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INTRODUCTION

In a geometric context, a collision or proximity query reports information about
the relative configuration or placement of two objects. Some of the common ex-
amples of such queries include checking whether two objects overlap in space, or
whether their boundaries intersect, or computing the minimum Euclidean separa-
tion distance between their boundaries. Hundreds of papers have been published on
different aspects of these queries in computational geometry and related areas such
as robotics, computer graphics, virtual environments, and computer-aided design.
These queries arise in different applications including robot motion planning, dy-
namic simulation, haptic rendering, virtual prototyping, interactive walkthroughs,
computer gaming, and molecular modeling. For example, a large-scale virtual en-
vironment, e.g., a walkthrough, creates a model of the environment with virtual
objects. Such an environment is used to give the user a sense of presence in a syn-
thetic world and it should make the images of both the user and the surrounding
objects feel solid. The objects should not pass through each other, and objects
should move as expected when pushed, pulled, or grasped; see Fig. 39.0.1. Such
actions require fast and accurate collision detection between the geometric repre-
sentations of both real and virtual objects. Another example is rapid prototyping,
where digital representations of mechanical parts, tools, and machines, need to be
tested for interconnectivity, functionality, and reliability. In Fig. 39.0.2, the mo-
tion of the pistons within the combustion chamber wall is simulated to check for
tolerances and verify the design.

This chapter provides an overview of different queries and the underlying al-
gorithms. It includes algorithms for collision detection and distance queries among
convex polytopes (Section 39.1), nonconvex polygonal models (Section 39.2), con-
tinuous collision detection (Section 39.3), penetration depth queries (Section 39.4),
Hausdorff distance queries (Section 39.5), curved objects (Section 39.6), and large
environments composed of multiple objects (Section 39.7). Finally, it briefly de-
scribes different software packages available to perform some of the queries (Sec-
tion 39.8).

PROBLEM CLASSIFICATION

Collision Detection: Checks whether two objects overlap in space or their
boundaries share at least one common point.

Separation Distance: Length of the shortest line segment joining two sets of
points, A and B:

dist(A,B) = min
a∈A

min
b∈B
|a− b|.
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FIGURE 39.0.1
A hand reaching toward a ring and a bunny at top. The corresponding image of the user
in the real world is shown at bottom. Red finger tips indicate contacts between the user’s
hand and the virtual ring and bunny.

Hausdorff distance: Maximum deviation of one set from the other:

haus(A,B) = max
a∈A

min
b∈B
|a− b|.

Spanning Distance: Maximum distance between the points of two sets:

span(A,B) = max
a∈A

max
b∈B
|a− b|.

Penetration Depth: Minimum distance between two overlapping objects needed
to translate one object to make it just touch the other:

pd(A,B) = minimum ||v|| such that min
a∈A

min
b∈B
|a− b + v|≥0.

Generalized Penetration Depth: Minimal rigid motion under some distance
metric d to make one object just touch the other:

gpd(A,B) = minimum ||M||d such that min
a∈A

min
b∈B
|a−Mb| ≥ 0.

There are two forms of collision detection query: Boolean and enumerative. The
Boolean distance query computes whether the two sets have at least one point in
common. The enumerative form yields some representation of the intersection set.

There are at least three forms of the distance queries: exact, approximate,
and Boolean. The exact form asks for the exact distance between the objects.
The approximate form yields an answer within some given error tolerance of the
true measure—the tolerance could be specified as a relative or absolute error. The
Boolean form reports whether the exact measure is greater or less than a given
value. Furthermore, the norm by which distance is defined may be varied. The
Euclidean norm is the most common, but in principle other norms are possible,
such as the L1 and L∞ norms.
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FIGURE 39.0.2
In this virtual prototyping application, the motion of the pistons is simulated to check for tolerances
by performing distance queries.

TABLE 39.0.1 Classification of Proximity Queries.

CRITERIA TYPES

Report Boolean, exact, approximate, enumerative

Measure Separation, span, Hausdorff, penetration, collision

Multiplicity 2-body, n-body

Temporality Static, dynamic

Representation Polyhedra, convex objects, implicit, parametric, NURBS, quadrics,
set-theoretic combinations

Dimension 2,3,d

Each of these queries can be augmented by adding the element of time. If
the trajectories of two objects are known, then the next time can be determined at
which a particular Boolean query (collision, separation distance, or penetration) will
become true or false. In fact, this “time-to-next-event” query can have exact,
approximate, and Boolean forms. These queries are called dynamic queries,
whereas the ones that do not use motion information are called static queries.
In a case where the motion of an object cannot be represented as a closed-form
function of time, the underlying application often performs static queries at specific
time steps in the application.

These measures, as defined above, apply only to pairs of sets. However, some
applications work with many objects, and need to find the proximity information
among all or a subset of the pairs. Thus, most of the query types listed above have
associated N -body variants.

Finally, the primitives can be represented in different forms. They may be con-
vex polytopes, general polygonal models, curved models represented using paramet-
ric or implicit surfaces, set-theoretic combination of objects, etc. Different set of
algorithms are known for each representation. A classification of proximity queries
based on these criteria is shown in Table 39.0.1.

Preliminary version (July 19, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1032 M.C. Lin, D. Manocha, and Y.J. Kim

39.1 CONVEX POLYTOPES

In this section, we give a brief survey of algorithms for collision detection and
separation-distance computation between a pair of convex polytopes. A number
of algorithms with good asymptotic performance have been proposed. The opti-
mal runtime algorithm for Boolean collision queries takes O(log n) time, where n
is the number of features [BL15]. It precomputes the bounded Dobkin-Kirkpatrick
(BDK) hierarchy for each polytope in linear time and space and uses it to perform
the query. In practice, three classes of algorithms are commonly used for con-
vex polytopes: linear programming, Minkowski sums, and tracking closest features
based on Voronoi diagrams.

LINEAR PROGRAMMING

The problem of checking whether two convex polytopes intersect or not can be
posed as a linear programming (LP) problem. In particular, two convex polytopes
do not overlap if and only if there exists a separation plane between them. The
coefficients of the separation plane equation are treated as unknowns. Linear con-
straints result by requiring that all vertices of the first polytope lie in one halfspace
of this plane and those of the other polytope lie in the other halfspace. The linear
programming algorithms are used to check whether there is any feasible solution
to the given set of constraints. Given the fixed dimension of the problem, some of
the well-known linear programming algorithms (e.g., [Sei90]; cf. Chapter 49) can
be used to perform the Boolean collision query in expected linear-time. By caching
the last pair of witness points to compute the new separating planes, Chung and
Wang [CW96] proposed an iterative method that can quickly update the separat-
ing axis or the separating vector in nearly “constant time” in dynamic applications
with high motion coherence.

MINKOWSKI SUMS AND CONVEX OPTIMIZATION

Collision and distance queries can be performed based on the Minkowski sum of
two objects. It has been shown [CC86] that the minimum separation distance
between two objects is the same as the minimum distance from the origin of the
Minkowski sums of A and −B to the surface of the sums. The Minkowski sum
is also referred to as the translational C-space obstacle (TCSO). While the
Minkowski sum of two convex polytopes can have O(n2) features [DHKS93], a
fast algorithm for separation-distance computation based on convex optimization
that exhibits linear-time performance in practice has been proposed by Gilbert et
al. [GJK88], also known as the GJK algorithm. It uses pairs of vertices from each
object that define simplices within each polytope and a corresponding simplex in
the TCSO. Initially the simplex is set randomly and the algorithm refines it using
local optimization, until it computes the closest point on the TCSO from the origin
of the Minkowski sums. The algorithm assumes that the origin is not inside the
TCSO.
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FIGURE 39.1.1
A walk across external Voronoi region of Object A. Vertex
Vb of Object B lies in the Voronoi region of Ea.
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TRACKING CLOSEST FEATURES USING GEOMETRIC
LOCALITY AND MOTION COHERENCE

Lin and Canny [LC91] proposed a distance-computation algorithm between non-
overlapping convex polytopes. Often referred to as the LC algorithm, it tracks the
closest features between the polytopes. This is the first approach that explicitly
takes advantages of motion coherence and geometric locality. The features may
correspond to a vertex, face, or an edge on each polytope. It precomputes the
external Voronoi region for each polytope. At each time step, it starts with a pair
of features and checks whether they are the closest features, based on whether
they lie in each other’s Voronoi region. If not, it performs a local walk on the
boundary of each polytope until it finds the closest features. See Figure 39.1.1.
In applications with high motion coherence, the local walk typically takes nearly
“constant time” in practice. Typically the number of neighbors for each feature of
a polytope is constant and the extent of “local walk” is proportional to the amount
of the relative motion undergone by the polytopes.

Mirtich [Mir98] further optimized this algorithm by proposing a more robust
variation that avoids some geometric degeneracies during the local walk, without
sacrificing the accuracy or correctness of the original algorithm.

Guibas et al. [GHZ99] proposed an approach that exploits both coherence of
motion using LC and hierarchical representations by Dobkin and Kirkpatrick [DK90]
to reduce the runtime dependency on the amount of the local walks.

Ehmann and Lin [EL00] modified the LC algorithm and used an error-bounded
level-of-detail (LOD) hierarchy to perform different types of proximity queries, using
the progressive refinement framework (cf. Chapter 39). The implementation of this
technique, “multi-level Voronoi Marching,” outperforms the existing libraries for
collision detection between convex polytopes. It also uses an initialization technique
based on directional lookup using hashing, resembling that of [DZ93].

By taking a philosophy similar to that of LC, Cameron [Cam97] presented an
extension to the basic GJK algorithm by exploiting motion coherence and geometric
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locality in terms of connectivity between neighboring features. The algorithm tracks
the witness points, a pair of points from the two objects that realize the minimum
separation distance between them. Rather than starting from a random simplex in
the TCSO, the algorithm starts with the witness points from the previous iteration
and performs hill climbing to compute a new set of witness points for the current
configuration. The running time of this algorithm is a function of the number of
refinement steps that the algorithm performs.

TABLE 39.1.1 Algorithms for convex polytopes.

METHOD FEATURES

DK O(log2 n) query time, collision query only

LP Linear running time, collision query

GJK Linear-time behavior in practice, collision and separation-distance queries

LC Expected constant-time in coherent environments, collision and
separation-distance queries

39.2 GENERAL POLYGONAL MODELS

Algorithms for collision and separation-distance queries between general polygon
models can be classified based on whether they assume closed polyhedral models, or
are represented as a collection of polygons. The latter, also referred to as “polygon
soups,” makes no assumption related to the connectivity among different faces or
whether they represent a closed set.

Some of the most common algorithms for collision detection and separation-
distance computation use spatial partitioning or bounding volume hierarchies
(BVHs). The spatial subdivisions are a recursive partitioning of the embedding
space, whereas bounding volume hierarchies are based on a recursive partitioning
of the primitives of an object. These algorithms are based on the divide-and-
conquer paradigm. Examples of spatial partitioning hierarchies include k-D trees
and octrees [Sam89], R-trees and their variants [HKM95], cone trees, BSPs [NAT90]
and their extensions to multi-space partitions [BG91]. The BVHs use bounding
volumes (BVs) to bound or contain sets of geometric primitives, such as trian-
gles, polygons, curved surfaces, etc. In a BVH, BVs are stored at the internal
nodes of a tree structure. The root BV contains all the primitives of a model,
and children BVs each contain separate partitions of the primitives enclosed by
the parent. Leaf node BVs typically contain one primitive. In some variations,
one may place several primitives at a leaf node, or use several volumes to contain
a single primitive. BVHs are used to perform collision and separation-distance
queries. These include sphere-trees [Hub93, Qui94], ellipsoid-trees [LWH+07],
AABB-trees [BKSS90, HKM95, PML97], OBB-trees [GLM96, BCG+96, Got00],
spherical shell-trees [KPLM98, KGL+98], k-DOP-trees [HKM96, KHM+98], SSV-
trees [LGLM99], multiresolution hierarchies [OL03], convex hull-trees [EL01], SCB-
trees [LAM09], and k-IOS trees [ZK12], as shown in Table 39.2.1. Readers are re-
ferred to a book written by Ericson [Eri04] for more details on spatial partitioning
and BVHs.
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TABLE 39.2.1 Types of bounding volume hierarchies.

NAME TYPE OF BOUNDING VOLUME

Sphere-tree Sphere

Ellipsoid-tree Ellipsoid

AABB-tree Axis-aligned bounding box (AABB)

OBB-Tree Oriented bounding box (OBB)

Spherical shell-tree Spherical shell

k-DOP-tree Discretely oriented polytope defined by k vectors (k-DOP)

SSV-Tree Swept-sphere volume (SSV)

Convex hull-tree Convex polytope

SCB-tree Slab cut ball (SCB)

k-IOS-tree Intersection of k-spheres (IOS)

COLLISION DETECTION

Collision queries are performed by traversing the BVHs. Two models are compared
by recursively traversing their BVHs in tandem. Each recursive step tests whether
BVs A and B, one from each hierarchy, overlap. If they do not, the recursion
branch is terminated. But if A and B overlap, the enclosed primitives may overlap
and the algorithm is applied recursively to their children. If A and B are both leaf
nodes, the primitives within them are compared directly.

SEPARATION-DISTANCE COMPUTATION

The structure of the separation-distance query is very similar to the collision query.
As the query proceeds, the smallest distance found by comparing primitives is
maintained in a variable δ. At the start of the query, δ is initialized to∞, or to the
distance between an arbitrary pair of primitives. Each recursive call with BVs A
and B must determine if some primitive within A and some primitive within B are
closer than, and therefore will modify, δ. The call returns trivially if BVs A and B
are farther than the current δ, as this precludes any primitives within them being
closer than δ. Otherwise the algorithm is applied recursively to its children. For
leaf nodes it computes the exact distance between the primitives, and if the new
computed distance is less than δ, it updates δ.

To perform an approximate distance query, the distance between BVs A and
B is used as a lower limit to the exact distances between their primitives. If this
bound prevents δ from being reduced by more than the acceptable tolerance, that
recursion branch is terminated.

QUERIES ON BOUNDING VOLUMES

Algorithms for collision detection and distance computation need to perform the
underlying queries on the BVHs, including finding out whether two BVs over-
lap, or computing the separation distance between them. The performance of the
overall proximity query algorithm is governed largely by the performance of the
sub-algorithms used for proximity queries on a pair of BVs.
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FIGURE 39.2.1
L is a separating axis for OBBs A and B
because projection onto L renders them dis-
joint intervals.
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A number of specialized and highly optimized algorithms have been proposed to
perform these queries on different BVs. It is relatively simple to check whether two
spheres overlap. Two AABBs can be checked for overlap by comparing their dimen-
sions along the three axes. The separation distance between them can be computed
based on the separation along each axis. The overlap test can be easily extended
to k-DOPs, where their projections are checked along the k fixed axis [KHM+98].

An efficient algorithm to test two OBBs for overlap based on the separating axis
theorem (SAT) has been presented in [GLM96, Got00]. It computes the projection
of each OBB along 15 axes in 3D. The 15 axes are computed from the face normals
of the OBBs (6 face normals) and by taking the cross-products of the edges of the
OBBs (9 cross-products). It is shown that two OBBs overlap if and only if their
projection along each of these axes overlap. Furthermore, an efficient algorithm that
performs overlap tests along each axis has been described. In practice, it can take
anywhere from 80 to 240 arithmetic operations to check whether two OBBs overlap.
The computation is robust and works well in practice [GLM96]. Figure 39.2.1 shows
one of the separating axis tests for two rectangles in 2D.

Algorithms based on different swept-sphere volumes (SSVs) have been pre-
sented in [LGLM99]. Three types of SSVs are suggested: point swept-sphere (PSS),
line swept-sphere (LSS), and a rectangular swept-sphere (RSS). Each BV is formu-
lated by taking the Minkowski sum of the underlying primitive—a point, line, or
a rectangle in 3D, respectively—with a sphere. Algorithms to perform collision or
distance queries between these BVs can be formulated as computing the distance
between the underlying primitives. Larsen et al. [LGLM99] have presented an effi-
cient and robust algorithm to compute distance between two rectangles in 3D (as
well rectangles degenerating to lines and points). Moreover, they used priority di-
rected search and primitive caching to lower the number of bounding volume tests
for separation-distance computations.

In terms of higher-order bounding volumes, fast overlap tests based on spher-
ical shells have been presented in [KPLM98, KGL+98]. Each spherical shell cor-
responds to a portion of the volume between two concentric spheres. The overlap
test between two spherical shells takes into account their structure and reduces
to checking whether there is a point contained in a circle that lies in the positive
half-plane defined by two lines. The two lines and the circles belong to the same
plane.
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It is also possible to devise parallel algorithms to traverse the bounding volume
hierarchy using multi-core CPUs or many-core GPUs. Lee and Kim [LK10] propose
parallel proximity algorithms using heuristic task decomposition to perform both
Euclidean distance calculation and collision detection between rigid models. Many
parallel algorithms [LMM10, TMLT11] exploit thread and data parallelism on
many-core GPUs to perform fast hierarchy construction, updates, and traversal
using bounding volumes for rigid and deformable models.

PERFORMANCE OF BOUNDING VOLUME HIERARCHIES

The performance of BVHs on proximity queries is governed by a number of de-
sign parameters, including techniques to build the trees, the maximum number of
children per node, and the choice of BV type. An additional design choice is the
descent rule. This is the policy for generating recursive calls when a comparison of
two BVs does not prune the recursion branch. For instance, if BVs A and B failed
to prune, one may recursively compare A with each of the children of B, B with
each of the children of A, or each of the children of A with each of the children of
B. This choice does not affect the correctness of the algorithm, but may impact
the performance. Some of the commonly used algorithms assume that the BVHs
are binary trees and each primitive is a single triangle or a polygon. The cost of
performing the proximity query is given as [GLM96, LGLM99]:

T = Nbv × Cbv +Np × Cp,

where T is the total cost function for proximity queries, Nbv is the number of
bounding volume pair operations, and Cbv is the total cost of a BV pair operation,
including the cost of transforming each BV for use in a given configuration of the
models, and other per BV-operation overhead. Np is the number of primitive pairs
tested for proximity, and Cp is the cost of testing a pair of primitives for proximity
(e.g., overlaps or distance computation).

Typically, for tight-fitting bounding volumes, e.g., oriented bounding boxes
(OBBs), Nbv and Np are relatively small, whereas Cbv is relatively high. In contrast,
Cbv is low while Nbv and Np may be larger for simple BV types like spheres and
axis-aligned bounding boxes (AABBs). Due to these opposing trends, no single BV
yields optimum performance for proximity queries in all situations.

39.3 CONTINUOUS COLLISION DETECTION

Earlier collision detection algorithms only check for collisions at sample configura-
tions. As a result, they may miss a collision that occurs between two successive
configurations or time steps. This is sometimes known as the tunneling problem,
because it typically occurs when a rapidly moving object passes undetected through
a thin obstacle. Continuous collision detection (CCD) algorithms avoid the tun-
neling problem by interpolating a continuous motion trajectory between successive
configurations and checking for collisions along that trajectory. If a collision occurs,
the first time of contact (ToC) between the moving objects is reported.
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RIGID MODELS

At a broad level, CCD algorithms can be classified into algebraic equation solvers,
swept-volume formulations, adaptive bisection approaches, kinetic data structures
(KDS), Minkowski sum formulations, and conservative advancement (CA).

Algebraic equation solvers [Can86, CWLK06, KR03, RKC00] compute the
ToC by numerically finding roots of low-order polynomials, while swept-volume for-
mulations [Cam90, AMBJ06] operate directly on 4D volumes swept out by object
motion over time. Kinetic data structures [ABG+00, KGS97, KSS02] are based
on the formal framework of KDS to keep track of collision events of models during
their motion and exploits motion coherence and geometric locality. Minkowski
sum formulations [Ber04] pose a CCD problem as ray shooting against the
translational configuration space obstacle, which is equivalent to Minkowski sums
between two translating models. Adaptive bisection approaches [SWF+93,
HBZ90, RKC02, SSL02] find the ToC by adaptively subdividing the expected
collision-time interval, and conservative advancement [Lin93, Mir96, ZKM08,
TKM09, TKM10] conservatively advances the time step while avoiding collision
until it reaches the ToC.

Most of these approaches are unable to perform fast CCD queries on general
polygonal models, although some can handle polygon-soup models [RKC02, SSL02].
Redon et al. [RKC02] use a continuous version of the separating axis theorem to
extend the static OBB-tree algorithm [GLM96] to CCD, and demonstrate real-time
performance on polygonal models. But the algorithm becomes overly conservative
when there is a large rotation between two configurations. For polyhedral models,
there is a faster algorithm [ZKM08] using conservative advancement that finds the
ToC by comparing an upper bound of motion trajectory against the velocity of the
models. Tang et al. [TKM09] use controlled advancement to detect collision for
polygon-soup model by adaptively adjusting the advancement step, and they extend
this work by using different acceleration techniques. This approach is also applicable
to articulated models [TMK14]. FCL [PCM12] also uses an implementation of
[TKM09], which forms part of a generic collision and proximity detection library.

ARTICULATED MODELS

A conservative condition is used in [SSL02] to guarantee a collision-free motion
between two configurations, but such a condition is likely to become overly conser-
vative when an object slides over another object. Redon et al. [RKLM04] describe
an extension of their previous algorithm [RKC02] to articulated models, but this
algorithm is relatively slow for complicated objects. Zhang et al. have extended
their approach [ZKM08] to articulated models [ZRLK07] by modeling each link as
a polyhedron.

DEFORMABLE MODELS

CCD algorithms for deformable models compute all possible times of contact be-
tween pairs of overlapping primitive during the motion, including self-collisions
between the primitives. In order to perform a continuous collision query between
two triangle primitives, an approach based on algebraic equation solvers was first
introduced by Moore and Wilhelms [MW88] using fifth-order algebraic equations.
These equations were further reduced to cubic by taking into account co-planarity
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FIGURE 39.3.1
In this simulation, a cloth falls into a funnel and passes through it under the pressure
of a ball. This model has 47K vertices, 92K triangles, and a lot of self-collisions. The
GPU-based CCD algorithm [TMLT11] takes 4.4ms and 10ms per frame to compute all the
collisions.

constraints. In this case, detecting collisions between deforming triangles corre-
sponds to performing pairwise six face-vertex and nine edge-edge elementary tests.
Each elementary test reduces to solving a cubic algebraic equation [Pro97, BFA02].
Some filters can be used to accelerate these tests [TMT10a]. Another approach
based on conservative advancement (CA) for deforming objects was presented by
Tang et al. [TKM10], which was extended from [ZLK06, ZRLK07, TKM09]. The
CA-based algorithms are able to avoid solving high-order algebraic equations. In
order to avoid redundant elementary tests, the connectivity and adjacency infor-
mation of a deformable mesh can be used [GKJ+05, TCYM08] or feature-based
hierarchies [CTM08] can be also employed.

Most CCD algorithms for deformable objects try to reduce the number of self-
collision queries [TCYM08] and redundant elementary tests [TMY+11]. The self-
collisions can be classified into two types: self-collision between adjacent, and be-
tween non-adjacent triangles or the primitives. In practice, the cost of self-collisions
can account for 50-90% of the total running time of the algorithm [GKJ+05]. The
normal cone technique was proposed to cull non-self-colliding triangles [Pro97] for
discrete collision detection and was extended to CCD by Tang et al. [TKM10].
The chromatic decomposition technique can also be used to accelerate self-collisions
[GKJ+05]. Schvartzman et al. [SPO10] presented a star-contour test as a sufficient
condition to determine whether the contour of a projected surface patch is collision-
free or not. These approaches are designed to reduce the number of elementary
tests. By exploiting the abundant parallelism some techniques have been proposed
to utilize multi-core CPUs [KHY09] [TMT10b], GPUs [LGS+09, TMLT11], and
their hybrid combinations [KHH+09].

RELIABLE METHODS

Most CCD algorithms are implemented using finite-precision arithmetic, potentially
resulting in a false negative or a false positive. It is important to perform reliable
CCD queries, as it is well known that even a single missed collision can affect the
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accuracy of the entire simulation system.
The most reliable algorithms are based on exact computations [BEB12] that

can perform reliable queries with no false negatives or false positives. Recently,
Tang et al. [TTWM14] presented an exact algorithm based on Bernstein sign clas-
sification. Both of these methods are based on an exact computation paradigm and
use extended precision libraries to perform accurate CCD computations. In prac-
tice, these exact arithmetic operations can be expensive for real-time applications.
Furthermore, it can be difficult to implement such exact arithmetic operations or
libraries on GPUs or embedded processors. The second category of accurate so-
lutions for CCD computations is based on performing floating-point error analysis
and using appropriate error tolerances [Wan14]. This approach can be used on any
processors that support IEEE floating-point arithmetic operations. The resulting
CCD algorithm (SafeCCD) eliminates false negatives altogether but can still result
in a high number of false positives. Wang et al. [WTTM15] describe a formulation
based on Bernstein sign classification that takes advantage of the geometry proper-
ties of Bernstein basis and Bézier curves to perform Boolean collision queries. This
approach eliminates all the false negatives and 90 ∼ 95% of the false positives.

39.4 PENETRATION-DEPTH COMPUTATION

In this section, we briefly review penetration depth (PD) computation algorithms
between convex polytopes and general polyhedral models. The PD of two inter-
penetrating objects A and B is defined as the minimum translation distance that
one object undergoes to make the interiors of A and B disjoint. It can be also
defined in terms of the TCSO. When two objects are overlapping, the origin of
the Minkowski sum of A and −B is contained inside the TCSO. The penetra-
tion depth corresponds to the minimum distance from the origin to the surface
of TCSO [Cam97]. PD computation is often used in motion planning [HKL+98],
contact resolution for dynamic simulation [MZ90, ST96] and force computation in
haptic rendering [KOLM02]. Fig. 39.4.1 shows a haptic rendering application of
penetration-depth and separation-distance computation. For example, computa-
tion of dynamic response in penalty-based methods often needs to perform PD
queries for imposing the non-penetration constraint for rigid body simulation. In
addition, many applications (such as motion planning and dynamic simulation) re-
quire a continuous distance measure when two (nonconvex) objects collide for a
well-posed computation.

Several algorithms for PD computation involve computing Minkowski sums
and the closest point on its surface from the origin. The worst-case complexity of
the overall PD algorithm is dominated by computing Minkowski sums, which can
be Ω(n2) for convex polytopes and Ω(n6) for general (or nonconvex) polyhedral
models [DHKS93]. Given the complexity of Minkowski sums, many approximation
algorithms have been proposed in the literature for fast PD estimation.

CONVEX POLYTOPES

Dobkin et al. [DHKS93] proposed a hierarchical algorithm to compute the direc-
tional PD using Dobkin and Kirkpatrick polyhedral hierarchy. For any direction d,
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FIGURE 39.4.1
Penetration depth is applied to virtual exploration of a digestive system using haptic in-
teraction to feel and examine different parts of the model. The distance computation and
penetration depth computation algorithms are used for disjoint (D) and penetrating (P)
situations, respectively, to compute the forces at the contact areas.

it computes the directional penetration depth in O(log n logm) time for polytopes
with m and n vertices. Agarwal et al. [AGHP+00] designed a randomized approach

to compute the PD values [AGHP+00], achieving O(m
3
4+εn

3
4+ε + m1+ε + n1+ε)

expected time for any positive constant ε. Cameron [Cam97] presented an exten-
sion to the GJK algorithm [GJK88] to compute upper and lower bounds on the
PD between convex polytopes. Bergen further elaborated this idea in an expand-
ing polytope algorithm [Ber01]. The algorithm iteratively improves the result of
the PD computation by expanding a polyhedral approximation of the Minkowski
sums of two polytopes. Kim et al. [KLM02] presented an incremental algorithm
that marches toward a “locally optimal” solution by walking on the surface of the
Minkowski sum. The surface of the TCSO is implicitly computed by constructing
a local Gauss map and performing a local walk on the polytopes.

POLYHEDRAL MODELS

Algorithms for penetration-depth estimation between general polygonal models are
based on discretization of the object space containing the objects, or use of dig-
ital geometric algorithms that perform computations on a finite resolution grid.
Fisher and Lin [FL01] presented a PD estimation algorithm based on the distance-
field computation using the fast marching level-set method. It is applicable to all
polyhedral objects as well as deformable models, and it can also check for self-
penetration. Hoff et al. [HZLM01, HZLM02] proposed an approach based on per-
forming discretized computations on graphics rasterization hardware. It uses multi-
pass rendering techniques for different proximity queries between general rigid and
deformable models, including penetration depth estimation. Kim et al. [KLM02]
presented a fast approximation algorithm for general polyhedral models using a
combination of object-space as well as discretized computations. Given the global
nature of the PD problem, it decomposes the boundary of each polyhedron into con-
vex pieces, computes the pairwise Minkowski sums of the resulting convex polytopes
and uses graphics rasterization hardware to perform the closest-point query up to a
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given discretized resolution. The results obtained are refined using a local walking
algorithm. To further speed up this computation and improve the estimate, the al-
gorithm uses a hierarchical refinement technique that takes advantage of geometry
culling, model simplification, accelerated ray-shooting, and local refinement with
greedy walking. The overall approach combines discretized closest-point queries
with geometry culling and refinement at each level of the hierarchy. Its accuracy
can vary as a function of the discretization error. Recently, Je et al. [JTL+12]
propose a real-time algorithm that finds the PD between general polygonal models
based on iterative and local optimization techniques. The iterative optimization
consists of two projection steps, in- and out-projection. The in-projection and out-
projection steps are formulated as a variant of the continuous collision detection
algorithm, and a linear complementarity problem, respectively. A locally optimal
solution is finally obtained using a type of Gauss-Seidel iterative algorithm. This
algorithm can process complicated models consisting of tens of thousands triangles
at interactive rates.

GENERALIZED PENERATION-DEPTH COMPUTATION

Conventional penetration-depth algorithms tend to overestimate the amount of
penetration, as the resulting separating motion is often limited to translation only.
Another set of algorithms [ZKVM07] use a different penetration measure, called
generalized PD, which is defined as a minimal rigid motion used to separate over-
lapping objects; here, the minimality is based on some distance metric in con-
figuration space such as Dg [ZKVM07], S and geodesic [NPR09], displacement
[ZKM07b, ZKM07a], and object norm [ZKM07a]. However, the exact computation
of generalized PD may require an arrangement of high dimensional contact surfaces,
resulting in O(n12) combinatorial complexity for a rigid model with n triangles in
3D [ZKVM07]. Thus, all existing approaches use an approximate method.

Very few algorithms exist to compute generalized PD. Zhang et al. [ZKVM07]
first proposed the notion of generalized PD, and presented a method to compute
only the lower and upper bounds of generalized PD for rigid models. Later, the
same authors proposed a more efficient technique, using a contact-space sampling
and displacement metric [ZKM07a]. Nawratil et al. [NPR09] presented methods
based on kinematical geometry, using S and geodesic metrics. However, all of these
methods are rather slow for interactive applications, and it is not clear whether they
are applicable to articulated models. Recently, Tang and Kim [TK14] extended the
idea of iterative, contact-space projection techniques [JTL+12] to the generalized
PD problem. This algorithm is capable of computing the generalized PD for both
rigid and articulated models at interactive rates. Pan et al. [PZM13] presented an
algorithm to approximate the boundary of C-obstacle space using active learning
and use that approximation to compute the PD.

OTHER METRICS

Other metrics used to characterize the intersection between two objects include the
growth distance defined by Gilbert and Ong [GO94]. This is a consistent distance
measure regardless of whether the objects are disjoint or overlapping; it is differs
from the PD between two interpenetrating convex objects.
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39.5 HAUSDORFF DISTANCE

Since the seminal work by [Ata83], different algorithms for calculating Hausdorff
distances have been proposed in the literature. In this section, we briefly survey
work relevant to Hausdorff distance computation for polygonal models in R2 and
in R3. We refer readers to [AG00, TLK09] for more extensive surveys of the field.

For R2, [Ata83] presented a linear-time algorithm for convex polygons. For
simple, non-convex polygons with n and m vertices, [ABB95] presented an O((n+
m) log(n+m))-time algorithm based on an observation that the Hausdorff distance
can only be realized at the points of intersection between Voronoi boundary sur-
faces and the polygon edges. In R3, for polygon-soup models with n triangles,
[God98, ABG+03] presented deterministic and randomized algorithms that run re-
spectively in O(n5) and O(n3+ε), where ε > 0. [Lla05] proposed an algorithm using
random covering, and also demonstrated implementation results for simple, convex
ellipsoids. Since then, more practical algorithms have been put forward, but all
these algorithms only approximate the Hausdorff distance due to the complexity
of the exact computation. [GBK05] use polygon subdivision to approximate the
solution within an error bound. [CRS98, ASCE02] sample a polygonal surface to
approximate the distance, but no sampling analysis is provided. More recently,
a real-time algorithm has been proposed to approximate the Hausdorff distance
within a error bound between complex, polygonal models in R3 using bounding
volume hierarchies [TLK09].

39.6 SPLINE AND ALGEBRAIC OBJECTS

Most of the algorithms highlighted above are limited to polygonal objects. In many
applications of geometric and solid modeling, curved objects whose boundaries are
described using rational splines or algebraic equations are used (cf. Chapter 56).
Algorithms used to perform different proximity queries on these objects may be
classified by subdivision methods, tracing methods, analytic methods and bounding
volume hierarchy methods. See [Hof89, Man92, Far14] for surveys. Next, we briefly
enumerate these methods.

SUBDIVISION METHODS

All subdivision methods for parametric surfaces work by recursively subdividing
the domain of the two surface patches in tandem, and examining the spatial rela-
tionship between patches [LR80, SWF+93, MP09]. Depending on various criteria,
the domains are further subdivided and recursively examined, or the given recur-
sion branch is terminated. In all cases, whether it is the intersection curve or the
distance function, the solution is known only to some finite precision.

TRACING METHODS

The tracing method begins with a given point known to be on the intersection
curve [BFJP87, MC91, KM97]. Then the intersection curve is traced in sufficiently
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small steps until the edge of the patch is found, or until the curve loops back to itself.
In practice, it is easy to check for intersections with a patch boundary, but difficult
to know when the tracing point has returned to its starting position. Frequently this
is posed as an initial-value differential equations problem [KPW90], or as solving a
system of algebraic equations [MC91, KM97, LM97]. At the intersection point on
the surfaces, the intersection curve must be mutually orthogonal to the normals of
the surfaces. Consequently, the vector field that the tracing point must follow is
given by the cross product of the normals.

ANALYTIC METHODS

Analytic methods usually involve implicitizing one of the parametric surfaces—
obtaining an implicit representation of the model [SAG84, MC92]. The paramet-
ric surface is a mapping from (u, v)-space to (x, y, z)-space, and the implicit sur-
face is a mapping from (x, y, z)-space to R. Substituting the parametric functions
fx(u, v), fy(u, v), fz(u, v) for x, y, z of the implicit function leads to a scalar function
in u and v. The locus of roots of this scalar function map out curves in the (u, v)
plane, which are the pre-images of the intersection curve [KPP90, MC91, KM97,
Sar83]. Based on its representation as an algebraic plane curve, efficient algorithms
have been proposed by a number of researchers [AB88, KM97, KCMh99]. Recently,
a parallel technique utilizing the CPU and GPU multicore architecture has been
introduced to find surface-surface intersections [PEK+11].

BOUNDING VOLUME HIERARCHY METHODS

For free-form surfaces, BVHs can be also constructed to accelerate distance calcula-
tion between surfaces. Kim et al. [KOY+11] proposed the Coons BVH of free-form
surfaces by recursively computing the bilinear surface of the four corners of patches
(i.e., Coons patch) comprising the underlying surface. The resulting Coons BVH
can be used to accelerate collision detection and Euclidean distance calculation
[KOY+11] as well as Hausdorff distance calculation [KOY+13] while saving the
memory space of BVH considerably compared to conventional BVHs for a polyhe-
dral surface.

39.7 LARGE ENVIRONMENTS

Large environments are composed of multiple moving objects. Different methods
have been proposed to overcome the bottleneck of O(n2) pairwise tests in an en-
vironment composed of n objects. The problem of performing proximity queries
in large environments is typically divided into two parts [Hub93, CLMP95]: the
broad phase, in which we identify the pair of objects on which we need to perform
different proximity queries, and the narrow phase, in which we perform the exact
pairwise queries. An architecture for multi-body collision detection algorithm is
shown in Figure 39.7.1. In this section, we present a brief overview of algorithms
used in the broad phase.

The simplest algorithms for large environments are based on spatial subdi-
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FIGURE 39.7.1
Typically, the object’s motion is constrained by collisions with other objects in the simulated envi-
ronment. Depending on the outcome of the proximity queries, the resulting simulation computes an
appropriate response.
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visions. The space is divided into cells of equal volume, and at each instance
the objects are assigned to one or more cells. Collisions are checked between all
object pairs belonging to each cell. In fact, Overmars presented an efficient al-
gorithm based on a hash table to efficiently perform point location queries in fat
subdivisions [Ove92] (see also Chapter 38). This approach works well for sparse
environments in which the objects are uniformly distributed through the space.
Another approach operates directly on 4D volumes swept out by object motion
over time [Cam90]. Efficient algorithms for maintenance and self-collision tests for
kinematic chains composed of multiple links have been presented in [LSHL02].

Several algorithms compute an axis-aligned bounding box (AABB) for each
object, based on their extremal points along each direction. Given n bounding
boxes, they check which boxes overlap in space. A number of efficient algorithms
are known for the static version of this problem. In 2D, the problem reduces
to checking 2D intervals for overlap using interval trees and can be performed in
O(n log n + s) where s is the total number of intersecting rectangles [Ede83]. In
3D, algorithms of O(n log2 n + s) complexity are known, where s is the number
of overlapping pairwise bounding boxes [HSS83, HD82]. Algorithms for N -body
proximity queries in dynamic environments are based on the sweep and prune
approach [CLMP95]. This incrementally computes the AABBs for each object
and checks them for overlap by computing the projection of the bounding boxes
along each dimension and sorting the interval endpoints using insertion sort or
bubble sort [SH76, Bar92, CLMP95]. In environments where the objects make
relatively small movements between successive frames, the lists can be sorted in
expected linear time, leading to expected-time O(n+m), where m is the number of
overlapping intervals along any dimension. A parallel version of sweep and prune
has been implemented using graphics hardware by performing sweeps in a massively
parallel fashion [LHLK10]. It is capable of finding all overlaps among one million
AABB pairs at interactive rates. These algorithms are limited to environments
where objects undergo rigid motion. Govindaraju et al. [GRLM03] have presented
a general algorithm for large environments composed of rigid as well as nonrigid
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FIGURE 39.7.2
GPU-based collision detection and simulation at interactive rates for massive bodies [LHLK10].
From left to right: N-body collision detection for 1M arbitrarily moving boxes, simulation of 0.3M
particles, rigid-body dynamics for 16K torus models.

motion. This algorithm uses graphics hardware to prune the number of objects
that are in close proximity and eventually checks for overlapping triangles between
the objects. In practice, it works well in large environments composed of nonrigid
and breakable objects. However, its accuracy is governed by the resolution of the
rasterization hardware.

OUT-OF-CORE ALGORITHMS

In many applications, it may not be possible to load a massive geometric model
composed of millions of primitives in the main memory for interactive proximity
queries. In addition, algorithms based on spatial partitioning or bounding volume
hierarchies also add additional memory overhead. Thus, it is important to de-
velop proximity-query algorithms that use a relatively small or bounded memory
footprint.

Wilson et al. [WLML99] presented an out-of-core algorithm to perform collision
and separation-distance queries on large environments. It uses overlap graphs to
exploit locality of computation. For a large model, the algorithm automatically en-
codes the proximity information between objects and represents it using an overlap
graph. The overlap graph is computed off-line and preprocessed using graph parti-
tioning, object decomposition, and refinement algorithms. At run time it traverses
localized subgraphs and orders the computations to check the corresponding geom-
etry for proximity tests, as well as pre-fetch geometry and associated hierarchical
data structures. To perform interactive proximity queries in dynamic environ-
ments, the algorithm uses the BVHs, modifies the localized subgraph(s) on the fly,
and takes advantage of spatial and temporal coherence.

39.8 PROXIMITY QUERY PACKAGES

Many systems and libraries have been developed for performing different proximity
queries. These include:

PQP: PQP, a Proximity Query Package, supports collision detection, separation-
distance computation or tolerance verification. It uses OBBTree for collision
queries and a hierarchy of swept-sphere volumes to perform distance
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queries [LGLM99]. It assumes that each object is a collection of triangles and
can handle polygon soup models. http://gamma.cs.unc.edu/SSV

SWIFT: SWIFT is a library for collision detection, distance computation, and
contact determination between 3D polygonal objects undergoing rigid motion.
It assumes that the input primitives are convex polytopes or a union of con-
vex pieces. The underlying algorithm is based on a variation of LC [EL00].
The resulting system is faster, more robust, and more memory efficient than
I-COLLIDE. http://gamma.cs.unc.edu/SWIFT

SWIFT++: SWIFT++ is a library for collision detection, approximate and exact
distance computation, and contact determination between closed and bounded
polyhedral models. It decomposes the boundary of each polyhedra into convex
patches and precomputes a hierarchy of convex polytopes [EL01]. It uses the
SWIFT library to perform the underlying computations between the bounding
volumes. http://gamma.cs.unc.edu/SWIFT++

QuickCD: QuickCD is a general-purpose collision detection library, capable of
performing exact collision detection on complex models. The input model is a
collection of triangles, with assumptions on the structure or topologies of the
model. It precomputes a hierarchy of k-DOPs for each object and uses them
to perform fast collision queries [KHM+98]. http://www.ams.sunysb.edu/

~jklosow/quickcd/QuickCD.html

OPCODE: OPCODE is a collision detection library between general polygonal
models. It uses a hierarchy of AABBs. It is memory efficient in comparison to
earlier collision packages. http://www.codercorner.com/Opcode.htm

DEEP: DEEP estimates the penetration depth and the associated penetration
direction between two overlapping convex polytopes. It uses an incremental
algorithm that computes a “locally optimal” solution by walking on the surface
of the Minkowski sum of two polytopes [KLM02]. http://gamma.cs.unc.edu/

DEEP

PIVOT: PIVOT computes generalized proximity information between arbitrary
objects using graphics hardware. It uses multipass rendering techniques and
accelerated distance computation, and provides an approximate solution for
different proximity queries. These include collision detection, distance com-
putation, local penetration depth, contact region and normals, etc. [HZLM01,
HZLM02]. It involves no preprocessing and can handle deformable models.
http://gamma.cs.unc.edu/PIVOT

FAST/C2A: These two packages perform continuous collision detection (CCD)
between 2-manifold, rigid models and between non-manifold, rigid models, re-
spectively, and report the first time of contact between them as well as their
associated contact features. Both packages can perform CCD at interactive
rates on a standard PC for complex models consisting of 10K ∼ 70K triangles
[ZLK06, TKM09]. http://graphics.ewha.ac.kr/FAST, ∼/C2A

CATCH: CATCH performs CCD between articulated models consisting of 2-
manifold links and reports the first time of contact between them as well as their
associated contact features. CATCH is also capable of reporting self-collisions
[ZRLK07]. http://graphics.ewha.ac.kr/CATCH

SelfCCD: SelfCCD can be used for continuous collision detection between de-
formable models. It can also compute self-collisions and uses many acceleration
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techniques described in [CTM08, TCYM08, TMT10a]. It has been used for self-
collisions in cloth and other deformable benchmarks.
http://gamma.cs.unc.edu/SELFCCD

MCCD: MCCD is a parallel extension of SelfCCD that can exploit the multiple
CPU cores to accelerate the collision computations. It has been used to obtain
almost linear speedups on 8 or 16 cores for complex benchmarks [TMT10b].
http://gamma.cs.unc.edu/MCCD

BSC/TightCCD: These two packages are used to perform reliable continuous
collision queries between triangulated models [TTWM14, WTTM15]. They are
based on extended precision arithmetic or floating point error bounds.
http://gamma.cs.unc.edu/BSC

FCL: FCL is a flexible collision library that can perform multiple queries includ-
ing collision detection, separation distance, continuous collision detection and
penetration depth [PCM12]. Furthermore, it can handle rigid, deformable,
articulated and point-cloud models. It has also been integrated into ROS.
http://gamma.cs.unc.edu/FCL

PolyDepth: PolyDepth estimates the penetration depth and the associated pen-
etration direction between two overlapping polygonal models. PolyDepth cal-
culates a “locally optimal” solution and is also capable of calculating multiple
solutions for each overlapping region [JTL+12]. http://graphics.ewha.ac.kr/
polydepth

gSaP: gSaP cull collisions between very large numbers of moving bodies using
graphics processing units (GPUs). gSaP implemented entirely on GPUs using
the CUDA framework can handle a million moving objects at interactive rates.
[LHLK10]. http://graphics.ewha.ac.kr/gsap

Bullet: Bullet is an open source collision detection, rigid body and soft body
dynamics library, primarily designed for use in computer games, visual effects and
robotic simulation. It supports both discrete and continuous collision detection
for convex and non-convex mesh models. http://bulletphysics.org

39.9 SOURCES AND RELATED MATERIAL

RELATED CHAPTERS

Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 38: Point location
Chapter 42: Geometric intersection
Chapter 50: Algorithmic motion planning
Chapter 51: Robotics
Chapter 53: Modeling motion
Chapter 67: Software
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