
38 POINT LOCATION
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INTRODUCTION

“Where am I?” is a basic question for many computer applications that employ
geometric structures (e.g., in computer graphics, geographic information systems,
robotics, and databases). Given a set of disjoint geometric objects, the point-
location problem asks for the object containing a query point that is specified by
its coordinates. Instances of the problem vary in the dimension and type of objects
and whether the set is static or dynamic. Classical solutions vary in preprocessing
time, space used, and query time. Recent solutions also consider entropy of the
query distribution, or exploit randomness, external memory, or capabilities of the
word RAM machine model.

Point location has inspired several techniques for structuring geometric data,
which we survey in this chapter. We begin with point location in one dimension
(Section 38.1) or in one polygon (Section 38.2). In two dimensions, we look at
how techniques of persistence, fractional cascading, trapezoid graphs, or hierarchi-
cal triangulations can lead to optimal comparison-based methods for point location
in static subdivisions (Section 38.3), the current best methods for dynamic subdi-
visions (Section 38.4), and at methods not restricted to comparison-based models
(Section 38.5). There are fewer results on point location in higher dimensions; these
we mention in (Section 38.6).

The vision/robotics term localization refers to the opposite problem of de-
termining (approximate) coordinates from the surrounding local geometry. This
chapter deals exclusively with point location.

38.1 ONE-DIMENSIONAL POINT LOCATION

The simplest nontrivial instance of point location is list searching. The objects are
points x1 ≤ · · · ≤ xn on the real line, presented in arbitrary order, and the intervals
between them, (xi, xi+1) for 1 ≤ i < n. The answer to a query q is the name of the
object containing q.

The list-searching problem already illustrates several aspects of general point
location problems and several data structure innovations.

GLOSSARY

Decomposable problem: A problem whose answer can be obtained from the
answers to the same problem on the sets of an arbitrary partition of the in-
put [Ben79, BS80]. The one-dimensional point location as stated above—find
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the interval containing q—is not decomposable, since partitioning into subsets
of points gives a very different set of intervals. “Find the lower endpoint of
the containing interval” is decomposable, however; one can report the highest
“lowest point” returned from all subsets of the partition.

Preprocessing/queries: If one assumes that many queries will search the same
input, then resources can profitably be spent building data structures to facilitate
the search. Three resources are commonly analyzed:

Query time: Computation time to answer a single query, given a point loca-
tion data structure. Usually a worst-case upper bound, expressed as a function
of the number of objects in the structure, n.

Preprocessing time: Time required to build a point location structure for n
objects.

Space: Memory used by the point location structure for n objects.

Dynamic point location: Maintaining a location data structure as points are
inserted and deleted. The one-dimensional point location structures can be made
dynamic without changing their asymptotic performances.

Randomized point location: Data structures whose preprocessing algorithms
may make random choices in an attempt to avoid poor performance caused by
pathological input data. Preprocessing and query times are reported as expecta-
tions over these random choices. Randomized algorithms make no assumptions
on the input or query distributions. They often use a sample to obtain informa-
tion about the input distribution, and can achieve good expected performance
with simple algorithms.

Entropy bounds: If the probability of a query falling in region i is pi, then
Shannon entropy H =

∑

i−pi log2(pi) is a lower bound for expected query time,
where the expectation is over the query probability distribution.

Static optimality: A (self-adjusting) search structure has static optimality if, for
any (infinite) sequence of searches, its cumulative search time is asymptotically
bounded by cumulative time of the best static structure for those searches.

Transdichotomous: Machine models, such as the word RAM, that are not re-
stricted to comparisons, are called transdichotomous if they support bit opera-
tions or other computations that allow algorithms to break through information-
theoretic lower bounds that apply to comparison-based models, such as decision
trees.

LIST SEARCH AS ONE-DIMENSIONAL POINT LOCATION

Table 38.1.1 reports query time, preprocessing time, and space for several search
methods. Linear search requires no additional data structure if the problem is de-
composable. Binary search trees or randomized search trees [SA96, Pug90] require
a total order and an ability to do comparisons. An adversary argument shows that
these comparison-based query algorithms require Ω(logn) comparisons. If however,
searches will be near each other, or near the ends, a finger search tree can find an
element d intervals away in O(log d) time. If the probability distribution for queries
is known, then the lower bound on expected query time is H , and expected H + 2
can be achieved by weight-balanced trees [Meh77]. Even if the distribution is not
known, splay trees achieve static optimality [ST85].
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Note that these one-dimensional structures can be built dynamically by oper-
ations that take the same amortized time as performing a query. So in theory, we
need not report the preprocessing time; that will change in higher dimensions.

If we step away from comparison-based models, a useful method in practice is
to partition the input range into b equal-sized buckets, and to answer a query by
searching the bucket containing the query. If the points are restricted to integers
[1, . . . , U ], then van Emde Boas [EBKZ77] has shown how hashing techniques can be
applied in stratified search trees to answer a query in O(log logU) time. Combining
these with Fredman and Willard’s fusion trees [FW93] can achieve O(

√
logn)-time

queries without the restriction to integers [CP09].

TABLE 38.1.1 List search as one-dimensional point location.

TECHNIQUE QUERY PREPROC SPACE

Linear search O(n) none data only

Binary search O(logn) O(n logn) O(n)

Randomized tree exp. O(logn) exp. O(n logn) O(n)

Finger search O(log d) O(n logn) O(n)

Weight-balance tree exp. H+2 O(n logn) O(n)

Splay tree O(OPT) in limit O(n) O(n)

Bucketing O(n) O(n+ b) O(n+ b)

van Emde Boas tree O(log logU) exp. O(n) O(n)

word RAM O(
√
logn) O(n log logn) O(n)

38.2 POINT-IN-POLYGON

The second simplest form of point location is to determine whether a query point q
lies inside a given n-sided polygon P [Hai94]. Without preprocessing the polygon,
one may use parity of the winding or crossing numbers: count intersections of a ray
from q with the boundary of polygon P . Point q is inside P iff the number is odd.
A query takes O(n) time.

FIGURE 38.2.1

Counting degenerate crossings:
eight crossings imply q 6∈ P .
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One must count carefully in degenerate cases when the ray passes through a
vertex or edge of P . When the ray is horizontal, as in Figure 38.2.1, then edges of
P can be considered to contain their lower but not their upper endpoints. Edges
inside the ray can be ignored. This is consistent with the count obtained by per-
turbing the ray infinitesimally upward. Schirra [Sch08] experimentally observes
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which points are incorrectly classified using inexact floating point arithmetic in
various algorithms. Stewart [Ste91] considered point-in-polygon algorithm design
when vertex and edge positions may be imprecise.

To obtain sublinear query times, preprocess the polygon P using the more
general techniques of the next sections.

38.3 PLANAR POINT LOCATION: STATIC

Theoretical research has produced a number of planar point location methods that
are optimal for comparison-based models: O(n log n) time to preprocess a planar
subdivision with n vertices for O(log n) time queries using O(n) space. Preprocess-
ing time reduces to linear if the input is given in an appropriate format, and some
preprocessing schemes have been parallelized (see Chapter 46).

We focus on the data structuring techniques used to reach optimality: persis-
tence, fractional cascading, trapezoid graphs, and hierarchical triangulations.

In a planar subdivision, point location can be made decomposable by storing
with each edge the name of the face immediately above. If one knows for each
subproblem the edge below a query, then one can determine the edge directly below
and report the containing face, even for an arbitrary partition into subproblems.

GLOSSARY

Planar subdivision: A partitioning of a region of the plane into point vertices,
line segment edges, and polygonal faces.

Size of a planar subdivision: The number of vertices, usually denoted by n.
Euler’s relation bounds the numbers of edges e ≤ 3n− 6 and faces f ≤ 2n− 4;
often the constants are suppressed by saying that the number of vertices, edges,
and faces are all O(n).

Monotone subdivision: A planar subdivision whose faces are x-monotone poly-
gons: i.e., the intersection of any face with any vertical line is connected.

Triangulation/trapezoidation: Planar subdivisions whose faces are triangles/
whose faces are trapezoids with parallel sides all in the same direction.

Dual graph: A planar subdivision can be viewed as a graph with vertices joined
by edges. The dual graph has a node for each face and an arc joining two faces
if they share a common edge.

SLABS AND PERSISTENCE

By drawing a vertical line through every vertex, as shown in Figure 38.3.1(a), we
obtain vertical slabs in which point location is almost one-dimensional. Two binary
searches suffice to answer a query: one on x-coordinates for the slab containing q,
and one on edges that cross that slab. Query time is O(log n), but space may be
quadratic if all edges are stored with the slabs that they cross.

The location structures for adjacent slabs are similar. We could sweep from
left to right to construct balanced binary search trees on the edges for all slabs:
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TABLE 38.3.1 A select few of the best static planar point location results known for

subdivision with n edges. Expectations are over decisions made by the

algorithm; averages are over a query distribution with entropy H . For

distance sensitivity, scale the subdivision to have unit area and denote

the distance from query q to the nearest boundary by ∆q. The static

optimality result is for regions of constant complexity.

TECHNIQUE QUERY PREPROC SPACE

Slab + persistence [ST86] O(logn) O(n logn) O(n)

Separating chain +

fractional cascade [EGS86] O(logn) O(n logn) O(n)

Randomized [HKH16] O(logn) exp. O(n logn) O(n)

Weighted randomized [AMM07] average (5 ln 2)H +O(1) exp. O(n logn) exp. O(n)

Optimal query [SA00] log2 n+
√

log2 n+Θ(1) O(22
√

log n) O(22
√

logn)

+ struct. sharing log2 n+
√

log2 n+O(log
1/4
2 n) exp. O(n logn) exp. O(n)

Optimal entropy [CDI+12] avg. H +O(H1/2 + 1) exp. O(n logn) O(n)

Distance sensitive [ABE+16] N min{logn,− log∆q} exp. O(n logn) O(n)

Static optimality [IM12] O(OPT) in limit O(n) O(n)

As we sweep over the right endpoint of an edge, we remove the corresponding tree
node. As we sweep over the left endpoint of an edge, we add a node. This takes
O(n logn) total time and a linear number of node updates. To store all slabs in
linear space, Sarnak and Tarjan [ST86] add to this the idea of persistence.

Rather than modifying a node to update the tree, copy the O(log n) nodes on
the path from the root to this node, then modify the copies. This node-copying
persistence preserves the former tree and gives access to a new tree (through
the new root) that represents the adjacent slab. The total space for n trees is
O(n logn). Figure 38.3.1(a) provides an illustration. The initial tree contains 8
and 1. (Recall that edges are named by the face immediately above.) Then 2, 3,
and 7 are added, 8 is copied during rebalancing, but node 1 is not changed. When
6 is added, 7 is copied in the rebalancing, but the two subtrees holding 1, 2, 3,
and 8 are not changed.

Limited node copying reduces the space to linear. Give each node spare left
and right pointers and left and right time-stamps. Build a balanced tree for the
initial slab. When a pointer is to be modified, use a spare and time-stamp it, if
there is a spare available. Future searches can use the time-stamp to determine
whether to follow the pointer or the spare. Otherwise, copy the node and modify
its ancestor to point to the copy. If the slab location structures are maintained
with O(1) rotations per update, then the amortized cost of copying is also O(1) per
update.

Preprocessing takes O(n logn) time to sort by x coordinates and build either
persistent data structure. To compare constants with other methods, the data
structure has about 12 entries per edge because of extra pointers and copying.
Searches take about 4 log2 N comparisons, where N is the number of edges that
can intersect a vertical line; this is because there are two comparisons per node and
“O(1) rotation” tree-balancing routines are balanced only to within a factor of two.

We will see two other slab-based data structures in Section 38.4 on dynamic
point location: interval trees and segment trees recursively merge slabs, and save
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FIGURE 38.3.1

Optimal static methods: (a) Slab (persistent); (b) separating chain (fractional cascading).
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space by choosing where to store segments in the resulting slab tree. The other
comparison-based point location schemes in this section do not represent slabs ex-
plicitly. Nevertheless, Chan and Pătraşcu [CP09] have convincingly argued that
point location in a slab is a fundamental operation in computational geometry; by
using a word RAM to perform point location in a slab faster than the comparison-
based lower bounds (Section 38.5), they are able to speed up many classical geo-
metric computations.

SEPARATING CHAINS AND FRACTIONAL CASCADING

If a subdivision is monotone, then its faces can be totally ordered consistent with
aboveness; in other words, we can number faces 1, . . . , f so that any vertical line
encounters lower numbers below higher numbers. The separating chain between
the faces < k and those ≥ k is a monotone chain of edges [LP77]. Figure 38.3.1(b)
shows all separating chains for a subdivision; the middle chain, k = 5, is shown
darkest.

A balanced binary tree of separating chains can be used for point location: if
query point q is above chain i and below chain i+1, then q is in face i. To preserve
linear space we need to avoid the duplication of edges in chains that can be seen in
Figure 38.3.1(b).

Note that the separating chains that contain an edge are defined by consecutive
integers; we can store the first and last with each edge. Then form a binary tree in
which each subtree stores the separating chains from some interval: at each node,
store the edges of the median chain that have not been stored higher in the tree,
and recursively store the intervals below and above the median in the left and right
subtrees respectively. The root, for example, stores all edges of the middle chain.
Since no edge is stored twice, this data structure takes O(n) space.

As we search the tree for a query point q, we keep track of the edges found so far
that are immediately above and below q. (Initially, no edges have been found.) Now,
the root of the subtree to search is associated with a separating chain. If that chain
does not contain one of the edges that we know is above or below q, then we search
the x-coordinates of edges stored at the node and find the one on the vertical line
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through q. We then compare against the separating chain and recursively search the
left or right subtree. Thus, this separating chain method [LP77] inspects O(log n)
tree nodes at a cost of O(log n) each, giving O(log2 n) query time.

To reduce the query time, we can use fractional cascading [CG86, EGS86] for
efficient search in multiple lists. As we traverse our search tree, at every node
we search a list by x-coordinates. We can make all searches after the first take
constant time, if we increase the total size of these lists by 50%. Pass every fourth x-
coordinate from a child list to its parent, and establish connections so that knowing
one’s position in the parent list gives one’s position in the child to within four nodes.

Preprocessing takes O(n) time on a monotone subdivision; arbitrary planar
subdivisions can be made monotone by plane sweep in O(n log n) time. One can
trade off space and query time in fractional cascading, but typical constants are 8
entries per edge for a query time of 4 log2 n.

TRAPEZOID GRAPH METHODS

Preparata’s [Pre81] trapezoid method is a simple, practical method that achieves
O(log n) query time at the cost of O(n log n) space. Its underlying search struc-
ture, the trapezoid graph, is the basis for important variations: randomized point
location in optimal expected time and space, a recursive application giving exact
worst-case optimal query time, and, in the next section, average time point location
achieving the entropy bound.

A trapezoid graph is a directed, acyclic graph (DAG) in which each non-leaf
node ν is associated with a trapezoid τν whose parallel sides are vertical and whose
top and bottom are either a single subdivision edge or are at infinity. Node ν splits
τν either by a vertical line through a subdivision vertex (a vertical node) or by
a subdivision edge (a horizontal node). The root is associated with a trapezoid
that contains the entire subdivision; each leaf reports the region that contains its
implied trapezoid.

Most planar point location structures can be represented as trapezoid graphs,
including the slab and separating chain methods. Bucketing and some triangulation
methods cannot, since they may make comparisons with coordinates or segments
that are not in the input.

FIGURE 38.3.2

An example subdivision with its trapezoid graph, using circles for vertical splits at vertices, rectangles
for horizontal splits at edges, and numbered leaves. Edges af , bf , and cf are cut and duplicated.
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In Preparata’s trapezoid method of point location, the trapezoid graph is a
tree constructed top-down from the root. Figure 38.3.2 shows an example. If
trapezoid τν does not contain a subdivision vertex or intersect an edge, then node ν
is a leaf. If every subdivision edge intersecting τν has at least one endpoint inside
τν , then make ν a vertical node and split τν by a vertical line through the median
vertex. Otherwise, make ν a horizontal node and split τν by the median of all
edges cutting through τν , and call ν a horizontal split node. This tree has depth
(and query time) 3 logn [SA00]. Experiments [EKA84] suggest that this method
performs well, although its worst-case size and preprocessing time are O(n log n).

In a delightful paper, Seidel and Adamy [SA00] give the exact number of com-
parisons for point location in a planar subdivision of n edges by establishing a tight
bound of log2 n +

√

log2 n + Θ(1) on the worst-case height of a trapezoid graph.
(The paper has an extra factor of O(log2 log2 n) that was removed by Seidel and
Kirkpatrick [unpublished].) The lower bound uses a stack of n/2 horizontal lines
that are each cut into two along a diagonal.

The upper bound divides a trapezoid into t = 2
√

log2 n slabs and uses hor-
izontal splits to define trapezoids with point location subproblems to be solved
recursively. Each subproblem with a location structure of depth d is given weight
2d, and a weight balanced trapezoid tree is constructed to determine the relevant
subproblem for a query. Query time in this trapezoid tree is optimal. Preprocessing
time is determined by the number of tree nodes, which is O(n2t).

They also show that Ω(n logn) space is required for a trapezoid tree, but that
space can be reduced to linear by using cuttings to make the trapezoid graph into
a DAG.

A space-efficient trapezoid graph can be most easily built as the history graph
(a DAG) of the randomized incremental construction (RIC) of an arrangement of
segments [Mul90, Sei91] (see Chapter 28 and Section 44.2). RIC gives an expected
optimal point location scheme: O(log n) expected query time, O(n log n) expected
preprocessing time, and O(n) expected space, where the expectation is taken over
random choices made by the construction algorithm. Hemmer et al. [HKH16] guar-
antee the query time and space bounds in the worst case: They develop efficient
verification for space and query time of a structure by allowing the maximum path
length, or depth of the DAG, to remain large as long as the longest query path
remains logarithmic. By rerunning the randomized preprocessing if the space and
query time bounds cannot be verified, the expectation remains only on the prepro-
cessing time.

TRIANGULATIONS

Kirkpatrick [Kir83] developed the second optimal point-location method specifically
for triangulations. This is not a restriction for subdivisions specified by vertex
coordinates, since any planar subdivision can be triangulated, although it can be an
added complication to do so. It can increase the required precision for subdivisions
whose vertices are computed, such as Voronoi diagrams.

This scheme creates a hierarchy of subdivisions in which all faces, including the
outer face, are triangles. Although point location based on hierarchical triangula-
tions suffers from large constant factors, but the ideas are still of theoretical and
practical importance. Hierarchical triangulations have become an important tool
for algorithmic problems on convex polyhedra, terrain representation, and mesh
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FIGURE 38.3.3

Hierarchical triangulation.

Construction

Point Location

simplification.
In every planar triangulation, one can find (in linear time) an independent set

of low-degree vertices that consists of a constant fraction of all vertices. In Fig-
ure 38.3.3 these are circled and, in the next picture, are removed and the shaded hole
is retriangulated if necessary. Repeating this “coarsening” operation a logarithmic
number of times gives a constant-size triangulation.

To locate the triangle containing a query point q, start by finding the triangle
in the coarsest triangulation, at right in Figure 38.3.3. Knowing the hole (shaded)
that this triangle came from, one need only replace the missing vertex and check
the incident triangles to locate q in the previous, finer triangulation.

Given a triangulation, preprocessing takes O(n) time, but the hidden constants
on time and space are large. For example, choosing the independent set by greedily
taking vertices in order of increasing degree up to 10 guarantees 1/6th of the ver-
tices [SK97], which leads to a data structure with 12n triangles in which a query
could take 35 log2 n comparisons.

ENTROPY BOUNDS

The work of Malamotos with Arya, Mount, and co-authors initiated a fruitful ex-
ploration into how to modify the schemes above if we know something about the
query distribution. By analogy to weights in a weighted binary search tree, suppose
that we have a planar subdivision with regions of constant complexity (e.g., trape-
zoids or triangles) and that we know the probability pi of a query falling in the ith
region. The entropy is H =

∑

i −pi log2 pi. Arya et al. [AMM07] showed that a
weighted randomized construction gives expected query times satisfying entropy
bounds. For a constant K, assign to a subdivision edge that is incident on regions
with total probability P the weight ⌈KPn⌉, and perform a randomized incremental
construction. The use of integral weights ensures that ratios of weights are bounded
by O(n), which is important to achieve query time bounded by O(H).

Entropy-preserving cuttings can be used to give a method whose query time of
H + O(1 +H1/2) approaches the optimal entropy bound [AMMW07], at the cost
of increased space and programming complexity.

A subtlety related to decomposability has tripped up a few researchers: entropy
is easy to work with only if the region descriptions have constant complexity, but
triangulation or trapezoidation of complex regions can increase entropy. Collette
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et al. [CDI+12] work with connected planar subdivision G and define an entropy
Ĥ(G,D) as the expected cost of any linear decision tree that solves point loca-
tion for query distribution D. They show three things: how to create a Steiner
triangulation that nearly minimizes entropy over all triangulations of G, that the
minimum entropy over triangulations is a lower bound for Ĥ (meaning that the
increased entropy may be necessary), and that the entropy-preserving cuttings give
a query structure that matches the leading term of the lower bound.

Entropy-bounded query structures are also used in two interesting applications
that do not assume that the query distribution is known in advance.

Aronov et al. [ABE+16] use them to give a distance-sensitive query algorithm
that is faster for points far from the boundary. They show how to decompose a
unit area subdivision into pieces of constant complexity such that any point q
within distance ∆q of the boundary is in a piece of area Ω(∆2

p). (They construct a
triangulation with this property for any convex polygon, and a decomposition into
7-gons for simple polygons.) Entropy bounds for a query in this decomposition give
query time O(min{logn,− log(∆q)}).

Iacono and Mulzer [IM12] assume that regions have constant complexity and
demonstrate how to prove static optimality: They show that in the limit they
answer queries in asymptotically the same time as the best (static) decision tree
by simply rebuilding, after every nα queries, an entropy-bounded query struc-
ture for the nβ regions that have been most frequently accessed. Cheng and
Lau [CL15] show that the analysis can extend to convex subdivisions, at an ad-
ditional O(log logn) time per query, by simply using balanced hierarchical triangu-
lations of each convex region.

PLANAR SEPARATOR THEOREM

The first optimal point location scheme was based on Lipton and Tarjan’s pla-
nar separator theorem [LT80] that every planar graph of n nodes has a set of
O(

√
n) nodes that partition it into roughly equal pieces. Goodrich [Goo95] gave a

linear-time construction of a family of planar separators in his parallel triangulation
algorithm. The fact that embedded graphs have small separators continues to be
important in theoretical work.

When applied to the dual graph of a planar subdivision, the nodes are a small
set of faces that partition the remainder of the faces: simple methods taking up to
quadratic space can be used to determine which set of the partition needs to be
searched recursively. Bose et al. [BCH+12] combine separators with encodings of
triangulations as permutations of points and bit-vector operations to build o(n)-size
indices for point location in triangulations. (The bit-vectors are assumed to support
rank and select operations, so their work implicitly assumes a RAM or cell-probe
model of computation.) Their “succinct geometric indices” can be used to achieve
the asymptotic bounds on the minimum number of comparisons, minimum entropy
bounds, or O(log n)-time query bounds for an implicit data structure that stores
only a permutation of the input points.
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38.4 PLANAR POINT LOCATION: DYNAMIC

In dynamic planar point location, the subdivision can be updated by adding or
deleting vertices and edges. Unlike the static case, algorithms that match the
performance of one-dimensional point location have not been found. (Except in
special cases, like rectilinear subdivisions [GK09].) Like the static case, the search
has produced interesting combinations of data structure ideas.

GLOSSARY

Updates: A dynamic planar subdivision is most commonly updated by inserting
or deleting a vertex or edge. Update time usually refers to the worst-case time
for a single insertion or deletion. Some methods support insertion or deletion of
a chain of k vertices and edges faster than doing k individual updates.

Vertex expansion/contraction: Updating a planar subdivision by splitting a
vertex into two vertices joined by an edge, or the inverse: contracting an edge
and merging the two endpoints into one. This operation, supported by the
“primal/dual spanning tree” (discussed below), is important for point location
in three-dimensional subdivisions.

Amortized update time: When times are reported as amortized, then an indi-
vidual operation may be expensive, but the total time for k operations, starting
from an empty data structure, will take at most k times the amortized bound.

TABLE 38.4.1 Dynamic point location results.

TECHNIQUE QUERY UPDATE SPACE UPDATES SUPPORTED

Trapezoid method [CT92] O(logn) O(log2 n) O(n logn) ins/del vertex & edge

Separating chain [PT89] O(log2 n) O(log2 n) O(n) ins/del edge & edge

I/O-efficient [ABR12] O(log2B N) O(logB N) O(N/B) measures I/O blocks read

Pr/dual span tree [GT91] O(log2 n) O(logn) O(n)
{

ins/del edge & chain,
expand/contract vertexamortized O(logn log logn) O(1) O(n)

Interval tree [CJ92] O(log2 n) O(logn) O(n) ins/del edge & chain

with frac casc [BJM94] O(logn log logn) O(log2 n) O(n) amort del, ins faster

Segment tree [CN15] O(logn(log logn)2) O(logn log logn) O(n) many variants

Insertion/Deletion-only: When all updates are insertions or all are deletions,
specialized structures can often be more efficient. Note that deletion-only struc-
tures for a decomposable problem support dynamic updates by this Bentley-Saxe
transformation [BS80]: Maintain structures whose sizes are bounded by a geo-
metric series, where only the smallest need support insertion. Whenever an
update would make ith structure too large or small, rebuilding all structures
through the (i + 1)st. For k updates, an element participates in amortized
O(log k) rebuilds.

Vertical ray shooting problem: Maintain a set of interior-disjoint segments in
a structure that can report the segment directly below a query point q. Updates
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are insertion or deletion of segments. This decomposable problem does not
require subdivisions to remain connected, but also does not maintain identity of
faces.

I/O efficient algorithm: An algorithm whose asymptotic number of I/O oper-
ations is minimal. Model parameters are problem size N , disk block size B and
memory size M , with typically B ≤

√
M . Sorting requires O((N/B) logB N)

time.

SEPARATING CHAIN AND TRAPEZOID GRAPH METHODS

The separating chain method of Section 38.3 was the first to be made fully dy-
namic [PT89]. Although both its asymptotics and its constant factors are larger
than other methods, it has been made I/O-efficient [AV04]. This is an impressive
theoretical accomplishment, but simpler algorithms that assume that the input is
somewhat evenly distributed in the plane will be more practical.

Preparata’s trapezoid graph method [Pre81] is one of the easiest to make
dynamic. It preserves its optimal O(log n) query time, but also its suboptimal
O(n logn) space. To support updates in O(log2 n) time, Chiang and Tamas-
sia [CT92, CPT96] store the binary tree on subdivision edges in a link-cut tree [ST83],
which supports in O(log n) time the operation of linking two trees by adding an
arc, and the inverse, cutting an arc to make two trees.

PRIMAL/DUAL SPANNING TREE

Goodrich and Tamassia [GT98] gave an elegant approach based on link-cut trees
that takes linear space for the restricted case of dynamic point location in monotone
subdivisions. A monotone subdivision has a monotone spanning tree in which
all root-to-leaf paths are monotone. Each edge not in the tree closes a cycle and
defines a monotone polygon.

In any planar graph whose faces are simple polygons, the duals of edges not
in the spanning tree form a dual spanning tree of faces, as in Figure 38.4.1(b).
Goodrich and Tamassia [GT98] use a centroid decomposition of the dual tree
to guide comparisons with monotone polygons in the primal tree. The centroid
edge, which breaks the dual tree into two nearly-equal pieces, is indicated in Fig-
ure 38.4.1(b). The primal edge creates the shaded monotone polygon; if the query
is inside then we recursively explore the corresponding piece of the dual tree. Using
link-cut trees, the centroid decomposition can be maintained in logarithmic time
per update, giving a dynamic point-location structure with O(log2 n) query time.

In the static setting, fractional cascading can turn this into an optimal point
location method. Dynamic fractional cascading [MN90] can be used to reduce the
dynamic query time and to obtain O(1) amortized update time.

The dual nature of the structure supports insertion and deletion of dual edges,
which correspond to expansion and contraction of vertices. These are needed to
support static three-dimensional point location via persistence. Furthermore, a
k-vertex monotone chain can be inserted/deleted in O(log n+ k) time.
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FIGURE 38.4.1

Dynamic methods: (a) Priority search (interval tree); (b) primal/dual spanning tree.

centroid

 edge

(b)(a)

q

DYNAMIC INTERVAL OR SEGMENT TREES

The current best results solve the vertical ray shooting problem in a dynamic set of
disjoint segments using interval or segment trees to store slabs. Let’s consider the
classic interval tree of Cheng and Janardan [CJ92], and the recent work of Chan
and Nekrich [CN15], which presents many variants that reduce space and trade
query and update times in a segment tree.

The key subproblem in both is vertical ray shooting for 1-sided segments: For
a set of interior-disjoint segments S that intersect a common vertical line ℓ, report
the segment of S directly below a query point q. Let’s assume q is left of ℓ; we can
make a separate structure for the right.

Cheng and Janardan [CJ92] solve this subproblem in linear space andO(log |S|)
query and update time by a priority-tree search: they build a binary search tree on
segments S in the vertical order along ℓ, and store in each subtree a pointer to the
“priority segment” with endpoint farthest left of ℓ. At each level of this search tree,
only two candidate subtrees may contain the segment below q—the ones whose
priority segments are immediately above and below q. Figure 38.4.1(a) illustrates
a case in which the search continues in the two shaded subtrees.

In their work, this subproblem arises naturally in a recursively defined interval
tree: The root stores segments that cross a vertical line ℓ through the median
endpoint. Segments to the left (right) are stored in an interval tree that is the left
(right) child of the root, with the corresponding ray-shooting structure. Space is
O(n), since each segment is stored once.

To locate a query point q, visit the O(log n) nodes on the path to the slab
containing q, and return the closest of the segments found by ray shooting for 1-sided
segments in each node. Total query time is O(log2 n). Constants are moderate, with
only 4 or 5 entries per edge and 6 comparisons per search step. Updates to the
priority search tree take O(log n) time with larger constants; they must maintain
tree balance and segment priorities. To handle changes in the number of slabs, use a
BB[α] or weight-balanced B-tree [AV03] and rebuild the affected priority search tree
structures in linear time when nodes split. This makes the update cost amortized
O(log n).

To speed up the query time, one would like work done in one 1-sided subproblem
to make the rest easier. The fractional cascading idea of sharing samples of segments
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between subproblems requires that pairs of segments can be locally ordered, but
segments in different nodes of an interval tree may share no x-coordinates. (If
all segments share the same slope, they can be ordered by y-intercept to enable
dynamic fractional cascading [MN90]; more on this below.)

Several researchers [ABG06, BJM94, Ble08, CN15, GK09] have used ideas from
segment trees, which store segments in the balanced slab recursively as follows:
Starting from the root, store any segment that crosses the slab for that node (the
union of the leaf slabs in its subtree). Pass unstored segments to the children whose
slabs they intersect; segments that straddle the median are sent to both children.
A segment is stored in at most 2 log2 n nodes, since to be stored, an endpoint must
be in the parent’s slab. Thus, we have a structure with O(n log n) space that can
perform updates and queries in O(log2 n) time apiece. Thus, there are extra logs
on space, query, and update.

Baumgarten et al. [BJM94] observed that segments stored in nodes whose
slabs contain query point q all intersect a vertical line through q, so dynamic frac-
tional cascading [MN90] from the bottom can reduce query and insertion time to
O(log n log log n). They create a linear space data structure with this query time
by combining segment and interval trees, using fractional cascading on blocks of
O(log2 n) segments in each interval tree node. Deletion time remains O(log2 n).

Chan and Nekrich [CN15] carefully combine many ideas that come closest to
removing all three logs. First, they point out that a deletion-only structure for
horizontal segments can reduce space for any dynamic point location structure,
including the trapezoid graph. They maintain a dynamic structure with up to
n/ logn segments, then use the Bentley-Saxe transformation [BS80] to put the rest
into O(log logn) groups whose size limits double. For each group they 1) build a
static point location structure on the segments, 2) rank each segment in a total order
consistent with aboveness, and 3) maintain a deletion-only structure for horizontal
segments made by replacing each segment’s original y coordinates with its rank. A
query q in each static structure either returns the segment below, or its rank r if
it has been deleted. The horizontal structure queried with (qx, r) then returns the
candidate segment from that group.

To reduce the query time, they use dynamic fractional cascading like Baum-
garten et al.: using ideas from the segment tree to pass samples to speed up searches
in the interval tree. (They describe the details using random sampling and finger
search trees to more easily consider dynamic updates for several variants.) They
trade query time for update time by coloring each segment’s O(log n) fragments
with O(log logn) colors and building separate fractional cascading for each color.
The colors for a segment are determined by the levels crossed by subtree of slabs
spanned by the segment in a manner like the tree interpretation of van Emde
Boas queues, which allows an inserted or deleted segment to be found and up-
dated in O(log n log logn) time in all its colored lists. Query time increases to
O(log n(log logn)2) because of the extra lists that must be searched. Their work
suggests other variations that can trade query and update times, so one is O(log n)
while the other is O(log1+ε n), or can use word RAM tricks to shave a factor of
log logn from the query.

As mentioned above, the special case of horizontal segments is easier, as the
y-order can be used in fractional cascading. Giyora and Kaplan [GK09] achieve a
linear space structures with O(log1+ε n) query and O(log n) update on a pointer
machine and O(log n) query and update times on a word RAM.
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OPEN PROBLEMS

1. Improve dynamic planar point location to simultaneously attain O(n) space
and O(log n) query and update time, or establish a lower bound.

2. Can persistent data structures be made dynamic? The fact that data are
copied seems to work against maintaining a data structure under insertions
and deletions.

3. Create a dynamic data structure for subdivisions that need not remain con-
nected (may have holes) that can report in sublinear time whether two points
are in the same face.

38.5 PLANAR POINT LOCATION: OTHER MODELS

Programming complexity and non-negligible asymptotic constants mean that op-
timal point location techniques are used less than might be expected. See [TV01]
for a study of geometric algorithm engineering that uses point location schemes as
its example.

PICK HARDWARE

Graphic workstations employ special “pick hardware” that draws objects on the
screen and returns a list of objects that intersect a query pixel. The hardware
imposes a minimum time of about 1/30th of a second on a pick operation, but
hundreds of thousands of polygons may be considered in this time.

BUCKETING AND SPATIAL INDEX STRUCTURES

Because data in practical applications tend to be evenly distributed, bucketing
techniques are far more effective [AEI+85, EKA84] than worst-case analysis would
predict. For problems in two and three dimensions, a uniform grid will often trim
data to a manageable size [MAFL16].

Adaptive data structures for more general spatial indexing, such as k-d trees,
quadtrees, BANG files, R-trees, and their relatives [Sam90], can be used as fil-
ters for point location—these techniques are common in databases and geographic
information systems.

Various definitions for “fat regions” have used to explore theoretical bounds on
schemes that use spatial indexing structures. To give one example, Löffler, Simons,
and Strash [LSS13] use dynamic quadtrees to store a representative points near
the middle of each region, ensuring that cells for large regions are large and that a
query point will have to do efficient point-in-region tests for only a constant number
of regions. Thus, for disjoint fat regions, they achieve O(log n)-time insert, delete,
and query operations. They also can perform O(log log n)-time “local updates,”
which replace a region by another of similar diameter and separation.
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Chan and Pătraşcu [CP09] combine sampling and bucketing ideas in their
transdichotomous structures for point location in a slab. Given a slab with
an ordered list of m crossing segments whose left and right y-coordinates are O(w)-
bit rationals that lie in intervals of length L and R, they select b evenly spaced
segments from the list and partition the endpoints into h equal length buckets on
left and right. Iterate to select segments separating buckets: find the highest seg-
ment from the first non-empty bucket on the left, round up the coordinates of both
ends, discard all segments with an endpoint below, and repeat.

Knowing the location of query point q among the selected segments, two com-
parisons of q with original segments allows a recursive query in either a set of m/b
segments, or segments with left interval length L/h, or segments with right interval
length R/h. Shrinking the intervals is progress because small y-coordinate offsets
can be packed into words for parallel evaluation in the real RAM model. Thus, they
can build, in o(n logn) time, an O(n)-space structure to answer point location in a
slab queries in O(log n/ log logn) time. They combine this with the point location
techniques of Section 38.3 to give point location within the same bounds. They get
even better bounds for off-line point location [CP10], where the queries are known
in advance, by packing query points into words. They use these techniques to give
transdichotomous bounds for many computational geometry problems.

SUBDIVISION WALKING

Applications that store planar subdivisions with their adjacency relations, such as
geographic information systems, can walk through the regions of the subdivision
from a known position p to the query q.

To walk a subdivision with O(n) edges, compute the intersections of pq with
the current region and determine if q is inside. If not, let q′ denote the intersection
point closest to q. Advance to the region incident to q′ that contains a point in
the interior of q′q and repeat. In the worst case, this walk takes O(n) time. The
application literature typically claims O(

√
n) time, which is the average number

of intersections with a line under the assumption that vertices and edges of the
subdivision are evenly distributed. When combined with bucketing or hierarchical
data structures (for example, maintaining a regular grid or quadtree with known
positions and starting from the closest to answer a query), walking is an effective,
practical location method.

For triangulations, the algorithm walking pq is easy to implement. Guibas and
Stolfi’s [GS85] incremental Delaunay triangulation uses an even simpler walk from
edge to edge, but this depends on an acyclicity theorem (Sections 19.4 and 26.1)
that does not hold for arbitrary triangulations. A robust walk should remember
its starting point and handle vertices on the traversed segment as if they had been
perturbed consistently. Broutin, Devillers, and Hemsley prove nice bounds for their
“cone walk” in random Delaunay triangulations [BDH16]

There have been several analyses of Jump & Walk schemes in triangulations,
both analytically and experimentally. Devroye et al. [DLM04] show expected query
times of O(n1/4) for a scheme that keeps n1/4 points with known locations, and
walks from the nearest to find a query. In their experiments, the combination of a
2-d search tree with walking performed the best. De Castro and Devillers [CD13]
survey, compare, and tune many variations, including those that save space by
building a hierarchy formed from small samples (a technique implemented in the
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CGAL library [BDP+02, Dev02]) and those that are distribution sensitive by dy-
namically choosing points to keep. See also their Java Demo [DC11].

38.6 LOCATION IN HIGHER DIMENSIONS

In higher dimensions, known point location methods do not achieve both linear
space and logarithmic query time. Linear space can be attained by relatively
straightforward linear search, such as the point-in-polygon test.

Logarithmic time, or O(d log n) time, can be obtained by projection [DL76]:
project the (d−2)-faces of a subdivision to an arrangement in d−1 dimensions and
recursively build a point location structure for the arrangement in the projection.
Knowing the cell in the projection gives a list of the possible faces that project to
that cell, so an additional logarithmic search can return the answer. The worst-case

space required is O(n2d).
Because point location is decomposable, batching can trade space for time:

preprocessing n/k groups of k facets into structures with S(k) space and Q(k) time
gives, in total, O(nS(k)/k) space and O(nQ(k)/k) query time.

Clever ways of batching can lead to better structures. Randomized methods
can often reduce the dependence on dimension from doubly- to singly-exponential,
since random samples can be good approximations to a set of geometric objects.
They can also be used with objects that are implicitly defined.

We should mention that convex polyhedra can be preprocessed using the Dob-
kin-Kirkpatrick hierarchy (Section 38.3) so that the point-in-convex-polyhedron test
does take O(n) space and O(log n) query time.

THREE-DIMENSIONAL POINT LOCATION

Dynamic location structures can be used for static spatial point location in one
higher dimension by employing persistence. If one swept a plane through a subdi-
vision of three-space into polyhedra, one could see the intersection as a dynamic
planar subdivision in which vertices (intersections of the sweep plane with edges)
move along linear trajectories. Whenever the sweep plane passes through a vertex
in space, vertices in the plane may join and split.

Goodrich and Tamassia’s primal/dual method supports the necessary opera-
tions to maintain a point location structure for the sweeping plane. Using node-
copying to make the structures persistent gives an O(n log n) space structure that
can answer queries in O(log2 n) time. Preprocessing takes O(n logn) time.

Devillers et al. [DPT02] tested several approaches to subdivision walking for
Delaunay tetrahedralization, and established the practical effectiveness of the hier-
archical Delaunay in three dimensions as well.

RECTILINEAR SUBDIVISIONS

Restricting attention to rectilinear (orthogonal) subdivisions permits better results
via data structures for orthogonal range search. The skewer tree, a multidimen-
sional interval tree, gives static point location among n rectangular prisms with
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O(n) space and O(logd−1 n) query time after O(n logn) preprocessing [EHH86].
These can be made dynamic by using Giyora and Kaplan’s [GK09] structure at the
lowest level.

In dimensions two and three, stratified trees and perfect hashing [DKM+94]
can be used to obtain O((log logU)d−1) query time in a fixed universe [1, . . . , U ],
or O(log n) query time in general. Iacono and Langerman [IL00] use “justified
hyperrectangles” to obtain O(log logU) query times in every dimension d, but the
space and preprocessing time, which are O(fn log logU) and O(fn logU log logU),
respectively, depend on a fatness parameter f that equals the average ratio of the
dth power of smallest dimension to volume of all hyperrectangles in the subdivision.

POINT LOCATION AMONG ALGEBRAIC VARIETIES

Chazelle and Sharir [CS90] consider point location in a general setting, among
n algebraic varieties of constant maximum degree b in d-dimensional Euclidean
space. They augment Collins’s cylindrical algebraic decomposition to obtain an

O(n2d−1

)-space, O(log n)-query time structure after O(n2d+6

) preprocessing. Hid-
den constants depend on the degrees of projections and intersections, which can

be b4
d

.
This method provides a general technique to obtain subquadratic solutions to

optimization problems that minimize a function {F (a, b) | a ∈ A, b ∈ B}, where
F (a, b) has a constant-size algebraic description. For a fixed b, F is algebraic in a.
Thus, small batches of points from B can be preprocessed in subquadratic time,
and each a can be tested against each batch, again in subquadratic time.

OPEN PROBLEMS

1. Find an optimal method for static (or dynamic) point location in a three-
dimensional subdivision with n vertices and O(n) faces: O(n) space and
O(log n) query time.

RANDOMIZED POINT LOCATION

The techniques of Chapter 44 can lead to good point location methods when a ran-
dom sample of a set of objects can be used to approximate the whole. Arrangements
of hyperplanes in dimension d are a good example. A random sample of hyperplanes
divides space into cells intersected by few hyperplanes; recursively sampling in each
cell gives a point location structure for the arrangement. Table 38.6.1 lists the
performance of some randomized point location methods for hyperplanes. Query
time can be traded for space by choosing larger random samples.

The randomized incremental construction algorithms of Section 44.2 are simple
because they naturally build randomized point location structures along with the
objects that they aim to construct [Mul93, Sei93]. These have good “tail bounds”
and work well as insertion-only location structures.

Randomized point location structures can be made fully dynamic by lazy dele-
tion and randomized rebuild techniques [BDS95, MS91]; they maintain good ex-
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TABLE 38.6.1 Randomized point location in arrangements.

TECHNIQUE OBJECTS QUERY PREPROC SPACE

Random sample [Cla87] hyperplanes O(cd logn) exp O(nd+1+ǫ) exp O(nd+ǫ)

Derandomized [CF94] hyperplanes O(cd logn) O(n2d+1) O(nd)

Random sample [MS91] dyn hpl d ≤ 4 O(logn) exp O(nd+ǫ) exp O(nd+ǫ)

Epsilon nets [Mei93] hyperplanes O(d5 logn) exp O(nd+1+ǫ) exp O(nd+ǫ)

pected performance if random elements are chosen for insertion and deletion. That
is, the sequence of insertions and deletions may be specified, but the elements are
to be chosen independently of their roles in the data structure.

IMPLICIT POINT LOCATION

In some applications of point location, the objects are not given explicitly. A planar
motion planning problem may ask whether a start and a goal point are in the same
cell of an arrangement of constraint segments or curves, without having explicit
representations of all cells.

Consider a simple example: an arrangement of n lines, which defines nearly n2

bounded cells. Without storing all cells, we can determine whether two points p and
q are in the same cell by preprocessing

√
n subarrangements of

√
n lines (O(n

√
n)

cells in all) and making sure that p and q are together in each subarrangement. If
the lines are put into batches by slope, then within the same asymptotic time, an
algorithm can return the pair of lines defining the lowest vertex as a unique cell
name.

Implicit location methods are often seen as special cases of range queries (Chap-
ter 40) or vertical ray shooting [Aga91]. Table 38.6.2 lists results on implicit location
among line segments, which depend upon tools discussed in Chapters 40, 44, and 47,
specifically random sampling, ǫ-net theory, and spanning trees with low stabbing
number.

TABLE 38.6.2 Implicit point location results for arrangements of n line segments.

TECHNIQUE QUERY PREPROC SPACE

Span tree lsn [Aga92] O(
√
n log2 n) O(n3/2 logω n) O(n log2 n)

Batch sp tree [AK94] O
(

(n/
√
s) log2(n/

√
s) + log n

)

O
(

(sn(log(n/
√
s) + 1)2/3

)

n
√
log n≤s≤n2

38.7 SOURCES AND RELATED MATERIAL

SURVEYS

Graphic Gems IV has code for point in polygon algorithms. These recent papers
have good overviews of the literature or present variations of ideas on their topics.
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[Hai94, Wei94]: Point-in-polygon algorithms in Graphics Gems IV, with code.

[IM12]: Nice history of entropy bounds for point location.

[CP09]: Speeding up point location speeds up many geometric algorithms.

[CN15]: Variations for dynamic point location.

RELATED CHAPTERS

Chapter 28: Arrangements
Chapter 29: Triangulations and mesh generation
Chapter 30: Polygons
Chapter 40: Range searching
Chapter 41: Ray shooting and lines in space
Chapter 44: Randomization and derandomization
Chapter 46: Parallel algorithms in geometry
Chapter 47: Epsilon-approximations and epsilon-nets
Chapter 52: Computer graphics
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