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INTRODUCTION

Let F be a family of convex sets in Rd. A geometric transversal is an affine subspace
that intersects every member of F . More specifically, for a given integer 0 ≤ k < d,
a k-dimensional affine subspace that intersects every member of F is called a k-
transversal to F . Typically, we are interested in necessary and sufficient conditions
that guarantee the existence of a k-transversal to a family of convex sets in Rd, and
furthermore, to describe the space of all k-transversals to the given family. Not
much is known for general k and d, and results deal mostly with the cases k = 0,
1, or d− 1.

Helly’s theorem gives necessary and sufficient conditions for the members of a
family of convex sets to have a point in common, or in other words, a 0-transversal.
Section 4.1 is devoted to some of the generalizations and variations related to Helly’s
theorem. In the study of k-transversals, there is a clear distinction between the cases
k = 0 and k > 0, and Section 4.2 is devoted to results and questions dealing with
the latter case.

NOTATION

Most of the notation and terminology is quite standard. This chapter deals mainly
with families of subsets of the d-dimensional real linear space Rd. In certain cases
we consider Rd to be equipped with a metric, in which case it is the usual Euclidean
metric. The convex hull of a set X ⊂ Rd is denoted by convX. The cardinality of a
set X is denoted by |X|. If F is a family of sets, then

⋂
F denotes the intersection

and
⋃
F the union of all members of F . If F is a family of subsets of Rd, then

convF denotes the convex hull of
⋃
F .

4.1 HELLY’S THEOREM AND ITS VARIATIONS

One of the most fundamental results in combinatorial geometry is Helly’s classical
theorem on the intersection of convex sets.

THEOREM 4.1.1 Helly’s Theorem [Hel23]

Let F be a family of convex sets in Rd, and suppose that F is finite or at least one
member of F is compact. If every d + 1 or fewer members of F have a point in
common, then there is a point in common to every member of F .
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Helly’s theorem has given rise to numerous generalizations and variations. A typical
“Helly-type” theorem has the form:

If every m or fewer members of a family of objects have property P,
then the entire family has property P.

In many cases the extension to infinite families can be dealt with by standard
compactness arguments, so for simplicity we deal only with finite families. Under
this assumption it is usually not any restriction to assume that every member of
the family is open, or that every member of the family is closed, so we will usually
choose the form which is the most convenient for the statement at hand. The
reader should also be aware that results of this kind are by no means restricted
to combinatorial geometry, and Helly-type theorems appear also in graph theory,
combinatorics, and related areas; but here we will focus mainly on geometric results.

Let us briefly describe the kind of variations of Helly’s theorem we will be
treating. The first variation deals with replacing the convex sets by other objects.
For instance, we may replace convex sets by a more general class of subsets of Rd.
In the other direction, one might obtain more structure by specializing the convex
sets to homothets, or translates, of a fixed convex set.

The second variation deals with changing the local condition. Instead of asking
for every d+ 1 or fewer members of F to have a point in common, one may ask for
something less. As an example, we may suppose that among any d + 2 members
of F some d + 1 have a point in common. This direction has uncovered several
deep results concerning the intersection patterns of convex sets. Another direction
would be to strengthen the local condition: What if we assume that any d + 1 or
fewer members have an intersection that is at least 1-dimensional, or has volume at
least 1? Do any of these assumptions lead to a stronger conclusion? If not, what if
we assume the same for the intersection of any 100d or fewer members?

This brings us to the third and final variation, which deals with changing
the conclusion. For instance, our goal may not only be that the intersection is
nonempty, but that its diameter is at least some δ > 0. Or that the intersection
contains a point with integer coordinates, or more generally, a point from some
given set M .

In the last decade we have seen an enormous activity in this area and we
have tried to emphasize some of the recent developments. Unfortunately, it is not
possible to include every result related to Helly’s theorem, and it has been necessary
to make some subjective choices. For instance, we have chosen not to discuss Helly-
type results related to spherical convexity, and we do not treat abstract convexity
spaces in any detail.

GLOSSARY

Helly-number: The Helly-number of a family of sets C is the smallest integer h
such that if F is a finite subfamily of C and any h or fewer members of F have
nonempty intersection, then

⋂
F 6= ∅. In the case when such a number does not

exist, we say that the Helly-number is unbounded, or simply write h(C) =∞.

Fractional Helly-number: A family of sets F has fractional Helly-number k if
for every α > 0 there exists a β > 0 such that for any finite subfamily G ⊂ F
where at least α

(|G|
k

)
of the k-member subfamilies of G have nonempty intersec-

tion, there exists a point common to at least β|G| members of G.
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Piercing number: The piercing number of a family of sets F is the smallest
integer k for which it is possible to partition F into subfamilies F1, . . . ,Fk such
that

⋂
Fi 6= ∅ for every 1 ≤ i ≤ k.

Homology cell: A topological space X is a homology cell if it is nonempty and
its (singular reduced) homology groups vanish in every dimension. In particular,
nonempty convex sets are homology cells.

Good cover: A family of open subsets of Rd is a good cover if any finite inter-
section of its members is empty or a homology cell.

Convex lattice set: A convex lattice set in Rd is a subset S ⊂ Rd such that
S = K ∩ Zd for some convex set K ⊂ Rd.

Diameter: The diameter of a point set X ⊂ Rd is the supremum of the distances
between pairs of points in X.

Width: The width of a closed convex set X ⊂ Rd is the smallest distance between
parallel supporting hyperplanes of X.

GENERALIZATIONS TO NONCONVEX SETS

Helly’s theorem asserts that the Helly-number of the family of all convex sets in
Rd equals d+ 1. One of the basic problems related to Helly’s theorem has been to
understand to which extent the assumption of convexity can be weakened.

Early generalizations of Helly’s theorem involve families of homology cells in
Rd such that the intersection of any d+ 1 or fewer members is also a homology cell
[Hel30, AH35], or that the intersection of any 1 ≤ j ≤ d is j-acyclic [Deb70] (which
means that all the homology groups up to dimension j vanish). Montejano showed
that these conditions can be relaxed even further.

THEOREM 4.1.2 [Mon14]

Let F be a family of open subsets of Rd such that the intersection of any j members
of F has vanishing (singular reduced) homology in dimension d− j, for every 1 ≤
j ≤ d. Then h(F) ≤ d+ 1.

In fact, Theorem 4.1.2 holds for families of open subsets of any topological
space X for which the homology of any open subset vanishes in dimensions greater
or equal to d.

In 1961, Grünbaum and Motzkin [GM61] conjectured a Helly-type theorem for
families of disjoint unions of sets. Their conjecture (now a theorem) was formulated
in a rather abstract combinatorial setting, and here we discuss some of the related
results in increasing order of generality. The basic idea is that if C is a family of
sets with a bounded Helly-number, and F is a finite family of sets such that the
intersection of any subfamily of F can be expressed as a disjoint union of a bounded
number of members of C, then the Helly-number of F is also bounded.

THEOREM 4.1.3 [Ame96]

Let C be the family of compact convex sets in Rd, and let F be a finite family of
sets in Rd such that the intersection of any subfamily of F can be expressed as the
union of at most k pairwise disjoint members of C. Then h(F) ≤ k(d+ 1).

Note that Theorem 4.1.3 reduces to Helly’s theorem when k = 1. Amenta gave
a short and elegant proof of a more general result set in the abstract combinatorial
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framework of “Generalized Linear Programming,” from which Theorem 4.1.3 is a
simple consequence (see Chapter 49). Examples show that the upper bound k(d+1)
cannot be reduced.

Recently, Kalai and Meshulam obtained a topological generalization of Theo-
rem 4.1.3. A family C of open subsets of Rd is called a good cover if any finite
intersection of members of C is empty or a homology cell. Note that the family of
all open convex subsets of Rd is a good cover.

THEOREM 4.1.4 [KM08]

Let C be a good cover in Rd, and let F be a finite family of sets in Rd such the
intersection of any subfamily of F can be expressed as a union of at most k pairwise
disjoint members of C. Then h(F) ≤ k(d+ 1).

Let us make a remark concerning “topological Helly-type theorems.” Let F
be a finite family of subsets of some ground set. The nerve N(F) of F is the
simplicial complex whose vertex set is F and whose simplices are all subfamilies
G ⊂ F such that

⋂
G 6= ∅. If F is a family of convex sets in Rd, then the nerve

N(F) is d-collapsible. This implies that every induced subcomplex of N(F) has
vanishing homology in all dimensions greater or equal to d, a property often called
d-Leray. In the case when F is a good cover in Rd, the Nerve theorem from alge-
braic topology implies that

⋃
F is topologically equivalent to N(F) (on the level

of homology), which again implies that N(F) is d-Leray. These important tools
allow us to transfer combinatorial properties regarding the intersection patterns of
convex sets, or good covers, in Rd into properties of simplicial complexes. The proof
of Theorem 4.1.4 is based on simplicial homology and the computation of certain
spectral sequences. In fact, Kalai and Meshulam established a more general topo-
logical result concerning the Leray-numbers of “dimension preserving” projections
of simplicial complexes, from which Theorem 4.1.4 is deduced via the Nerve theo-
rem. See the survey [Tan13] for more information regarding simplicial complexes
arising from the intersection patterns of geometric objects.

A remarkable feature of the proofs of Theorems 4.1.3 and 4.1.4 is that they are
set in quite abstract frameworks, and as we remarked earlier, the original motivat-
ing conjecture of Grünbaum and Motzkin [GM61] was formulated in the general
combinatorial setting of abstract convexity spaces, which includes Theorems 4.1.3
and 4.1.4 as special cases. The general conjecture was treated by Morris [Mor73],
but his proof is extremely involved, and the correctness of some of his arguments
have been open to debate [EN09]. However, the skepticism has been put to rest after
Eckhoff and Nischke [EN09] revisited Morris’s approach and provided a complete
proof of the Grünbam–Motzkin conjecture.

To describe this abstract setting we must introduce a few definitions. Let C be
a family of subsets of some ground set. We say that C is intersectional if for any
finite subfamily F ⊂ C, the intersection

⋂
F is empty or belongs to C. Furthermore,

we say that C is nonadditive if for any finite subfamily F ⊂ C consisting of at least
two nonempty pairwise disjoint members of C, the union

⋃
F does not belong to

C. For example, the family of all compact convex sets in Rd is an intersectional
and nonadditive family with Helly-number d + 1. The same is also true for any
good cover in Rd if we include all possible intersections as well. Thus the following
theorem, conjectured by Grünbaum and Motzkin, is a common generalization of
both Theorems 4.1.3 and 4.1.4.
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THEOREM 4.1.5 [EN09]

Let C be an intersectional and nonadditive family with Helly-number h(C), and let
F be a family of sets such that the intersection of any k or fewer members of F
can be expressed as a union of at most k pairwise disjoint members of C. Then
h(F) ≤ k · h(C).

Before ending the discussion of the Grünbaum–Motzkin conjecture let us men-
tion a related result. For a locally arcwise connected topological space Γ, let dΓ

denote the smallest integer such that every open subset of Γ has trivial rational
homology in dimension dΓ and higher. A family F of open subsets of Γ is called
acyclic if for any nonempty subfamily G ⊂ F , the intersection of the members
of G has trivial rational homology in dimensions greater than zero. This means
that the intersections of members of F need not be connected, but each connected
component of such an intersection is a homology cell.

THEOREM 4.1.6 [CVGG14]

Let F be a finite acyclic family of open subsets of a locally arcwise connected topo-
logical space Γ, and suppose that for any subfamily G ⊂ F , the intersection

⋂
G has

at most r connected components. Then h(F) ≤ r(dΓ + 1).

It should be noted that Theorem 4.1.6 includes both Theorems 4.1.3 and 4.1.4,
but does not seem to follow from Theorem 4.1.5 since it does not require F to
be intersectional. Thus, Theorems 4.1.5 and 4.1.6 appear to be distinct general-
izations of Theorem 4.1.4, and their proofs differ significantly. While the proof of
Theorem 4.1.5 is combinatorial and uses elementary methods, the proof of Theo-
rem 4.1.6 is based on the homology of simplicial posets and introduces the concept
of the multinerve (which generalizes the nerve complex). It would be interesting
to find a common generalization of Theorems 4.1.5 and 4.1.6. A generalization of
Theorem 4.1.6 is also given in [CVGG14] which implies bounds on Helly-numbers
for higher dimensional transversals.

The results related to the Grünbaum–Motzkin conjecture deal with families of
sets that are built up as disjoint unions of a bounded number of members from
a sufficiently “nice” class of sets for which the Helly-number is known (with an
exception of Theorem 4.1.6). If we do not require the unions to be disjoint, it is
still possible to bound the Helly-number.

THEOREM 4.1.7 [AK95, Mat97]

For any integers k ≥ 1 and d ≥ 1 there exists an integer c = c(k, d) such that the
following holds. Let F be a finite family of subsets of Rd such that the intersection
of any subfamily of F can be expressed as the union of at most k convex sets (not
necessarily disjoint). Then h(F) ≤ c.

Alon and Kalai [AK95] obtain Theorem 4.1.7 as a consequence of a more general
theorem. On the other hand, their method is more complicated than Matoušek’s
proof [Mat97], which is based mostly on elementary methods. Both proof methods
yield rather poor numerical estimates on the Helly-numbers c(k, d). For instance, for
unions of convex sets in the plane, Matoušek’s proof gives c(2, 2) ≤ 20, c(2, 3) ≤ 90,
c(2, 4) ≤ 231, etc. It would be interesting to obtain sharper bounds.

We conclude this discussion with a recent interesting Helly-type result due to
Goaoc et al., which generalizes Theorem 4.1.7. For a topological space X, let β̃i(X)
denote the i-th reduced Betti-number of X with coefficients in Z2.
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THEOREM 4.1.8 [GP+15]

For any integers b ≥ 0 and d ≥ 1 there exists an integer c = c(b, d) such that the
following holds. Let F be a finite family of subsets of Rd such that for any proper
subfamily G ⊂ F we have β̃i(

⋂
G) ≤ b for all 0 ≤ i ≤ dd/2e − 1. Then h(F ) ≤ c.

The proof of Theorem 4.1.8 relies on a general principle for obtaining Helly-type
theorems from nonembeddability results for certain simplicial complexes, combined
with an application of Ramsey’s theorem. This generalizes previous work by Ma-
toušek [Mat97] who established Theorem 4.1.8 in the special case b = 0 (using
homotopy instead of homology). As a result, the bounds obtained on c(b, d) are
enormous and probably very far from the truth. However, examples show that
Theorem 4.1.8 is sharp in the sense that all the (reduced) Betti numbers β̃i with
0 ≤ i ≤ dd/2e − 1 must be bounded in order to obtain a finite Helly-number.

INTERSECTIONS IN MORE THAN A POINT

Here we discuss some generalizations of Helly’s theorem that apply to families of
convex sets, but strengthen both the hypothesis and the conclusion of the theorem.
The typical goal here is to guarantee that the sets intersect in more than a single
point. The first such result is due to Vincensini [Vin39] and Klee [Kle53] and is a
direct consequence of Helly’s theorem.

THEOREM 4.1.9 [Vin39, Kle53]

Let F be a finite family of convex sets in Rd and let B be some convex set in Rd.
If for any d + 1 or fewer members of F there exists a translate of B contained in
their common intersection, then there exists a translate of B contained in

⋂
F .

Note that we obtain Helly’s theorem whenK is a single point. In Theorem 4.1.9,
one may also replace the words “contained in” by “containing” or “intersecting.”
The following related result was obtained by De Santis [San57], who derived it from
a generalization of Radon’s Theorem. Note that it reduces to Helly’s theorem for
k = 0.

THEOREM 4.1.10 [San57]

Let F be a finite family of convex sets in Rd. If any d− k+ 1 or fewer members of
F contain a k-flat in common, then there exists a k-flat contained in

⋂
F .

One may also interpret the conclusion of Helly’s theorem as saying that the
intersection of the sets is at least 0-dimensional. Similarly, if F is a finite family
of convex sets in Rd, then Theorem 4.1.9 implies that if the intersection of every
d+ 1 or fewer members is d-dimensional then

⋂
F is d-dimensional. For arbitrary

1 ≤ k < d, Grünbaum [Grü62] showed that if the intersection of every 2n − k or
fewer sets is at least k-dimensional, then

⋂
F is at least k-dimensional. It turns

out that the threshold 2n− k is not optimal, and the exact Helly-numbers for the
dimension were obtained by Katchalski around a decade later.

THEOREM 4.1.11 [Kat71]

Let F be a finite family of convex sets in Rd. Let ψ(0, d) = d + 1 and ψ(k, d) =
max(d+ 1, 2(d− k + 1)) for 1 ≤ k ≤ d. If the intersection of any ψ(k, d) or fewer
members of F has dimension at least k, then

⋂
F has dimension at least k.
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Another direction in which Helly’s theorem has been generalized is with a
“quantitative” conclusion in mind. Loosely speaking, this means that we want the
intersection of a family of convex sets to be “large” in some metrical sense. The first
such result was noted by Buchman and Valentine [BV82]. For a nonempty closed
convex set K in Rd, the width of K is defined as the smallest possible distance
between two supporting hyperplanes of K.

THEOREM 4.1.12 [BV82]

Let F be a finite family of closed convex sets in Rd. If the intersection of any d+ 1
or fewer members of F has width at least w, then

⋂
F has width at least w.

Notice that Theorem 4.1.12 follows directly from Theorem 4.1.9 by observing
that a convex set has width at least ω if and only if it contains a translate of every
segment of length ω. Replacing “width” by “diameter” we get the following result
due to Bárány Katchalski, and Pach.

THEOREM 4.1.13 [BKP84]

Let F be a finite family convex sets in Rd. If the intersection of any 2d or fewer
members of F has diameter at least 1, then

⋂
F has diameter at least d−2d/2.

The proof of Theorem 4.1.13 is less obvious than the proof of Theorem 4.1.12
outlined above, and relies on a quantitative version of Steinitz’ theorem. Exam-
ples show that the Helly-number 2d in Theorem 4.1.13 is best possible, but it is
conjectured that the bound on the diameter can be improved.

CONJECTURE 4.1.14 [BKP84]

Let F be a finite family convex sets in Rd. If the intersection of any 2d or fewer
members of F has diameter at least 1, then

⋂
F has diameter at least c1d

−1/2 for
some absolute constant c1 > 0.

Bárány et al. [BKP84] also proved a Helly-type theorem for the volume, and
conjectured a lower bound for the volume of the intersection given that the intersec-
tion of any 2d or fewer members has volume at least 1. A proof of this conjecture,
using John’s decomposition of the identity and the Dvoretzky–Rogers lemma, was
recently given by Naszódi.

THEOREM 4.1.15 [Nas16]

Let F be a finite family of convex sets in Rd. If the intersection of any 2d or fewer
members of F has volume at least 1, then

⋂
F has volume at least d−cd for some

absolute constant c > 0.

The current best estimate for the constant c in Theorem 4.1.15 is given in
[Bra17].

Before ending the discussion on quantitative Helly theorems, we mention some
extensions of Theorems 4.1.13 and 4.1.15 that answer a question by Kalai and
Linial.

THEOREM 4.1.16 [DLL+15a]

For every d ∈ N and ε > 0 there exists integers n1 = n1(d, ε) and n2 = n2(d, ε)
such that the following hold. Let F be a finite family of convex sets in Rd.

1. If the intersection of any n1d or fewer members of F has diameter at least 1,
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then
⋂
F has diameter at least 1− ε.

2. If the intersection of any n2d or fewer members of F has volume at least 1,
then

⋂
F has volume at least 1− ε.

These results witness a trade-off between the Helly-numbers and the lower
bounds on the diameter and volume of

⋂
F . The numbers n1(d, ε) and n2(d, ε)

are related to the minimal number of facets needed to approximate an arbitrary
convex body in Rd by a polytope. Moreover, for any fixed d, the numbers n1(d, ε)
and n2(d, ε) are in Θ(ε−(d−1)/2) [DLL+15a, Sob16]. See also [LS09] for other quan-
titative versions of Helly’s theorem.

WEAKENING THE LOCAL CONDITION

For a finite family F of convex sets in Rd, let fk(F) denote the number of subfamilies
of F of size k + 1 with nonempty intersection. In particular, f0(F) denotes the
number of (nonempty) members of F . Helly’s theorem states that if fd(F) equals( |F|
d+1

)
, then there is a point in common to all the members of F . What can be said

if fd(F) is some value less than
( |F|
d+1

)
? This question was considered by Katchalski

and Liu [KL79] who showed that if “almost every” subfamily of size d + 1 have
nonempty intersection, then there is a point in common to “almost every” member
of F . The precise meaning of “almost every” can be viewed as a consequence of
“the upper bound theorem” for families of convex sets, and gives us the following.

THEOREM 4.1.17 [Kal84]

Let F be a finite family of n ≥ d + 1 convex sets in Rd. For any 0 ≤ β ≤ 1, if
fd(F) > (1− (1− β)d+1)

(
n
d+1

)
, then some bβnc+ 1 members of F have a point in

common.

This result is commonly known as the fractional Helly theorem and has many
important applications in discrete geometry (most notably its role in the (p, q)-
problem discussed below). The upper bound theorem from which it is derived was
discovered by Kalai [Kal84], and independently by Eckhoff [Eck85], and gives opti-
mal upper bounds for the numbers fd(K), . . . , fd+r−1(K) in terms of f0(F), provided
fd+r(K) = 0. Here we state the particular instance that implies Theorem 4.1.17.

THEOREM 4.1.18 [Kal84, Eck85]

Let F be a finite family of n ≥ d+1 convex sets in Rd. For any 0 ≤ r ≤ n−d−1, if
fd(F) >

(
n
d+1

)
−
(
n−r
d+1

)
, then some d+r+1 members of F have a point in common.

The lower bound on fd(F) given in Theorem 4.1.18 cannot be reduced, which
can be seen by considering r copies of Rd and n−r hyperplanes in general position.
The two proofs of Theorem 4.1.18 are quite different, but they both use the Nerve
theorem and deal with the more general setting of d-collapsible simplicial complexes.
It is known that the result extends to general d-Leray complexes as well [AKM+02].
Yet another proof of Theorem 4.1.18 was given by Alon and Kalai [AK85].

Due to its importance, several generalizations of the fractional Helly theorem
have been considered. Let F be an arbitrary set system. We say that F has
fractional Helly-number k if for every α > 0 there exists a β > 0 such that for
any finite subfamily G ⊂ F where at least α

(|G|
k

)
of the k-member subfamilies of G
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have nonempty intersection, there exists a point common to at least β|G| members
of G. We say that F has the fractional Helly-property if it has a finite fractional
Helly-number. An important remark is that a set system may have the fractional
Helly-property even though its Helly-number is unbounded.

Matoušek [Mat04] showed that any set system with bounded VC-dimension
has the fractional Helly-property. More precisely, he shows that if the dual shatter
function of F is bounded by o(mk), then F has fractional Helly-number k. For
related geometric variants see also [Pin15]. Another noteworthy example is given
by Rolnick and Soberón [RS17], who develop a framework to show that families of
convex sets in Rd have the fractional Helly-property with respect to an abstract
quantitative function defined on the family of all convex sets in Rd. As a conse-
quence, they obtain fractional analogues of Theorem 4.1.16 with respect to volume
and surface area. A similar result has also been shown for the diameter [Sob16].

Another direction that has received a great deal of attention involves piercing
problems for families of convex sets. Let F be a family of sets and suppose F can
be partitioned into subfamilies F1, . . . ,Fk such that

⋂
Fi 6= ∅ for every 1 ≤ i ≤ k.

The smallest number k for which this is possible is the piercing number of F and
will be denoted by τ(F).

One early generalization of Helly’s theorem involving the piercing number was
considered by Hadwiger and Debrunner [HD57], where the hypothesis that every
d + 1 members of F have a point in common was replaced by the hypothesis that
among any p members of F some q have a point in common, where p ≥ q ≥ d+ 1.
For certain values of p and q, they obtained the following result.

THEOREM 4.1.19 [HD57]

Let F be a finite family of at least p convex sets in Rd. If among any p members of
F some q have a point in common, where p ≥ q ≥ d + 1 and p(d − 1) < (q − 1)d,
then τ(F) ≤ p− q + 1.

Examples show that the value p − q + 1 is tight. Notice that Theorem 4.1.19
reduces to Helly’s theorem when p = q = d + 1. For general values of p and q,
not covered by Theorem 4.1.19, even the existence of a bounded piercing num-
ber remained unknown for a long time, and this became known as the Hadwiger-
Debrunner (p, q)-problem. (Notice that repeated applications of Theorem 4.1.17
only give an upper bound of log |F|.) The (p, q)-problem was finally resolved by
Alon and Kleitman, and is now referred to as the (p, q)-theorem.

THEOREM 4.1.20 [AK92]

For any integers p ≥ q ≥ d + 1, there exists an integer c = c(p, q, d) such that the
following holds. Let F be a finite family of at least p convex sets in Rd. If among
any p members of F some q have a point in common, then τ(F) ≤ c.

The proof of the (p, q)-theorem combines several tools from discrete geometry,
and the most prominent roles are played by the fractional Helly theorem (Theorem
4.1.17) and the weak ε-net theorem for convex sets. It is of considerable interest to
obtain better bounds on c(p, q, d) (the only exact values known are the ones covered
by Theorem 4.1.19). For the first open case of convex sets in the plane, the best
known bounds are 3 ≤ c(4, 3, 2) ≤ 13 [KGT99]. See [Eck03] for a survey on the
(p, q)-problem, and also [KT08] and [Mül13].

It should be mentioned that the (p, q)-theorem holds in much more general
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settings. For instance, it holds for families of sets that are unions of convex sets as
well as for good covers in Rd [AK95, AKM+02]. In fact, a very general combinato-
rial framework was established in [AKM+02] that provides bounds on the piercing
number for general set systems that have the fractional Helly-property.

Recently, several other variations of the (p, q)-theorem have been considered.
This includes a fractional version [BFM+14] as well as quantitative versions [RS17].
As a sample of these results we mention the following theorem due to Soberón.

THEOREM 4.1.21 [Sob16]

For any integers p ≥ q ≥ 2d > 1 and real 0 < ε < 1 there exists an integer
c = c(p, q, d, ε) such that the following holds. Let F be a finite family of at least p
convex sets in Rd, each of diameter at least 1. If among any p members of F some
q have intersection of diameter at least 1, then there are c segments S1, . . . , Sc each
of length at least 1− ε such that every member of F contains at least one of the Si.

Piercing problems have also been studied for restricted classes of convex sets,
in which case more precise (or even exact) bounds are known. For the special case
of homothets, the intersection of every two members of F suffices to guarantee a
bounded piercing number.

THEOREM 4.1.22 [Grü59]

For any integer d ≥ 1 there exists an integer c = c(d) such that the following holds.
If F is a finite family of homothets of a convex set in Rd and any two members of
F intersect, then τ(F) ≤ c.

The special case when F is a family of circular disks in R2 was a question raised
by Gallai, and answered by Danzer in 1956 (but not published until 1986).

THEOREM 4.1.23 [Dan86]

Let F be a finite family of circular disks in R2. If any two members of F intersect,
then τ(F) ≤ 4.

An example consisting of 10 disks shows that the number 4 cannot be reduced,
and it is known that for 9 disks in the plane that pairwise intersect the piercing
number is at most 3. For the even more restricted case when F is a family of
pairwise intersecting unit disks in R2 it is known that τ(F) ≤ 3. This is a special
case of a conjecture of Grünbaum that stated that τ(F) ≤ 3 for any family F of
pairwise intersecting translates of a compact convex set K ⊂ R2. The conjecture
was confirmed in full generality by Karasev.

THEOREM 4.1.24 [Kar00]

Let F be a finite family of translates of a compact convex set K ⊂ R2. If any two
members of F intersect, then τ(F) ≤ 3.

Karasev [Kar08] extended the methods from the proof of Theorem 4.1.24 to
obtain higher dimensional analogues, where “pairwise intersecting” is replaced by
the property that any d members have a point in common. For any family F of
Euclidean balls in Rd whose radii differ by no more than a factor of d, he shows that
if every d members of F have a point in common, then τ(F ) ≤ d + 1. Using this
result he gives an upper bound on the piercing number for families of Euclidean
balls without any size constraint.
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THEOREM 4.1.25 [Kar08]

Let F be a family of Euclidean balls in Rd such that any d members of F have a
point in common. Then τ(F) ≤ 4(d+ 1) for d ≤ 4 and τ(F) ≤ 3(d+ 1) for d ≥ 5.

The bounds in Theorem 4.1.25 are probably not tight, for instance when d = 2
it only gives τ(F) ≤ 12 (whereas Theorem 4.1.23 shows that τ(F) ≤ 4), and it
would be interesting to obtain sharper bounds. By the same method Karasev also
shows that for families F of positive homothets of a simplex where every d members
of F have a point in common, we have τ(F) ≤ d + 1 (which is not known to be
tight for d > 2).

We conclude this discussion with a conjecture due to Katchalski and Nashtir.

CONJECTURE 4.1.26 [KN99]

There exists a constant k0 such that τ(F) ≤ 3 for every finite family F of convex
sets in R2 where τ(G) = 2 for every subfamily G ⊂ F with |G| ≤ k0.

COLORFUL VERSIONS

The following remarkable generalization of Helly’s theorem was discovered by Lovász
and described by Bárány.

THEOREM 4.1.27 [Bár82]

Let F1, . . . ,Fd+1 be finite families of convex sets in Rd. If
⋂d+1
i=1 Ki 6= ∅ for each

choice of Ki ∈ Fi, then
⋂
Fi 6= ∅ for some 1 ≤ i ≤ d+ 1.

This is commonly known as the colorful Helly theorem. Notice that it reduces
to Helly’s theorem by setting F1 = · · · = Fd+1. The dual version, known as the
Colorful Carathéodory theorem, was discovered by Bárány, and has several impor-
tant applications in discrete geometry. For example, it plays key roles in Sarkaria’s
proof of Tverberg’s theorem [Sar92, BO97] and in the proof of the existence of weak
ε-nets for the family of convex sets in Rd [ABFK92].

Recently, Kalai and Meshulam gave a far-reaching topological generalization
of Theorem 4.1.27. Recall that a matroid M defined on a finite set E is uniquely
determined by its rank function ρ, and that a subset A ⊂ E is independent in M
if and only if ρ(A) = |A|.

THEOREM 4.1.28 [KM05]

Let F be a good cover in Rd and letM be a matroid with rank function ρ defined on
the members of F . If every subfamily of F that is independent in M has a point in
common, then there exists a subfamily G ⊂ F such that ρ(F \ G) ≤ d and

⋂
G 6= ∅.

This reduces to Theorem 4.1.27 in the case when F = F1∪. . .∪Fd+1 is a family
of convex sets in Rd andM is the partition matroid induced by the Fi. The proof of
Theorem 4.1.28 is based on simplicial homology and, in fact, Kalai and Meshulam
prove an even more general result concerning arbitrary d-Leray complexes. Further
extensions of Theorem 4.1.28 were obtained in [Hol16]. See also [Flø11] for an
algebraic formulation of Theorem 4.1.27.

Quantitative versions of the colorful Helly theorem have also been obtained.
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For instance, a colorful version of Theorem 4.1.16 for the volume was proved in
[DLL+15a], with an essentially different proof given in [RS17]. Here is a colorful
version of Theorem 4.1.16 for the diameter.

THEOREM 4.1.29 [Sob16]

For every integer d ≥ 1 and real 0 < ε < 1 there exists an integer n = n(d, ε)
such that the following holds. Let F1, . . . ,Fn be finite families of convex sets in Rd,
and suppose

⋂n
i=1Ki has diameter 1 for every choice of Ki ∈ Fi. Then

⋂
Fi has

diameter at least 1 − ε for some 1 ≤ i ≤ n. Moreover, for any fixed d, n(d, ε) =
Θ(ε−(d−1)/2).

There are also colorful versions of the (p, q)-theorem. One such theorem was
proved by Bárány and Matoušek [BM03], while another variation was obtained in
[BFM+14].

THEOREM 4.1.30 [BFM+14]

For any integers p ≥ q ≥ d + 1 there exists an integer c = c(p, q, d) such that the
following holds. Let F1, . . . ,Fp be finite families of convex sets in Rd. Suppose for
any choice K1 ∈ F1, . . . ,Kp ∈ Fp some q of the Ki have a point in common. Then
there are at least q − d of the families for which τ(Fi) ≤ c.

We conclude with a conjecture regarding a colorful generalization of Theo-
rem 4.1.24.

CONJECTURE 4.1.31 [JMS15]

Let K be a compact convex set in the plane and let F1, . . . ,Fn be nonempty families
of translates of K, with n ≥ 2. Suppose Ki ∩ Kj 6= ∅ for every choice Ki ∈ Fi,
Kj ∈ Fj, and i 6= j. Then there exists m ∈ {1, 2, . . . , n} such that τ(

⋃
i 6=m Fi) ≤ 3.

HELLY THEOREMS FOR CONVEX LATTICE SETS

Let Zd denote the integer lattice in Rd. A convex lattice set in Rd is a subset
S ⊂ Rd such that S = K ∩ Zd for some convex set K ⊂ Rd. Note that the convex
hull operator in Rd equips Zd with the structure of a general convexity space, but
the specific structure of convex lattice sets has drawn particular interest due to its
connection with integer linear programming, geometry of numbers, and crystallo-
graphic lattices. The family of all subsets of {0, 1}d of size 2d − 1 shows that the
Helly-number for convex lattice sets in Rd is at least 2d, and the following theorem,
due to Doignon [Doi73], shows that this is indeed the correct Helly-number.

THEOREM 4.1.32 [Doi73]

Let CZd be the family of convex lattice sets in Rd. Then h(CZd) = 2d.

This theorem was rediscovered independently by Bell [Bel77] and Scarf [Sca77].
Recently, Aliev et al. [ABD+16, ADL14] obtained the following quantitative version
of Theorem 4.1.32.

THEOREM 4.1.33 [ADL14]

For any integers d ≥ 1 and k ≥ 1 there exists a constant c = c(d, k) such that
the following holds. Let F be a finite family of convex lattice sets in Rd. If the
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intersection of every c or fewer members of F contains at least k points, then
⋂
F

contains at least k points.

This result was initially proved in [ABD+16]. The bounds on c(d, k) were
improved in [ADL14] and in subsequent work [CHZ15, AGMP+17] it was shown
that c(d, k) is in Θ(k(d−1)/(d+1)).

The fractional version of Theorem 4.1.32 has also been considered and it was
shown in [AKM+02] that the family of convex lattice sets in Rd has the fractional
Helly-property with the fractional Helly-number 2d. This was later improved by
Bárány and Matoušek.

THEOREM 4.1.34 [BM03]

For any integer d ≥ 1 and real number 0 < α < 1 there exists a real number
β = β(d, α) > 0 such that the following holds. Let F be a finite family of convex

lattice sets in Rd and suppose there are at least α
( |F|
d+1

)
subfamilies of size d + 1

that have nonempty intersection. Then there is a point contained in at least β|F|
members of F .

This result shows that the large Helly-number of Theorem 4.1.32 can be re-
garded as a “local anomaly” and that the relevant number for other, more global
Helly-type properties is only d+1. For instance, by the tools developed in [AKM+02],
it can be shown that Theorem 4.1.34 implies a (p, q)-theorem for convex lattice sets
[BM03]. The proof of Theorem 4.1.34 uses surprisingly little geometry of Zd and
relies mostly on tools from extremal combinatorics. These methods also yield in-
teresting colorful Helly-type theorems for convex lattice sets [AW12, BM03].

We now describe a common generalization of Theorem 4.1.32 and Helly’s the-
orem, which was stated by Hoffman [Hof79], and rediscovered by Averkov and
Weismantel [AW12]. Let M be a subset of Rd. A subset S ⊂M is called M -convex
if S = M ∩ C for some convex set C ⊂ Rd. Thus, the convex hull operator in Rd
equips M with the structure of a general convexity space.

Averkov and Weismantel proved the following Helly-type theorem for mixed
integer spaces, that is, sets of the form M = Rm × Zn.

THEOREM 4.1.35 [Hof79, AW12]

Let CRm×Zn be the family of all (Rm×Zn)-convex sets in Rm+n. Then h(CRm×Zn) =
(m+ 1)2n.

In fact, Averkov and Weismantel deduce Theorem 4.1.35 from more general
inequalities concerning the Helly-numbers of spaces of the form Rm×M and M×Zn.
They also establish fractional and colorful Helly-type theorems for mixed integer
spaces, and they obtain the following generalization of Theorem 4.1.34.

THEOREM 4.1.36 [AW12]

Let M be a nonempty closed subset of Rd and let CM be the family of all M -
convex sets in Rd. If h(CM ) is finite, then CM has the fractional Helly-property
with fractional Helly-number d+ 1.

Further generalizations and variations of Helly’s theorem for M -convex sets
have been established in [Ave13, Hal09, DLL+15b].
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PROBLEM 4.1.37 [DLL+15b]

Let P denote the set of prime numbers, and let CP×P denote the family of all (P×P)-
convex sets in R2. Does CP×P have a finite Helly-number ?

It is known that h(CP×P) ≥ 14, and it is conjectured that the Helly-number is
unbounded [DLL+15b].

4.2 GEOMETRIC TRANSVERSALS

GLOSSARY

Transversal: A k-transversal to a family F of convex sets is an affine subspace
of dimension k that intersects every member of F .

Line transversal: A 1-transversal to a family of convex sets in Rd.
Hyperplane transversal: A (d−1)-transversal to a family of convex sets in Rd.
Separated: A family F of convex sets is k-separated if no k + 2 members of F

have a k-transversal.

Ordering: A k-ordering of a family F = {K1, . . . ,Kn} of convex sets is a family
of orientations of (k+1)-tuples of F defined by a mapping χ : Ak+1 → {−1, 0, 1}
corresponding to the orientations of some family of points X = {x1, . . . , xn} in
Rk. The orientation of (ai0 , ai1 , . . . , aik) is the orientation of the corresponding
points (xi0 , xi1 , . . . , xik), i.e.,

sgn det

 1 x1
i0
· · · xki0

...
...

. . .
...

1 x1
ik
· · · xkik

 .

Geometric permutation: A geometric permutation of a (k−1)-separated family
F of convex sets in Rd is the pair of k-orderings induced by some k-transversal
of F .

Perhaps due to the fact that the space of all affine k-flats in Rd is no longer con-
tractible when k > 0, there is a clear distinction between the cases k = 0 and k > 0
in the study of k-transversals. In 1935, Vincensini asked whether Helly’s theorem
can be generalized to k-transversals for arbitrary k < d. In other words, is there
a number m = m(k, d) such that for any family F of convex sets in Rd, if every
m or fewer members of F have a k-transversal, then F has a k-transversal? The
answer to Vincensini’s question is no, and as Santaló pointed out, even the number
m(1, 2) does not exists in general, that is, there is no Helly-type theorem for line
transversals to convex sets in the plane.

It is evident that to get a “Helly-type theorem with transversals” one needs to
impose additional conditions on the shapes and/or the relative positions of the sets
of the family. Helly-type theorems for transversals to families of a restricted class
of convex sets in Rd are closely related to the combinatorial complexity of the space
of transversals, and a bound on the Helly-number can often be deduced from the
topological Helly theorem or one of its variants.
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As before, we mainly restrict our attention to finite families of compact convex
sets, unless stated otherwise. In most cases, this causes no loss in generality and
replacing compact sets by open sets is usually straightforward.

HADWIGER-TYPE THEOREMS

In 1957, Hadwiger [Had57] gave the first necessary and sufficient conditions for the
existence of a line transversal to a finite family F of pairwise disjoint convex sets
in R2. The basic observation is that if a line L intersects every member of F ,
then L induces a linear ordering of F ; this is simply the order in which L meets the
members of F (as it is traversed in one of its two opposite directions). In particular,
this implies that there exists a linear ordering of F such that any three members of
F can be intersected by a directed line consistently with the ordering. Hadwiger’s
transversal theorem asserts that this necessary condition is also sufficient.

THEOREM 4.2.1 Hadwiger’s Transversal Theorem [Had57]

Let F be a finite family of pairwise disjoint convex sets in R2. If there exists a
linear ordering of F such that every three members of F can be intersected by a
directed line in the given order, then F has a line transversal.

An interesting remark is that even though the conditions of Theorem 4.2.1
guarantee the existence of a line transversal to F , we are not guaranteed a line that
intersects the members of F in the given order. To obtain this stronger conclusion
we need to impose the condition that every four members can be intersected by a
directed line in the given order, which is a theorem discovered by Wenger [Wen90c],
and independently by Tverberg [Tve91].

Hadwiger’s transversal theorem has been generalized to higher dimensions and
gives necessary and sufficient conditions for the existence of a hyperplane transver-
sal to a family of compact convex sets in Rd. Partial results in this direction
were obtained by Katchalski [Kat80], Goodman and Pollack [GP88], and Wenger
[Wen90c], before Pollack and Wenger [PW90] found a common generalization of
these previous results.

Let F be a finite family of compact convex sets in Rd and let P be a subset of
Rk. We say that F separates consistently with P if there exists a map ϕ : F → P
such that for any two of subfamilies F1 and F2 of F we have

convF1 ∩ convF2 = ∅ ⇒ convϕ(F1) ∩ convϕ(F2) = ∅.

Note that, if k < d and F separates consistently with a set P ⊂ Rk, then every
k + 2 members of F have a k-transversal. (This follows from Radon’s theorem.)
Moreover, if F has a hyperplane transversal, then F separates consistently with a
set P ⊂ Rd−1; simply choose one point from each member of F contained in the
hyperplane transversal.

THEOREM 4.2.2 [PW90]

A family F of compact convex sets in Rd has a hyperplane transversal if and only
if F separates consistently with a set P ⊂ Rd−1.

When F is a family of pairwise disjoint sets in the plane, the separation condi-
tion of Theorem 4.2.2 is equivalent to the ordering condition in Hadwiger’s theorem.
The proof of Theorem 4.2.2 uses the Borsuk-Ulam theorem and Kirchberger’s the-
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orem, and it was generalized by Anderson and Wenger [AW96] who showed that
the point set P can be replaced by an acyclic oriented matroid of rank at most d.

Theorem 4.2.2 was strengthened further by Arocha et al. [ABM+02] to in-
clude a description of the topological structure of the space of hyperplane transver-
sals [ABM+02].

Let Gdd−1 denote the space of all affine hyperplanes in Rd. Note that Gdd−1

is retractible to the space of hyperplanes passing through the origin, and there-
fore homotopy equivalent to RPd−1. For a family F of convex sets in Rd, let
T dd−1(F) denote the subspace of Gdd−1 of all hyperplane transversals to F . We
say that F has a virtual k-transversal if the homomorphism induced by the in-
clusion, Hd−1−k(T dd−1(F)) → Hd−1−k(Gdd−1), is nonzero. In particular, if L is a
k-transversal to F , then the set of all hyperplanes containing L shows that F has
a virtual k-transversal. Thus, the property of having a virtual k-transversal can be
interpreted as saying that there are “as many” hyperplane transversals as if there
exists a k-transversal.

THEOREM 4.2.3 [ABM+02]

Let F be a finite family of compact convex sets in Rd and let P be a set of points in
Rk, for some 0 ≤ k < d. If F separates consistently with P , then F has a virtual
k-transversal.

The proof of Theorem 4.2.3 follows the same ideas as the proof of Theorem 4.2.2,
and uses Alexander duality to obtain the stronger conclusion.

There are currently no known conditions, similar in spirit of Hadwiger’s transver-
sal theorem, which guarantee the existence of a k-transversal to a family of compact
convex sets in Rd for 0 < k < d− 1. Already in the simplest case, line transversals
in R3, examples show that there is no direct analogue of Hadwiger’s theorem. In
particular, for any integer n ≥ 3 there is a family F of pairwise disjoint convex sets
in R3 and a linear ordering of F such that any n − 2 members of F are met by a
directed line consistent with the ordering, yet F has no line transversal [GPW93].
It is even possible to restrict the members of F to be pairwise disjoint translates of
a fixed compact convex set in R3 [HM04]. In view of these examples, the following
result is all the more remarkable.

THEOREM 4.2.4 [BGP08]

Let F be a finite family of pairwise disjoint Euclidean balls in Rd. If there exists a
linear ordering of F such that every 2d or fewer members of F can be intersected
by a directed line in the given order, then F has a line transversal.

The special case when the members of F are congruent was established in
[CGH+08], and it was shown by Cheong et al. [CGH12] that the number 2d in
Theorem 4.2.4 is nearly optimal, in particular it cannot be reduced to 2d−2, and it
is conjectured that the correct number should be 2d−1. The proof of Theorem 4.2.4
uses a homotopy argument due to Klee, which was also used by Hadwiger in his
proof of Theorem 4.2.1. Essentially, one continuously contracts the members of
F until the hypothesis is about to fail. In the planar case it is easily seen that
the “limiting configuration” consists of precisely three members of F that “pin” a
unique line, but in dimensions greater than two the situation is more difficult to
analyze.

We conclude our discussion of Hadwiger’s transversal theorem with a colorful
generalization due to Arocha et al.
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THEOREM 4.2.5 [ABM08]

Let F1, F2, and F3 be nonempty finite families of compact convex sets in the plane.
Suppose F1 ∪ F2 ∪ F3 admits a linear ordering ≺ such that B ∩ conv(A ∪ C) 6= ∅
for any choice A ≺ B ≺ C of sets belonging to distinct Fi. Then one of the Fi has
a line transversal.

Note that when F1 = F2 = F3 we recover the planar case of Theorem 4.2.2.
The proof of Theorem 4.2.5 combines the topological arguments from [Wen90c]
with some additional combinatorial arguments. Arocha et al. conjectured that
Theorem 4.2.5 holds in every dimension, and some partial results (requiring roughly
d2, rather than d + 1, color classes) were established in [HR16], but the general
conjecture remains open.

THE SPACE OF TRANSVERSALS

Given a family F of convex sets in Rd, let T dk (F) denote the space of all k-
transversals of F . The space of point transversals, that is T d0 , has a relatively
simple structure, since the intersection of convex sets is convex. For k ≥ 1, the
space T dk (F) can be much more complicated; it need not be connected, and each
connected component may have nontrivial topology. The “combinatorial complex-
ity” of T dk (F) can be measured in various ways. These give rise to problems that are
interesting in their own right, but are also closely related to Helly-type transversal
theorems. It is usual to witness a drop in the complexity of T dk (F) as one restricts
the family F to more specialized classes of convex sets, and typically, one gets a
Helly-type theorem when the complexity of T dk (F) is universally bounded over all
families F within the given class.

If F is a family of pairwise disjoint convex sets, then a directed line that
intersects every member of F induces a well-defined order on F . Thus an undirected
line transversal to F induces a pair of opposite linear orderings or “permutations”
on F . More generally, a family F of convex sets is (k − 1)-separated if no k + 1
members have a (k−1)-transversal. An oriented k-transversal H intersects a (k−1)-
separated family F = {K1, . . . ,Kn} of convex sets in a well-defined k-ordering. The
orientation of (Ki0 ,Ki1 , . . . ,Kik) is the orientation in H of any corresponding set
of points (xi0 , xi1 , . . . , xik), where xij ∈ Kij ∩ H. An unoriented k-transversal
to a (k−1)-separated family F of convex sets induces a pair of k-orderings on F ,
consisting of the two k-orderings on F induced by the two orientations of the k-
transversal. We identify each such pair of k-orderings and call this a geometric
permutation of F .

If F is (k−1)-separated, then two k-transversals that induce different geometric
permutations on F must necessarily belong to different connected components of
T dk (F). The converse is also true for hyperplane transversals.

THEOREM 4.2.6 [Wen90b]

Let F be a (d−2)-separated family of compact convex sets in Rd. Two hyperplane
transversals induce the same geometric permutation on F if and only if they lie in
the same connected component of T dd−1(F).

It is not hard to show that if |F| ≥ d, then each connected component of
T dd−1(F) is contractible. For k-transversals with 0 < k < d− 1, the situation is not
so pleasant. There are constructions of families F of pairwise disjoint translates in
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R3 where T 3
1 (F) has arbitrarily many connected components, each corresponding to

the same geometric permutation [HM04]. However, for the specific case of disjoint
balls an analogous result holds for line transversals.

THEOREM 4.2.7 [BGP08]

Let F be a family of pairwise disjoint Euclidean balls in Rd. Two line transversals
induce the same geometric permutation on F if and only if they lie in the same
connected component of T d1 (F).

In fact, it can also be shown that each connected component of T d1 (F) is con-
tractible when |F| ≥ 2. It would be interesting to know if similar results hold for
families of Euclidean balls in Rd with respect to k-transversals for 1 < k < d− 1.

A natural problem that arises is to bound the number of distinct geometric
permutations that T dk (F) induces on F in terms of the size of F . Let gdk(n) denote
the maximum number of geometric permutations over all (k−1)-separated families
of n convex sets in Rd. It is not hard to show that g2

1(n) is linear in n, and in this
case the precise bound is known. In general, the following is known about gdk(n):

THEOREM 4.2.8

1. g2
1(n) = 2n− 2 [ES90].

2. gd1(n) = Ω(nd−1) [KLL92].
3. gdd−1(n) = O(nd−1) [Wen90a].

4. gdk(n) = O(nk(k+1)(d−k)) for fixed k and d [GPW96].

One of the longest-standing conjectures concerning geometric permutations is
that the lower bound in part 2 of Theorem 4.2.8 is tight, that is, gd1(n) = Θ(nd−1).
For nearly 20 years, the best known upper bound was gd1(n) = O(n2d−2) [Wen90a],
until Rubin et al. improved the bound using the Clarkson-Shor probabilistic anal-
ysis and a charging scheme technique developed by Tagansky.

THEOREM 4.2.9 [RKS12]

The maximum number of geometric permutations induced by the line transversals
to a family of n pairwise disjoint convex sets in Rd is O(n2d−3 log n).

By further specializing the shape of the convex sets of the family, it is possible
to obtain sharper bounds on the number of geometric permutations induced by line
transversals. Smorodinsky et al. [SMS00], showed that any family F of n pairwise
disjoint Euclidean balls in Rd has a “separating set” of size linear in n. In other
words, there exists a family H of hyperplanes in Rd, with |H| = O(n), such that
every pair of members in F can be separated by some hyperplane in H. This
“separation lemma” is specific to families of “fat” convex objects [KV01] and does
not generalize to arbitrary families of convex sets. As a consequence we have the
following.

THEOREM 4.2.10 [SMS00]

The maximum number of geometric permutations induced by the line transversals
to a family of n pairwise disjoint Euclidean balls in Rd is Θ(nd−1).

This theorem shows that the conjectured bound for gd1(n) is tight for the case of
families of pairwise disjoint Euclidean balls in Rd. See also [AS05] for other partial
results.
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CONJECTURE 4.2.11

The maximum number of geometric permutations induced by the line transversals
to a family of n pairwise disjoint convex sets in Rd is Θ(nd−1).

For families of pairwise disjoint translates in the plane, the bounds on the
maximum number of geometric permutations can be reduced even further.

THEOREM 4.2.12 [KLL87, KLL92]

The line transversals to a family of pairwise disjoint translates of a compact convex
set in R2 induce at most three geometric permutations.

The possible patterns of geometric permutations induced on families of pairwise
disjoint translates in the plane have also been studied. This work was initiated by
Katchalski [Kat86] in connection with a conjecture of Grünbaum, and a complete
characterization is given in [AHK+03]. For families of n pairwise disjoint translates
in R3, it is known that the maximum number of geometric permutations is Ω(n)
[AK05]. Again, the situation changes drastically when we restrict our attention to
the Euclidean ball.

THEOREM 4.2.13 [HXC01, KSZ03, CGN05, NCG+16]

The line transversals to a family of pairwise disjoint translates of the Euclidean ball
in Rd induce at most three distinct geometric permutations. Furthermore, if the
family has size at least 7, then there are at most two distinct geometric permuta-
tions.

The planar version of this result was proved by Smorodinsky et al. [SMS00],
and improved in [AHK+03] where it was shown that a family of at least four
pairwise disjoint unit disks in the plane can have at most two distinct geometric
permutations.

CONJECTURE 4.2.14 [NCG+16]

The line transversals to a family of at least four disjoint unit balls in R3 induce at
most two geometric permutations.

We now discuss a different type of “combinatorial complexity” of the space
of transversals. If the members of F are closed, then the boundary of T dk (F)
consists of k-flats that support one or more members of F . This boundary can be
partitioned into subspaces of k-flats that support the same subfamily of F . Each
of these subspaces can be further partitioned into connected components. The
combinatorial complexity of T dk (F) is the number of such connected components.

Even in R2, the boundaries of two convex sets can intersect in an arbitrarily
large number of points and may therefore have an arbitrarily large number of com-
mon supporting lines. Thus the space of line transversals to two convex sets in R2

can have arbitrarily large combinatorial complexity. However, if F consists of pair-
wise disjoint convex sets in R2 or, more generally, suitably separated convex sets in
Rd, then the complexity is bounded. If the convex sets have constant description
complexity, then again the transversal space complexity is bounded. Finally, if the
sets are convex polytopes, then the transversal space is bounded by the total num-
ber of polytope faces. Table 4.2.1 gives bounds on the transversal space complexity
for various families of sets.

The function α(n) is the very slowly growing inverse of the Ackermann function.
The function λs(n) is the maximum length of an (n,s) Davenport-Schinzel sequence,

Preliminary version (July 16, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



110 A. Holmsen and R. Wenger

TABLE 4.2.1 Bounds on T dk (F).

FAMILY F k d COMPLEXITY OF T dk (F) SOURCE

(d−2)-separated family of n compact

and strictly convex sets d−1 d O(nd−1) [CGP+94]

n connected sets such that any two sets have

at most s common supporting lines 1 2 O(λs(n)) [AB87]

n convex sets with const. description complexity 1 3 O(n3+ε) for any ε > 0 [KS03]

n convex sets with const. description complexity 2 3 O(n2+ε) for any ε > 0 [ASS96]

n convex sets with const. description complexity 3 4 O(n3+ε) for any ε > 0 [KS03]

n line segments d−1 d O(nd−1) [PS89]

Convex polytopes with a total of nf faces d−1 d O(nd−1
f α(nf )) [PS89]

Convex polytopes with a total of nf faces 1 3 O(n3+ε
f ) for any ε > 0 [Aga94]

n (d−1)-balls d−1 d O(ndd/2e) [HII+93]

which equals nα(n)O(α(n)s−3). Note that λs(n) ∈ O(n1+ε) for any ε > 0. The
asymptotic bounds on the worst case complexity of hyperplane transversals (k =
d − 1) to line segments and convex polytopes are tight. There are examples of
families F of convex polytopes where the complexity of T 3

1 (F) is Ω(n3
f ).

As may be expected, the time to construct a representation of T dk (F) is directly
related to the complexity of T dk (F). Most algorithms use upper and lower envelopes
to represent and construct T dk (F). Table 4.2.2 gives known bounds on the worst
case time to construct a representation of the space T dk (F) for various families of
convex sets. All sets are assumed to be compact. As noted, for T 3

1 (F) and T 4
3 (F),

the bound is for expected running time, not worst case time.

TABLE 4.2.2 Algorithms to construct T dk (F).

FAMILY F k d TIME COMPLEXITY SOURCE

(d−2)-separated family of n strictly convex sets

with constant description complexity d−1 d O(nd−1 log2(n)) [CGP+94]

n convex sets with const. description complexity

s.t. any two sets have at most s common

supporting lines 1 2 O(λs(n) logn) [AB87]

n convex sets with const. description complexity 1 3 O(n3+ε) ∀ ε > 0 (exp’d.) [KS03]

n convex sets with const. description complexity 2 3 O(n2+ε) ∀ ε > 0 [ASS96]

n convex sets with const. description complexity 3 4 O(n3+ε) ∀ ε > 0 (exp’d.) [KS03]

Convex polygons with a total of nf faces 1 2 Θ(nf log(nf )) [Her89]

Convex polytopes with a total of nf faces 1 3 O(n3+ε
f ) ∀ ε > 0 [PS92]

Convex polytopes with a total of nf faces 2 3 Θ(n2
fα(nf )) [EGS89]

Convex polytopes with a total of nf faces d−1 d O(ndf ), d > 3 [PS89]

n (d−1)-balls d−1 d O(ndd/2e+1) [HII+93]

n convex homothets 1 2 O(n log(n)) [Ede85]

n pairwise disjoint translates of a convex set

with constant description complexity 1 2 O(n) [EW89]
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The model of computation used in the lower bound for the time to construct
T 2

1 (F) is an algebraic decision tree. In the worst case, T 3
2 (F) may have Ω(n2

fα(nf ))

complexity, which is a lower bound for constructing T 3
2 (F). Similarly, T 3

1 (F) may
have Ω(n3

f ) complexity, giving an Ω(n3
f ) lower bound for the time to construct it.

HELLY-TYPE THEOREMS

As remarked earlier, there is no Helly-type theorem for general families of convex
sets with respect to k-transversals for k ≥ 1. Therefore, one direction of research in
geometric transversal theory has focused on finding restricted classes of families of
convex sets for which there is a Helly-type theorem. The earliest such results were
established by Santaló.

THEOREM 4.2.15 [San40]

Let F be a family of parallelotopes in Rd with edges parallel to the coordinate axes.

1. If any 2d−1(d+1) or fewer members of F have a hyperplane transversal, then
F has a hyperplane transversal.

2. If any 2d−1(2d − 1) or fewer members of F have a line transversal, then F
has a line transversal.

It is known that the Helly-number 2d−1(d + 1) for hyperplane transversals is
tight, but for the case of line transversals the correct Helly-number seems to be
unknown. Grünbaum [Grü64] generalized Theorem 4.2.15 to families of polytopes
whose vertex cones are “related” to those of a fixed polytope in Rd.

Let us remark that Theorem 4.2.15 can be deduced from Kalai and Meshulam’s
topological version of Amenta’s theorem (Theorem 4.1.4). To see this, note that it
is no loss in generality to assume that any subfamily of F that admits a transversal,
admits a transversal that is not orthogonal to any of the coordinate axes. We can
then partition the set of all hyperplanes (or lines) that are not orthogonal to any
coordinate axis into 2d−1 distinct “direction classes.” The next step is to show
that the space of transversals (to any given subfamily) within a fixed direction
class is a contractible set. Now Theorem 4.2.15 follows from Theorem 4.1.4 since
the space of hyperplanes in Rd is d-dimensional and the space of lines in Rd is
(2d− 2)-dimensional.

In most cases, when a certain class of families of convex sets admits a Helly-
type theorem for k-transversals, it is possible to show that the Helly-number is
bounded by applying Theorem 4.1.8. This reduces the problem of bounding the
Helly-number to the problem of bounding the complexity of the space of transver-
sals. The resulting upper bound on the Helly-number will in general be very large,
and often more direct arguments are needed to obtain sharper bounds.

Let us illustrate how Theorem 4.1.8 can be used to prove an upper bound on the
Helly-number. A finite family F of compact convex sets in Rd is ε-scattered if, for
every 0 < j < d, any j of the sets can be separated from any other d−j of the sets by
a hyperplane whose distance is more than εD(F)/2 away from all d of the sets, where
D(F) is the largest diameter of any member of F . It can be shown that for every
ε > 0 there exists a constant Cd(ε) such that the space of hyperplane transversals
of an ε-scattered family induces at most Cd(ε) distinct geometric permutations. By
Theorem 4.2.6, this implies that the space of hyperplane transversals has at most
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Cd(ε) connected components. Moreover, each connected component is contractible
if |F| ≥ d, and if |F| = k < d, then the space of hyperplane transversals is
homotopy equivalent to RPd−k. For each member K ∈ F , let HK = T dd−1({K}),
that is, the set of hyperplanes that intersect K. Note that the family {HK}K∈F can
be parameterized as a family of compact subsets of R2d and that the Betti-numbers
of the intersection of any subfamily can be bounded by some absolute constant.
Therefore, Theorem 4.1.8 implies that there is a finite Helly-number (depending on
ε and d) for hyperplane transversals to ε-scattered families of convex sets in Rd.

By a direct geometric argument, the Helly-number can be reduced drastically
under the assumption that the family F is sufficiently large.

THEOREM 4.2.16 [AGPW01]

For any integer d > 1 and real ε > 0 there exists a constant N = Nd(ε), such that
the following holds. If F is an ε-scattered family of at least N compact convex sets
in Rd and every 2d+ 2 members of F have a hyperplane transversal, then F has a
hyperplane transversal.

Goodman and Pollack conjectured that there is a bounded Helly-number for
plane transversals to 1-separated families translates of the Euclidean ball in R3.
A counter-example to this conjecture was given in [Hol07], and can be seen as a
consequence of the fact that there exists a 1-separated family F of unit balls in
R3 whose plane transversals induce a linear number of geometric permutations on
F . This example illustrates that in order to obtain a bounded Helly-number for
hyperplane transversals it is necessary to assume that the family is ε-scattered.

From the previous discussion it is clear that there is a bounded Helly-number
for line transversals to families of disjoint unit balls in Rd. This follows from
Theorems 4.2.7, 4.2.13, and 4.1.8 as in the argument above. By a more direct
argument based on Theorem 4.2.4, the Helly-number can be reduced even further.

THEOREM 4.2.17 [CGH+08]

Let F be a family of pairwise disjoint unit balls in Rd. If any 4d − 1 or fewer
members of F have a line transversal, then F has a line transversal.

The planar case of Theorem 4.2.17 was proven by Danzer [Dan57] with the op-
timal Helly-number five, who also conjectured that the Helly-number was bounded
for arbitrary dimension. For d ≥ 6 the Helly-number can be further reduced to
4d − 2 [CVGG14]. A lower bound construction [CGH12] shows that the bound is
tight up to a factor of two.

Motivated by Danzer’s Helly-theorem for line transversals to unit disks in the
plane, Grünbaum [Grü58] proved a Helly-theorem for line transversals to families
of pairwise disjoint translates of a parallelogram in the plane, again with Helly-
number five. The same result for arbitrary families of pairwise disjoint translates
was proved by Tverberg.

THEOREM 4.2.18 [Tve89]

Let F be a family of pairwise disjoint translates of a compact convex set in R2.
If every five or fewer members of F have a line transversal, then F has a line
transversal.

The fact that there is a bounded Helly-number follows from Theorems 4.2.6,
4.2.12, and 4.1.8, but obtaining the optimal Helly-number is significantly more
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difficult. Tverberg’s proof involves a detailed analysis of the patterns of the possible
geometric permutations of families of translates, and it would be interesting to find a
simpler proof. Several generalizations of Theorems 4.2.18 are known. For instance,
the condition that the members of F are pairwise disjoint can be weakened and
Robinson [Rob97] showed that for every j > 0 there exists a number c(j) such that
if F is a family of translates of a compact convex set in R2 such that the intersection
of any j members of F is empty and such that every c(j) or fewer members of F
have a line transversal, then F has a line transversal. See also [BBC+06] for further
variations.

For families of pairwise disjoint translates in R3 there is no universal bound on
the Helly-number with respect to line transversals. For any integer n > 2, there
exists a family F of n pairwise disjoint translates of a compact convex set such
that every n− 1 members of A have a line transversal, but F does not have a line
transversal [HM04]. This specific example shows that there can be arbitrarily many
connected components in the space of transversals that all correspond to the same
geometric permutation, and again illustrates that there is no Helly-theorem when
the complexity of the space of transversals is unbounded.

PARTIAL TRANSVERSALS AND GALLAI-TYPE PROBLEMS

Even though there is no pure Helly-type theorem for line transversals to general
families of convex sets in the plane, there is still much structure to a family of
convex sets that satisfy the local Helly-property with respect to line transversals.
In particular, families of convex sets in the plane admit a so-called Gallai-type
theorem. In other words, for a family F of convex sets in the plane, if every k or
fewer members of F have a line transversal, then there exists a small number of lines
whose union intersects every member of F . The natural problem is to determine
the smallest number of lines that will suffice, and Eckhoff has determined nearly
optimal bounds for all values of k ≥ 3.

THEOREM 4.2.19 [Eck73, Eck93a]

Let F be a finite family of convex sets in R2.

1. If every four or fewer members of F have a line transversal, then there are
two lines whose union intersects every member of F .

2. If every three or fewer members of F have a line transversal, then there are
four lines whose union intersects every member of F .

The bound in part 1 is obviously tight, and the lines can actually be chosen to
be orthogonal. The proof of part 1 is relatively simple and follows by choosing a
minimal element of a suitably chosen partial order on the set of orthogonal pairs
of lines in the plane. The proof of part 2 is more difficult and is a refinement of
an argument due to Kramer [Kra74]. The idea is to consider a pair of disjoint
members of F that are extremal in the sense that their separating tangents form
the smallest angle among all disjoint pairs in the family. Using this pair he defines
four candidate lines, and proceeds to show that through a series of rotations and
translations of these lines one can reach a position in which their union meets every
member of F .
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CONJECTURE 4.2.20 [Eck93a]

If every three or fewer members of F have a line transversal, then there are three
lines whose union intersects every member of F .

A different question one can consider is to look for the largest partial transversal.
This was considered by Katchalski, who in 1978 conjectured that if F is a finite
family of convex sets in the plane such that every three members of F have a
line transversal, then there is a line that intersects at least 2

3 |F| members of F .
Katchalski and Liu considered the more general problem, when every k or fewer
members have a line transversal.

THEOREM 4.2.21 [KL80a]

For any integer k ≥ 3 there exists a real number ρ = ρ(k) such that the following
holds. Let F be a family of compact convex sets in the plane. If every k or fewer
members of F have a line transversal, then there is a subfamily of F of size at least
ρ|F| that has a transversal. Moreover, ρ(k)→ 1 as k →∞.

In view of the absence of a Helly-type theorem for line transversals, Theorem
4.2.21 is quite remarkable. It is an interesting problem to determine the optimal
values for ρ(k), especially for small values of k. The current best bounds for ρ(k)
are given in [Hol10]: the upper bound is ρ(k) ≤ 1 − 1

k−1 , disproving Katchalski’s

conjecture for ρ(3), and a lower bound is of order 1 − log k
k . For small values of k,

the known bounds are 1/3 ≤ ρ(3) ≤ 1/2, 1/2 ≤ ρ(4) ≤ 2/3, 1/2 ≤ ρ(5) ≤ 3/4, etc.

Alon and Kalai [AK95] showed that the family of all convex sets in Rd has
fractional Helly-number d+1 with respect to hyperplane transversals. In particular,
for every α > 0 there exists a β > 0 (which depends only on α and d) such that if

F is a finite family of convex sets in Rd such that α
( |F|
d+1

)
of the (d + 1)-tuples of

F have a hyperplane transversal, then there exists a hyperplane that intersects at
least β|F| members of F . By the techniques developed in [AKM+02] this implies
the following (p, q)-theorem for hyperplane transversals.

THEOREM 4.2.22 [AK95]

For any integers p ≥ q ≥ d + 1 there exists an integer c = c(p, q, d) such that the
following holds. If F is a finite family of at least p convex sets in Rd and out of
every p members of F there are some q that have a hyperplane transversal, then
there are c hyperplanes whose union intersects every member of F .

The theorem above can not be extended to k-transversals for 0 < k < d − 1.
In particular, for every k ≥ 3, Alon et al. [AKM+02] construct a family of convex
sets in R3 in which every k members have a line transversal, but no k+ 4 members
have a line transversal.

Problems concerning partial transversals have also been studied for families of
pairwise disjoint translates in the plane. Katchalski and Lewis [KL80b] showed
that there is a universal constant C such that if F is a family of pairwise disjoint
translates of a compact convex set K in the plane such that every three members
of F have a line transversal, then there is a line that intersects all but at most C
members of F . The original upper bound given in [KL80b] was C ≤ 603, but they
conjectured that C = 2. Bezdek [Bez94] gave an example of n ≥ 6 pairwise disjoint
congruent disks where every 3 have a line transversal, but no line meets more than
n − 2 of the disks, showing that the Katchalski–Lewis conjecture is best possible.
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Heppes [Hep07] proved that the Katchalski–Lewis conjecture holds for the disk.

THEOREM 4.2.23 [Hep07]

Let F be a family of pairwise disjoint congruent disks in the plane. If every three
members of F have a line transversal, then there is a line that intersects all but at
most two members of F .

It turns out that the conjectured shape-independent upper bound C = 2 does
not hold in general. It was shown in [Hol03] that, for any n ≥ 12, there exists
a family F of n pairwise disjoint translates of a parallelogram where every three
members of F have a line transversal, but no line meets more than n − 4 of the
members of F . For families of disjoint translates of a general convex set K, the
best known upper bound is C ≤ 22 [Hol03].

In view of Theorem 4.2.18 and Theorem 4.2.23 it is natural to ask about families
of disjoint translates in the plane where every four or fewer members have a line
transversal. This problem was originally investigated by Katchalski and Lewis
[KL82] for families of disjoint translates of a parallelogram who showed that there
exists a line that intersects all but at most two members of the family. In a series
of papers, Bisztriczky et al. [BFO05a, BFO05b, BFO08] investigated the same
problem for families of disjoint congruent disks, and obtained the following result.

THEOREM 4.2.24 [BFO08]

Let F be a family of pairwise disjoint congruent disks in the plane. If every four
members of F have a line transversal, then there is a line that intersects all but at
most one member of F .

The result is best possible, as can be seen from a family of five nearly touching
unit disks with centers placed at the vertices of a regular pentagon. It is not
known whether Theorem 4.2.24 generalizes to families of disjoint translates of a
compact convex set in the plane, but combining Theorem 4.2.18 with an elementary
combinatorial argument shows that if a counter-example exists, then there exists
one consisting of at most 12 translates.

We conclude this section with another transversal problem concerning congru-
ent disks in the plane. Let D denote a closed disk centered at the origin in R2, let
F = {xi +D} be a finite family of translates of D, and let λF = {xi +λD} denote
the family where each disk has been inflated by a factor of λ > 0 about its center.

CONJECTURE 4.2.25 Dol’nikov, Eckhoff

If every three members of F = {xi + D} have a line transversal, then the family

λF = {xi + λD} has a line transversal for λ = 1+
√

5
2 .

It is easily seen the factor λ = 1+
√

5
2 is best possible by centering the disks

at the vertices of a regular pentagon. Heppes [Hep05] has shown that λ ≤ 1.65,
under the additional assumption that the members of F are pairwise disjoint. If
we instead assume that every four members of F have a line transversal, Jerónimo

[Jer07] has shown that λ = 1+
√

5
2 is the optimal inflation factor.
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4.3 SOURCES AND RELATED MATERIAL

SURVEYS

[DGK63]: The classical survey of Helly’s theorem and related results.

[Eck93b]: A survey of Helly’s theorem and related results, updating the material
in [DGK63].

[GPW93]: A survey of geometric transversal theory.

[SA95]: Contains applications of Davenport-Schinzel sequences and upper and lower
envelopes to geometric transversals.

[Mat02]: A textbook covering many aspects of discrete geometry including the
fractional Helly theorem and the (p, q)-problem.

[Eck03]: A survey on the Hadwiger–Debrunner (p, q)-problem.

[Tan13]: A survey on intersection patterns of convex sets from the viewpoint of
nerve complexes.

[ADLS17]: A recent survey on Helly’s theorem focusing on the developments since
[Eck93b].

RELATED CHAPTERS

Chapter 2: Packing and covering
Chapter 3: Tilings
Chapter 6: Oriented matroids
Chapter 17: Face numbers of polytopes and complexes
Chapter 21: Topological methods in discrete geometry
Chapter 28: Arrangements
Chapter 41: Ray shooting and lines in space
Chapter 49: Linear programming
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[CVGG14] É. Colin de Verdière, G. Ginot and X. Goaoc. Helly numbers of acyclic families. Adv.
Math., 253:163–193, 2014.
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[Grü62] B. Grünbaum. The dimension of intersections of convex sets. Pacific J. Math., 12:197–
202, 1962.
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