposition of arrangements of surfaces,
and it leads to suboptimal performance for d > 4. A better data structure has been
proposed [AMS13, MP15] based on the polynomial partitioning scheme introduced
by Guth and Katz [GK15]; see also [Gut16].

Let S ⊂ Rd be a set of n points, and let r, 1 < r ≤ n, be a real param-
eter. Guth and Katz show that an r-partitioning polynomial of degree O(r1/d)
for S always exists. Agarwal et al. [AMS13] described a randomized algorithm to
compute such a polynomial in expected time O(nr + r3). A result by Barone and
Basu [BB12] implies that an algebraic variety of dimension k defined by polyno-
mials of constant-bounded degree crosses O(rk/d) components of Rd \ Z(f), and
that these components can be computed in time rO(1). Therefore, one can recur-
sively construct the data structure for points lying in each component of Rd \Z(f).
The total time spent in recursively searching in the components crossed by a query
range will be n1−1/d polylog(n). However, this ignores the points in S∗ = S ∩Z(f).
Agarwal et al. [AMS13] use a scheme based on the so-called cylindrical algebraic
decomposition to handle S∗. A more elegant and simpler method was subsequently
proposed by Matoušek and Patáková [MP15], which basically applies a generalized
polynomial-partitioning scheme on S∗ and Z(f). Putting everything together, a
semialgebraic range-counting query can be answered in O(n1−1/d polylog(n)) time
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using a linear-size data structure; all k points lying inside the query range can be
reported by spending an additional O(k) time.

Arya and Mount [AM00] have presented a linear-size data structure for ap-
proximate range-searching queries. Let γ be a constant-complexity semialgebraic
set and ε > 0 a parameter. Their data structure returns in O( 1

εd
log n + kε) time

a subset Sε of kε points such that γ ∩ S ⊆ Sε ⊆ γε ∩ S where γε is the set of
points within distance ε · diam(γ) of γ. If γ is convex, the query time improves to
O(log n + 1

εd−1 + kε). A result by Larsen and Nguyen [LN12] implies that query

time of a linear-size data structure is Ω(log n + ε−
d

1+δ−1) for any arbitrarily small
constant δ > 0. The data structure in [AM00] can also return a value kε, with
|S ∩ γ| ≤ kε ≤ |S ∩ γε| in time O( 1

εd
log n), or in O(log n+ 1

εd−1 ) time if γ is convex.

40.5 VARIANTS AND EXTENSIONS

In this section we review a few extensions of range-searching data structures:
multi-level structures, secondary-memory structures, range searching in a streaming
model, range searching on moving points, and coping with data uncertainty.

MULTI-LEVEL STRUCTURES

A powerful property of data structures based on decomposition schemes (described
in Section 40.1) is that they can be cascaded together to answer more complex
queries, at the increase of a logarithmic factor per level in their performance. The
real power of the cascading property was first observed by Dobkin and Edelsbrun-
ner [DE87], who used this property to answer several complex geometric queries.
Since their result, several papers have exploited and extended this property to solve
numerous geometric-searching problems. We briefly sketch the general cascading
scheme.

Let S be a set of weighted objects. Recall that a geometric-searching problem
P, with underlying relation ♦, requires computing

∑
p♦γ w(p) for a query range

γ. Let P1 and P2 be two geometric-searching problems, and let ♦1 and ♦2 be the
corresponding relations. Define P1 ◦ P2 to be the conjunction of P1 and P2, whose
relation is ♦1 ∩ ♦2. For a query range γ, the goal is to compute

∑
p♦1γ,p♦2γ w(p).

Suppose there are hierarchical decomposition schemes D1 and D2 for problems P1

and P2. Let F1 = F1(S) be the set of canonical subsets constructed by D1, and for
a range γ, let C1

γ = C1(S, γ) be the corresponding partition of {p ∈ S | p ♦1 γ} into
canonical subsets. For each canonical subset C ∈ F1, let F2(C) be the collection of
canonical subsets of C constructed by D2, and let C2(C, γ) be the corresponding
partition of {p ∈ C | p ♦2 γ} into level-two canonical subsets. The decomposition
scheme D1 ◦ D2 for the problem P1 ◦ P2 consists of the canonical subsets F =⋃
C∈F1 F2(C). For a query range γ, the query output is Cγ =

⋃
C∈C1

γ
C2(C, γ). Any

number of decomposition schemes can be cascaded in this manner.
Viewing D1 and D2 as tree data structures, cascading the two decomposition

schemes can be regarded as constructing a two-level tree, as follows. First construct
the tree induced by D1 on S. Each node v of D1 is associated with a canonical subset
Cv. Next, construct a second-level tree D2

v on Cv and store D2
v at v as its secondary

structure. A query is answered by first identifying the nodes that correspond to the
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canonical subsets Cv ∈ C1
γ and then searching the corresponding secondary trees to

compute the second-level canonical subsets C2(Cv, γ).
Suppose the size and query time of each decomposition scheme are at most S(n)

and Q(n), respectively, and D1 is efficient and r-convergent (cf. Section 40.1), for
some constant r > 1. Then the size and query time of the decomposition scheme
D are O(S(n) logr n) and O(Q(n) logr n), respectively. If D2 is also efficient and
r-convergent, then D is efficient and r-convergent. In some cases, the logarithmic
overhead in the query time or the space can be avoided.

The real power of multi-level data structures stems from the fact that there
are no restrictions on the relations ♦1 and ♦2. Hence, any query that can be
represented as a conjunction of a constant number of “primitive” queries, each of
which admits an efficient, r-convergent decomposition scheme, can be answered
by cascading individual decomposition schemes. Range trees for orthogonal range
searching, logarithmic query-time data structures for simplex range searching, and
data structures for semialgebraic range searching discussed above are a few exam-
ples of multi-level structures. More examples will be mentioned in the following
sections.

COLORED RANGE SEARCHING

In colored range searching (or categorical range searching), each input point is
associated with a color and the goal is to report or count the number of colors
of points lying inside a query range. For d = 1, a colored (orthogonal) range-
reporting query can be answered in O(log n + k) time using linear space, where
k is now the number of colors reported [JL93]. For d = 2, a 3-sided-rectangle
reporting query can be answered using O(n) space in O(log n+ k) time under the
pointer-machine model, or in O(log log n + k) time in the rank space under the
RAM model [LW13]. These data structures extend to reporting the colors of points
inside a (4-sided) rectangle in the same time but using O(n log n) space. Using
the techniques in [ACY12], colored halfplane-reporting queries in the plane can be
answered in O(log n + k) time using O(n) space.3 In general, a range-emptiness
data structure with S(n) space and Q(n) query time can be extended to answer
colored version of the range-reporting query for the same ranges in O((1 + k)Q(n))
time and O(S(n) log n) space; if S(n) = Ω(n1+ε), the size remains O(S(n)).

It has been shown that a colored range counting query in R1 is equivalent to
(uncolored) range counting in R2 [JL93, LW13], so a 1D colored range-counting
query can be answered in O(log n) time under the pointer-machine model or in
O(Lg n) time under the RAM model and rank space, using linear space. For d =
2, by establishing a connection between colored orthogonal range counting and
Boolean matrix multiplication, Kaplan et al. [KRSV08] showed that the query
time of a 2D colored range counting is Ω(nt/2−1) where nt is the time taken by a
Boolean matrix multiplication algorithm. They also showed that a d-dimensional
colored orthogonal range counting query can be answered in O(log2d−1 n) time
using O(nd log2d−1 n) space; if the query ranges are d-dimensional orthants, then
the query time and space can be improved to O(nd−1 log n) and O(nbd/2c logd−1 n),
respectively. Finally, we note that an approximate counting query can be answered
in O(logd+1 n) time using O(n logd+1 n) space [Rah17].

3The author thanks Saladi Rahul for pointing out this observation.
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SECONDARY MEMORY STRUCTURES

If the input is too large to fit into main memory, then the data structure must
be stored in secondary memory—on disk, for example—and portions of it must
be moved into main memory when needed to answer a query. In this case the
bottleneck in query and preprocessing time is the time spent in transferring data
between main and secondary memory. A commonly used model is the standard
two-level I/O model, in which main memory has finite size, secondary memory
is unlimited, and data is stored in secondary memory in blocks of size B, where
B is a parameter [AV88]. Each access to secondary memory transfers one block
(i.e., B words), and we count this as one input/output (I/O) operation. The query
(resp. preprocessing) time is defined as the number of I/O operations required to
answer a query (resp. to construct the structure). Under this model, the range-
reporting query time is Ω(logB n + k/B). There have been various extensions
of this model, including the so-called cache-oblivious model, which provides a
simple framework for designing algorithms for multi-level memory hierarchies. In
this model, an algorithm is oblivious to the details of memory hierarchy but is
analyzed in the I/O-model. In particular, the value of B is not known and the goal
is to minimize the number of I/O operations as well as the total work performed.

I/O-efficient range-searching structures have received much attention because of
large data sets in spatial databases. The main idea underlying these structures is to
construct high-degree trees instead of binary trees. For example, B-trees and their
variants are used to answer 1-dimensional range-reporting queries in O(logB n+κ)
I/Os [Sam90], where κ = k/B. Similarly, the kdB-tree, an I/O-efficient version of
kd-tree, was proposed to answer high-dimensional orthogonal range queries [Rob81].
While storing each point only once, it can answer a d-dimensional range-reporting
query using O((n/B)1−1/d + κ) I/Os.

Arge et al. [ASV99] developed an external priority search tree so that a 2D
3-sided rectangle-reporting query can be answered in O(logB n + κ) I/Os using
O(n) space. The main ingredient of their algorithm is a data structure that can
store B2 points using O(B) blocks and can report all points lying inside a 3-sided
rectangle in O(1 + κ) I/Os. In contrast, a data structure in the cache-oblivious
model that answers a 3-sided query in O(polylog(n) + κ) time needs Ω(n logε n)
space, and the same holds for 3D halfspace range reporting queries [AZ11]. By ex-
tending the ideas proposed in [Cha90a], it can be shown that any I/O-efficient data
structure that answers a range-reporting query using O(logcB n + κ) I/Os requires
Ω(n logB n/ log logB n) storage. Table 40.5.1 summarizes the best known bounds
on range reporting queries in the I/O and cache-oblivious models.

By extending the data structure in [AM00], Streppel and Yi [SY11] have pre-
sented a linear-size I/O-efficient data structure for approximate range reporting.
For a constant complexity range γ, it returns using O( 1

εd
logB n + kε/B) I/Os, a

subset Sε of kε points such that S ∩ γ ⊆ Sε ⊆ S ∩ γε, where γε is the set of points
in Rd within distance ε · diam(γ) from γ.

Govindarajan et al. [GAA03] have shown that a two-dimensional orthogonal
range-counting query can be answered in O(logB n) I/Os using linear space, assum-
ing that each word can store log n bits. As for internal memory data structures, I/O-
range-emptiness data structures can be adapted to answer range-counting queries
approximately. For example, a 3D halfspace or dominance range-counting query
can be answered approximately in O(logB n) I/Os using linear space in the cache-
oblivious model [AHZ10]. Colored range searching also has been studied in the I/O
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model, and efficient data structures are known for d ≤ 2 [LW13, Nek14]: a colored
orthogonal range-reporting query in R2 can be answered in O(logB n+ k/B) I/Os
using O(n log(n) log∗ n) space.

TABLE 40.5.1 Secondary-memory structures for range reporting queries;

here LgBn = log n/ log logB n.

d RANGE MODEL Q(n) S(n)

d = 1 interval C.O. logB n+ κ n

d = 2

3-sided I/O logB n+ κ n

C.O. logB n+ κ n
√
logn

rectangle I/O logB n+ κ nLgBn

C.O. logB n+ κ n log3/2 n

halfplane I/O logB n+ κ n

triangle I/O
√
n/B + κ n

d = 3

octant I/O logB n+ κ n

C.O. logB n+ κ n logn

box I/O logB n+ κ n(LgBn)
3

C.O logB n+ κ n log7/2 n

halfspace I/O logB n+ κ n log∗ n

C.O. logB n+ κ n logn

d ≥ 3
box I/O logB n(LgBn)

d−2 + κ n(LgBn)
d−1

simplex I/O (n/B)1−1/d + κ n

Perhaps the most widely used I/O-efficient data structure for range searching
in higher dimensions is the R-tree, originally introduced by Guttman [Gut84]. An
R-tree is a B-tree, each of whose nodes stores a set of rectangles. Each leaf stores
a subset of input points, and each input point is stored at exactly one leaf. For
each node v, let Rv be the smallest rectangle containing all the rectangles stored
at v; Rv is stored at the parent of v (along with the pointer to v). Rv induces the
subspace corresponding to the subtree rooted at v, in the sense that for any query
rectangle intersecting Rv, the subtree rooted at v is searched. Rectangles stored
at a node are allowed to overlap. Although allowing rectangles to overlap helps
reduce the size of the data structure, answering a query becomes more expensive.
Guttman suggests a few heuristics to construct an R-tree so that the overlap is
minimized. Several heuristics for improving the performance, including R∗- and
Hilbert-R-trees, have been proposed though the query time is linear in the worst
case. Agarwal et al. [ABG+02] showed how to construct a variant of the R-tree,
called the box tree, on a set of n rectangles in Rd so that all k rectangles intersecting
a query rectangle can be reported in O(n1−1/d + k) time. Arge et al. [ABHY04]
adapted their method to define a version of R-tree with the same query time.

STREAMING MODEL

Motivated by a broad spectrum of applications, data streams have emerged as
an important paradigm for processing data that arrives on-line. In many such
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applications, data is too large to be stored in its entirety or to even scan for real-
time processing. The goal is therefore to construct a small-size summary of the
data stream (arrived so far) that can be used to analyze or query the data. The
monograph by Muthukrishnan [Mut06] gives a summary of algorithms developed
in the streaming model.

In the context of range searching, a few algorithms have been proposed for
constructing a “succinct” data structure so that a range-counting query can be
answered approximately, roughly with additive error εn. All the proposed data
structures are based on the notion of ε-approximation: For a parameter ε > 0, a
subset A ⊆ S is an ε-approximation for a set R of ranges if for every γ ∈ R,∣∣∣∣ |S ∩ γ||S|

− |A ∩ γ|
|A|

∣∣∣∣ ≤ ε.
A more general result by Li et al. [LLS01] implies that a random subset of size

O( 1
ε2 log 1

δ ) is an ε-approximation with probability at least 1−δ for geometric ranges
of constant complexity. Better bounds are known for many cases. For example,
an ε-approximation of size O( 1

ε polylog( 1
ε )) exists for rectangles in Rd, and of size

O(ε−
2d
d+1 ) for halfspaces in Rd.

Bagchi et al. [BCEG07] described a deterministic algorithm for maintaining an
ε-approximation of size O( 1

ε2 log 1
ε ) for a large class of geometric ranges. It uses

O( 1
ε2(d−1) polylog(n/ε)) space, and uses the same amount of time to update the ε-

approximation when a new point arrives. Faster algorithms are known for special
cases. For d = 1, an ε-approximation of size O( 1

ε log n) with respect to a set of in-
tervals can be maintained efficiently by a deterministic algorithm in the streaming
model [GK01]; the space can be improved to O( 1

ε log 1
ε ) using a randomized algo-

rithm [FO15]. For d ≥ 2, an ε-approximation of size O( 1
ε log2d+1 1

ε ) for rectangles

and of size O(ε−
2d
d+1 logd+1 1

ε ) for halfspaces can be maintained efficiently [STZ04].

KINETIC RANGE SEARCHING

Let S = {p1, . . . , pn} be a set of n points in R2, each moving continuously with
fixed velocity. Let pi(t) = ai + bit, for ai, bi ∈ R2, denote the position of pi at time
t, and let S(t) = {p1(t), . . . , pn(t)}. The trajectory of a point pi is a line pi. Let
L denote the set of lines corresponding to the trajectories of points in S. We focus
on the following two range-reporting queries:

Q1. Given an axis-aligned rectangle R in the xy-plane and a time value tq, report
all points of S that lie inside R at time tq, i.e., report S(tq) ∩ R; tq is called
the time stamp of the query.

Q2. Given a rectangle R and two time values t1 ≤ t2, report all points of S that
lie inside R at any time between t1 and t2, i.e., report

⋃t2
t=t1

(S(t) ∩R).

Two general approaches have been proposed to preprocess moving points for
range searching. The first approach, known as the time-oblivious approach, regards
time as a new dimension and stores the trajectories p̄i of input points pi. An
advantage of this scheme is that the data structure is updated only if the trajectory
of a point changes or if a point is inserted into or deleted from the index. Since this
approach preprocesses either curves in R3 or points in higher dimensions, the query
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time tends to be large. For example, if S is a set of points moving in R1, then the
trajectory of each point is a line in R2 and a Q1 query corresponds to reporting
all lines of L that intersect a query segment σ parallel to the x-axis. Using a 2D
simplex range-reporting data structure, L can be preprocessed into a linear-size
data structure so that all lines intersecting σ can be reported in O(

√
n + k) time.

A similar structure can answer Q2 queries within the same asymptotic time bound.
The lower bounds on simplex range searching suggest that this approach will not
lead to a near-linear-size data structure with O(log n+ k) query time.

If S is a set of points moving in R2, then a Q1 query asks for reporting all lines
of L that intersect a query rectangle R parallel to the xy-plane (in the xyt-space).
A line ` in R3 (xyt-space) intersects R if and only if their projections onto the xt-
and yt-planes both intersect. A two-level partition tree of size O(n) can report, in
O(n1/2+ε + k) time, all k lines of L intersecting R [AAE00]. Again a Q2 query can
be answered within the same time bound.

The second approach, based on the kinetic-data-structure framework, builds
a dynamic data structure on the moving points (see Chapter 53). Roughly speaking,
at any time it maintains a data structure on the current configuration of the points.
As the points move, the data structure evolves and is updated at discrete time
instances when certain events occur, e.g., when any of the coordinates of two points
become equal. This approach leads to fast query time but at the cost of updating
the structure periodically even if the trajectory of no point changes. Another
disadvantage of this approach is that it can answer a query only at the current
configurations of points, though it can be extended to handle queries arriving in
chronological order, i.e., the time stamps of queries are in nondecreasing order. In
particular, if S is a set of points moving in R1, using a kinetic balanced binary
search tree, a one-dimensional Q1 query can be answered in O(log n + k) time.
The data structure processes O(n2) events, each of which requires O(log n) time.
Similarly, by kinetizing range trees, a two-dimensional Q1 query can be answered in
O(log n+k) time; the data structure processes O(n2) events, each of which requires
O(log2 n/ log log n) time [AAE00].

Since range trees are complicated, a more practical approach is to use the kinetic
data structure framework on kd-trees, as proposed by Agarwal et al. [AGG02].
They propose two variants of kinetic kd-trees, each of which answers Q1 queries
that arrive in chronological order in O(n1/2+ε) time, for any constant ε > 0, process
O(n2) kinetic events, and spend O(polylog(n)) time at each event. A variant of kd-
tree with a slightly better performance was proposed in [ABS09]. Kinetic R-trees
also have been proposed [ŠJLL00, PAHP02], which require weaker invariants than
kinetic kd-trees and thus process fewer events.

RANGE SEARCHING UNDER UNCERTAINTY

Many applications call for answering range queries in the presence of uncertainty
in data—the location of each point may be represented as a probability density
function (pdf) or a discrete mass function, called location uncertainty, or each point
may exist with certain probability, called existential uncertainty. In the presence
of location uncertainty, the goal is to report the points that lie inside a query range
with probability at least τ , for some parameter τ ∈ [0, 1], or count the number
of such points. In the case of existential uncertainty, the goal is to return some
statistics on the distribution of the points inside a query range, e.g., what is the
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probability distribution of the number of points inside a query range, or what is the
expected/most-likely value of the maximum weight of a point inside a query range.

If the location of each point is given as a piecewise-constant pdf in R1, a data
structure of Agarwal et. al. [ACY12] reports all k points that lie inside a query
interval with probability at least τ . For fixed τ , the query time is O(log n+ k) and
the size of the data structure is O(n). If τ is part of the query, then the query
time and size are O(log3 n + k) and O(n log2 n), respectively. They also describe
another data structure of near-linear size that can handle more general pdfs and
answer fixed-τ queries in O(log n+ k) time.

Agarwal et al. [AKSS16] have described a data structure for range-max/min
queries under both existential and location uncertainty in Rd. For d = 1, using
O(n3/2) space, their data structure can compute the most-likely or the expected
value of the maximum weight of input points in a query interval in time O(n1/2);
their data structure extends to higher dimensions. They also present another data
structure that can estimate the expected value of the maximum inside a query
rectangle within factor 2 in O(polylog(n)) time using O(npolylog(n)) space.

OPEN PROBLEMS

1. Prove tight bounds on orthogonal range searching in higher dimensions in the
I/O model.

2. Is there a simple, linear-size kinetic data structure that can answer Q1 queries
inO(

√
n+k) time and processes near-linear events, each requiringO polylog(n))

time?

3. How quickly can 2D range queries be answered under location uncertainty?

4. How quickly can 1D range-max query be answered under existential/location
uncertainty in data using linear space?

40.6 INTERSECTION SEARCHING

A general intersection-searching problem can be formulated as follows: Given a set
S of objects in Rd, a semigroup (S,+), and a weight function w : S → S; preprocess
S into a data structure so that for a query object γ, the weighted sum

∑
w(p), taken

over all objects of S that intersect γ, can be computed quickly. Range searching is
a special case of intersection-searching in which S is a set of points.

An intersection-searching problem can be formulated as a range-searching prob-
lem by mapping each object p ∈ S to a point ϕ(p) in a parametric space Rλ and
every query range γ to a set ψ(γ) so that p intersects γ if and only if ϕ(p) ∈ ψ(γ).
For example, suppose both S and the query ranges are sets of segments in R2. Each
segment e ∈ S with left and right endpoints (px, py) and (qx, qy), respectively, can
be mapped to a point ϕ(e) = (px, py, qx, qy) in R4, and a query segment γ can be
mapped to a semialgebraic set ψ(γ) so that γ intersects e if and only if ψ(γ) ∈ ϕ(e).
A shortcoming of this approach is that λ, the dimension of the parametric space,
is typically much larger than d, thereby affecting the query time aversely. The
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efficiency can be significantly improved by expressing the intersection test as a con-
junction of simple primitive tests (in low dimensions) and using a multi-level data
structure (described in Section 40.5) to perform these tests. For example, a seg-
ment γ intersects another segment e if the endpoints of e lie on the opposite sides of
the line containing γ and vice versa. A two-level data structure can be constructed
to answer such a query—the first level sifts the subset S1 ⊆ S of all the segments
that intersect the line supporting the query segment, and the second level reports
those segments of S1 whose supporting lines separate the endpoints of γ. Each
level of this structure can be implemented using a two-dimensional simplex range-
searching structure, and hence a query can be answered in O(n/

√
m polylog(n)+k)

time using O(m log n) space, for n ≤ m ≤ n2.
It is beyond the scope of this chapter to cover all intersection-searching prob-

lems. Instead, we discuss a selection of basic problems that have been studied
extensively. All intersection-counting data structures described here can answer
intersection-reporting queries at an additional cost proportional to the output size.
In some cases an intersection-reporting query can be answered faster. Moreover,
using intersection-reporting data structures, intersection-detection queries can be
answered in time proportional to their query-search time.

POINT INTERSECTION SEARCHING

Preprocess a set S of objects (e.g., balls, halfspaces, simplices, Tarski cells) in Rd
into a data structure so that the objects of S containing a query point can be reported
(or counted) efficiently. This is the inverse of the range-searching problem, and it
can also be viewed as locating a point in the subdivision induced by the objects
in S. Table 40.6.1 gives some of the known results; polylogarithmic factors are
omitted from the space and query-search time whenever the query time is of the
form n/mα.

SEGMENT INTERSECTION SEARCHING

Preprocess a set S of objects in Rd into a data structure so that the objects of S inter-
sected by a query segment can be reported (or counted) efficiently. See Table 40.6.2
for some of the known results on segment intersection searching; polylogarithmic
factors are omitted from the space and query-search time whenever the query time
is of the form n/mα.

COLORED INTERSECTION SEARCHING

Preprocess a given set S of colored objects in Rd (i.e., each object in S is assigned
a color) so that we can report (or count) the colors of the objects that intersect
the query range. This problem arises in many contexts in which one wants to an-
swer intersection-searching queries for nonconstant-size input objects. For example,
given a set P = {P1, . . . , Pm} of m simple polygons, one may wish to report all
polygons of P that intersect a query segment; the goal is to return the indices, and
not the description, of these polygons. If the edges of Pi are colored with color i,
the problem reduces to colored segment intersection searching in a set of segments.

A set S of n colored rectangles in the plane can be stored into a data structure
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TABLE 40.6.1 Point intersection searching.

d OBJECTS S(n) Q(n) NOTES

d = 2

rectangles n logn+ k reporting

disks
m (n/

√
m)4/3 counting

n logn+ k reporting

triangles m
n
√
m

counting

fat triangles n log∗ n logn+ k reporting

Tarski cells n2+ε logn counting

d = 3
halfspaces n logn+ k reporting

Tarski cells n3+ε logn counting

d ≥ 3

rectangles
n logd−2 n logd−1 n+ k

reporting
n logd−2+ε n logn( logn

log logn
)d−2 + k

simplices m n
m1/d counting

balls
nd+ε logn counting

m n
m1/dd/2e + k reporting

d ≥ 4 Tarski cells n2d−4+ε logn counting

TABLE 40.6.2 Segment intersection

counting queries.

d OBJECTS S(n) Q(n)

d = 2

segments m n/
√
m

circles n2+ε logn

circular arcs m n/m1/3

d = 3

planes m n/m1/3

spheres m n/m1/3

triangles m n/m1/4

of size O(n log n) so that the colors of all rectangles in S that contain a query point
can be reported in time O(log n+ k) [BKMT97]. If the vertices of the rectangles in
S and all the query points lie on the grid [0:U ]2, the query time can be improved
to O(log logU + k) by increasing the storage to O(n1+ε).

Agarwal and van Kreveld [AK96] presented a linear-size data structure with
O(n1/2+ε + k) query time for colored segment intersection-reporting queries amid
a set of segments in the plane, assuming that the segments of the same color form
a connected planar graph or the boundary of a simple polygon.

40.7 RAY-SHOOTING QUERIES

Preprocess a set S of objects in Rd into a data structure so that the first object (if one
exists) intersected by a query ray can be reported efficiently. Originally motivated
by the ray-tracing problem in computer graphics, this problem has found many
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applications and has been studied extensively in computational geometry.
A general approach to the ray-shooting problem, using segment intersection-

detection structures and Megiddo’s parametric-searching technique, was proposed
by Agarwal and Matoušek [AM93]. The basic idea of their approach is as follows:
suppose there is a segment intersection-detection data structure for S, based on
partition trees. Let ρ be a query ray. The query procedure maintains a segment
~ab ⊆ ρ that contains the first intersection point of ρ with S. If a lies on an object
of S, it returns a. Otherwise, it picks a point c ∈ ab and determines, using the
segment intersection-detection data structure, whether the interior of the segment
ac intersects any object of S. If the answer is yes, it recursively finds the first
intersection point of ~ac with S; otherwise, it recursively finds the first intersection
point of ~cb with S. Using parametric searching, the point c at each stage can be
chosen so that the algorithm terminates after O(log n) steps.

In some cases the query time can be improved by a polylog(n) factor using a
more direct approach. Table 40.7.1 gives a summary of known ray-shooting results;
polylogarithmic factors are ignored in the space and query time whenever the query
time is of the form n/mα.

TABLE 40.7.1 Ray shooting.

d OBJECTS S(n) Q(n)

d = 2

simple polygon n logn

s disjoint polygons n
√
s logn

s disjoint polygons (s2 + n) log s log s logn

s convex polygons sn log s log s logn

segments m n/
√
m

circlular arcs m n/m1/3

disjoint arcs n
√
n

d = 3

convex polytope n logn

c-oriented polytopes n logn

s convex polytopes s2n2+ε log2 n

fat convex polytopes m n/
√
m

halfplanes m n/
√
m

terrain m n/
√
m

triangles m n/m1/4

spheres m n/m1/3

d > 3

hyperplanes
m n/m1/d

nd

logd−ε n
logn

convex polytope
m n/m1/bd/2c

nbd/2c

logbd/2c−ε n
logn

Practical data structures have been proposed that, notwithstanding poor worst-
case performance, work well in practice. One common approach is to construct a
subdivision of Rd into constant-size cells so that the interior of each cell does not
intersect any object of S. A ray-shooting query can be answered by traversing
the query ray through the subdivision until we find an object that intersects the
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ray. The worst-case query time is proportional to the maximum number of cells
intersected by a segment that does not intersect any object in S. Hershberger and
Suri [HS95] showed that a triangulation withO(log n) query time can be constructed
when S is the boundary of a simple polygon in the plane. Agarwal et al. [AAS95]
proved worst-case bounds for many cases on the number of cells in a subdivision in
R3 that a line can intersect. Aronov and Fortune [AF99] obtained a bound on the
expected number of cells in the subdivision in R3 that a line can intersect.

ARC-SHOOTING QUERIES

Arc shooting is a generalization of the ray-shooting problem, where given a set
S of objects, one wishes to find the first object of S hit by an oriented arc.
Cheong et al. [CCEO04] have shown that a simple polygon P can be preprocessed
into a data structure of linear size so that the first point of P hit by a circular or
parabolic arc can be computed in O(log2 n) time. Sharir and Shaul [SS05] have de-
scribed a linear-size data structure that given a set of triangles in R3 can compute
in O(n3/4+ε) time the first triangle hit by a vertical parabolic arc.

LINEAR-PROGRAMMING (LP) QUERIES

Let H be a set of n halfspaces in Rd. Preprocess H into a data structure so that
for a direction vector u, the first point of P (H) :=

⋂
h∈H h in the direction u can

be determined quickly. LP queries are generalizations of ray-shooting queries in
the sense that one wishes to compute the first point of P (H) met by a hyperplane
normal to u as it is translated in direction u.

For d ≤ 3, an LP query can be answered in O(log n) time using O(n) storage,
by constructing the normal diagram of the convex polytope P (S) and preprocess-
ing it for point-location queries. For higher dimensions, Chan [Cha96] described
a randomized technique that reduces LP queries to halfspace-emptiness queries.
Using the best-known data structures for halfspace-emptiness queries, a linear-size
data structure can be constructed that can answer LP-queries in expected time
O(n1−1/bd/2c) for even values of d and in n1−1/bd/2c2O(log∗ n) time for odd values of
d. See also [Ram00].

40.8 SOURCES AND RELATED MATERIAL

RELATED READING

Books and Monographs

[BCKO08]: Basic topics in computational geometry.

[Mul93]: Randomized techniques in computational geometry. Chapters 6 and 8
cover range-searching, intersection-searching, and ray-shooting data structures.

[Cha01]: Lower bound techniques, ε-nets, cuttings, and simplex range searching.

[MTT99, Sam90]: Range-searching data structures in spatial database systems.
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[Gut16]: Applications of the theory of polynomials and algebraic geometry to var-
ious problems in incidence geometry.

Survey Papers

[AE99, Mat94]: Range-searching data structures.

[GG98, NW00] Indexing techniques used in databases.

[AP02, ST99]: Range-searching data structures for moving points.

[Arg02]: Secondary-memory data structures.
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[Mat94] J. Matoušek. Geometric range searching. ACM Comput. Surv., 26:421–461, 1994.

[McC85] E.M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985.
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