
33 VISIBILITY

Joseph O’Rourke

INTRODUCTION

In a geometric context, two objects are “visible” to each other if there is a line
segment connecting them that does not cross any obstacles. Over 500 papers have
been published on aspects of visibility in computational geometry in the last 40
years. The research can be broadly classified as primarily focused on combinatorial
issues, or primarily focused on algorithms. We partition the combinatorial work
into “art gallery theorems” (Section 33.1) and illumination of convex sets (33.2),
and research on visibility graphs (33.3) and the algorithmic work into that con-
cerned with polygons (33.4), more general planar environments (33.5) paths (33.6),
and mirror reflections (33.7). All of this work concerns visibility in two dimen-
sions. Investigations in three dimensions, both combinatorial and algorithmic, are
discussed in Section 33.8, and the final section (33.9) touches on visibility in Rd.

33.1 ART GALLERY THEOREMS

A typical “art gallery theorem” provides combinatorial bounds on the number of
guards needed to visually cover a polygonal region P (the art gallery) defined by
n vertices. Equivalently, one can imagine light bulbs instead of guards and require
full direct-light illumination.

GLOSSARY

Guard: A point, a line segment, or a line—a source of visibility or illumination.

Vertex guard: A guard at a polygon vertex.

Point guard: A guard at an arbitrary point.

Interior visibility: A guard x ∈ P can see a point y ∈ P if the segment xy is
nowhere exterior to P : xy ⊆ P .

Exterior visibility: A guard x can see a point y outside of P if the segment xy
is nowhere interior to P ; xy may intersect ∂P , the boundary of P .

Star polygon: A polygon visible from a single interior point.

Diagonal: A segment inside a polygon whose endpoints are vertices, and which
otherwise does not touch ∂P .

Floodlight: A light that illuminates from the apex of a cone with aperture α.

Vertex floodlight: One whose apex is at a vertex (at most one per vertex).
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MAIN RESULTS

The most general combinatorial results obtained to date are summarized in Ta-
ble 33.1.1. Tight bounds, and ranges between lower and upper bounds are listed
for the minimum number of guards sufficient for all polygons with n vertices (and
possibly h holes).

TABLE 33.1.1 Number of guards needed.

PROBLEM NAME POLYGONS INT/EXT GUARD NUMBER

Art gallery theorem simple interior vertex bn/3c
Fortress problem simple exterior point dn/3e
Prison yard problem simple int & ext vertex dn/2e
Prison yard problem orthogonal int & ext vertex [d5n/16e, b5n/12c+ 1]

Orthogonal polygons simple orthogonal interior vertex bn/4c
Orthogonal with holes orthogonal with h holes interior vertex [b2n/7c, b(17n− 8)/52c
Orthogonal with holes orthogonal with h holes interior vertex [b(n + h)/4c, b(n + 2h)/4c]
Polygons with holes polygons with h holes interior point b(n + h)/3c

Of special note is the difficult orthogonal prison yard problem: How many
vertex guards are needed to cover both the interior and the exterior of an orthogonal
polygon? See Figure 33.1.1. An upper bound of b5n/12c+2 was obtained by [HK96]
via the following graph-coloring theorem: Every plane, bipartite, 2-connected graph
has an even triangulation (all nodes have even degree) and therefore the resulting
graph is 3-colorable. This bound was subsequently improved to b5n/12c + 1 in
[MP12].

FIGURE 33.1.1
A pyramid polygon with n = 24 vertices whose interior
and exterior are covered by 8 guards. Repeating the
pattern establishes a lower bound of 5n/16 + c on the
orthogonal prison yard problem [HK93].

COVERS AND PARTITIONS

Each art gallery theorem above implies a cover result, a cover by star polygons.
Many of the theorem proofs rely on particular partitions. For example, the orthog-
onal polygon result depends on the theorem that every orthogonal polygon may be
partitioned via diagonals into convex quadrilaterals.

Most cover problems are NP-hard, and finding a minimum guard set for a simple
polygon is NP-complete. Approximation algorithms have only achieved O(log n)
times the fewest guards [Gho10]. See Section 30.2 for more on covers and partitions.
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EDGE GUARDS

A variation permits guards (mobile guards) to patrol segments, diagonals, or
edges; equivalent is illumination by line segment/diagonal/edge light sources (flu-
orescent light bulbs). Here there are fewer results; see Table 33.1.2. Toussaint
conjectures that the last line of this table should be bn/4c for sufficiently large n.

TABLE 33.1.2 Edge guards.

POLYGONS GUARD BOUNDS SOURCE

Polygon diagonal bn/4c [O’R83]

Orthogonal polygons segment b(3n + 4)/16c [Agg84, O’R87]

Orthogonal polygons with h holes segment b(3n + 4h + 4)/16c [GHKS96]

Polygon (n > 11) closed edge [bn/4c, b3n/10c+ 1] [She94]

Polygon open edge [bn/3c, bn/2c] [TTW12]

33.1.1 1.5D TERRAIN GUARDING

A 1.5D terrain is an x-monotone chain of edges, guarded by points on the chain.
Guarding such a terrain has application to placing communication devices to cover
the terrain. Although known to be NP-hard [KK11], it required further work to find
a polynomial discretization, thereby establishing its NP-completeness [FHKS16].

TABLE 33.1.3 Floodlights.

APEX ALPHA BOUNDS SOURCE

Any point [180◦, 360◦] bn/3c [Tót00]

Any point [90◦, 180◦] 2bn/3c [Tót00]

Any point [45◦, 60◦) [n− 2, n− 1] [Tót03d]

Vertex < 180◦ not always possible [ECOUX95]

Vertex 180◦ [9n/14− c, b2n/3c − 1] [ST05]

33.1.2 FLOODLIGHT ILLUMINATION

Urrutia introduced a class of questions involving guards with restricted vision, or,
equivalently, illumination by floodlights: How many floodlights, each with aperture
α, and with their apexes at distinct nonexterior points, are sufficient to cover any
polygon of n vertices? One surprise is that bn/3c half-guards/π-floodlights suffice,
although not when restricted to vertices. A second surprise is that, for any α < π,
there is a polygon that cannot be illuminated by an α floodlight at every vertex.
See Table 33.1.3. A third surprise is that the best result on vertex π-floodlights
employs pointed pseudotriangulations (cf. Chapter 5) in an essential way.
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33.2 ILLUMINATION OF PLANAR CONVEX SETS

A natural extension of exterior visibility is illumination of the plane in the presence
of obstacles. Here it is natural to use “illumination” in the same sense as “visibility.”
Under this model, results depend on whether light sources are permitted to lie on
obstacle boundaries: b2n/3c lights are necessary and sufficient (for n > 5) if they
may [O’R87], and b2(n+1)/3c if they may not [Tót02]. More work has been done on
illuminating the boundary of the obstacles, under a stronger notion of illumination,
corresponding to “clear visibility.”

GLOSSARY

Illuminate: x illuminates y if xy does not include a point strictly interior to an
obstacle, and does not cross a segment obstacle.

Cross: xy crosses segment s if they have exactly one point p in common, and p
is in the relative interior of both xy and s.

Clearly illuminate: x clearly illuminates y if the open segment (x, y) does not
include any point of an obstacle.

Compact: Closed and bounded in Rd.

Homothetic: Obtained by dilation and translation.

Isothetic: Sides parallel to orthogonal coordinate axes.

MAIN RESULTS

A third, even stronger notion of illumination is considered in Section 33.9 below.
The main question that has been investigated is: How many point lights strictly
exterior to a collection of n pairwise disjoint compact, convex objects in the plane
are needed to clearly illuminate every object boundary point? Answers for a variety
of restricted sets are shown in Table 33.2.1.

TABLE 33.2.1 Illuminating convex sets in plane.

FAMILY BOUNDS SOURCE

Convex sets 4n− 7 [Fej77]

Circular disks 2n− 2 [Fej77]

Isothetic rectangles [n− 1, n + 1] [Urr00]

Homothetic triangles [n, n + 1] [CRCU93]

Triangles [n, b(5n + 1)/4c] [Tót03b]

Segments (one side) [4n/9− 2, b(n + 1)/2c] [CRC+95, Tót03c]

Segments (both sides) b4(n + 1)/5c [Tót01]

The most interesting open problem here is to close the gap for triangles. Urrutia
conjectures [Urr00] that n+ c lights suffice for some constant c.
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33.3 VISIBILITY GRAPHS

Whereas art gallery theorems seek to encapsulate an environment’s visibility into
one function of n, the study of visibility graphs endeavors to uncover the more fine-
grained structure of visibility. The original impetus for their investigation came
from pattern recognition, and its connection to shape continues to be one of its
primary sources of motivation; see Chapter 54. Another application is graphics
(Chapter 52): illumination and radiosity depend on 3D visibility relations (Sec-
tion 33.8.)

GLOSSARY

Visibility graph: A graph with a node for each object, and arcs between objects
that can see one another.

Vertex visibility graph: The objects are the vertices of a simple polygon.

Endpoint visibility graph: The objects are the endpoints of line segments in
the plane. See Figure 33.3.1b.

Segment visibility graph: The objects are whole line segments in the plane,
either open or closed.

Object visibility: Two objects A and B are visible to one another if there are
points x ∈ A and y ∈ B such that x sees y.

Point visibility: Two points x and y can see one another if the segment xy is
not “obstructed,” where the meaning of “obstruction” depends on the problem.

ε-visibility: Lines of sight are finite-width beams of visibility.

Hamiltonian: A graph is Hamiltonian if there is a simple cycle that includes
every node.

OBSTRUCTIONS TO VISIBILITY

For polygon vertices, x sees y if xy is nowhere exterior to the polygon, just as in art
gallery visibility; this implies that polygon edges are part of the visibility graph.
For segment endpoints, x sees y if the closed segment xy intersects the union of all
the segments either in just the two endpoints, or in the entire closed segment. This
disallows grazing contact with a segment, but includes the segments themselves in
the graph.

GOALS

Four goals can be discerned in research on visibility graphs:

1. Characterization: asks for a precise delimiting of the class of graphs realizable
by a certain class of geometric objects.

2. Recognition: asks for an algorithm to recognize when a graph is a visibility
graph.
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(a) (b) (c)

FIGURE 33.3.1
(a) A set of 6 pairwise disjoint line segments. (b) Their endpoint visibility graph G. (c)
A Hamiltonian cycle in G.

3. Reconstruction: asks for an algorithm that will take a visibility graph as
input, and output a geometric realization.

4. Counting: concerned with the number of visibility graphs under various re-
strictions [HN01].

POINT VISIBILITY GRAPHS

Given a set P of n points in the plane, visibility between x, y ∈ P may be blocked
by a third point in P . The recognition of point visibility graph is NP-hard [Roy16],
in fact it is complete for the existential theory of the reals [CH17]. However, for
planar graphs, there is complete characterization, and an O(n)-time recognition
algorithm [GR15]. Pfender [Pfe08] constructed point visibility graphs of clique
number 6 and arbitrary high chromatic number.

For example, it was established in [PPVW12] that every visibility graph with
minimum degree δ has vertex connectivity of at least δ/2 + 1, and if the number of
collinear points is no more than 4, then G has connectivity of at least 2δ/3+1. This
later quantity is conjectured to hold without the collinearity restriction. Related
Ramsey-type problems and results are surveyed in [PW10].

VERTEX VISIBILITY GRAPHS

A complete characterization of vertex visibility graphs of polygons has remained
elusive, but progress has been made by:

1. Restricting the class of polygons: polynomial-time recognition and recon-
struction algorithms for orthogonal staircase polygons have been obtained.
See Figure 33.3.2.

2. Restricting the class of graphs: every 3-connected vertex visibility graph has
a 3-clique ordering, i.e., an ordering of the vertices so that each vertex is part
of a triangle composed of preceding vertices.

3. Adding information: assuming knowledge of the boundary Hamiltonian cir-
cuit, four necessary conditions have been established by Ghosh and others
[Gho97], and conjectured to be sufficient.
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FIGURE 33.3.2
A staircase polygon and
its vertex visibility graph.

ENDPOINT VISIBILITY GRAPHS

A set of n pairwise disjoint line segments forms a noncrossing perfect matching on
the 2n endpoints in the plane. For segment endpoint visibility graphs, there have
been three foci:

1. Are the graphs Hamiltonian? See Figure 33.3.1c. Posed by Mirzaian, this was
settled in the affirmative [HT03]: yes, there is always a Hamiltonian polygon
(i.e., a noncrossing circuit) for pairwise disjoint line segments, not all lying
on a line.

2. In the quest for generating a random noncrossing perfect matching, Aich-
holzer et al. [ABD+09] conjecture that any two such matchings are connected
by sequence of noncrossing perfect matchings in which consecutive matching
are compatible (the union of the two matchings is also noncrossing). Every
matching on 4n vertices is known to have a compatible matching [IST13].

3. Size questions: there must be at least 5n − 4 edges [SE87], and at least
6n−6 when no segment is a “chord” splitting the convex hull [GOH+02]; the
smallest clique cover has size Ω(n2/ log2 n) [AAAS94].

SEGMENT VISIBILITY GRAPHS

Whole segment visibility graphs have been investigated most thoroughly under the
restriction that the segments are all (say) vertical and visibility is horizontal. Such
segments are often called bars. The visibility is usually required to be ε-visibility.
Endpoints on the same horizontal line often play an important role here, as does the
distinction between closed segments and intervals (which may or may not include
their endpoints). There are several characterizations:

1. G is representable by segments, with no two endpoints on the same horizontal
line, iff there is a planar embedding of G such that, for every interior k-face
F , the induced subgraph of F has exactly 2k − 3 edges.

2. G is representable by segments, with endpoints on the same horizontal per-
mitted, iff there is a planar embedding of G with all cutpoints on the exterior
face.

3. Every 3-connected planar graph is representable by intervals.

Preliminary version (August 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



882 J. O’Rourke

OBSTACLE NUMBER

An interesting variant of visibility graphs has drawn considerable attention. Given
a graph G, an obstacle representation of G is a mapping of its nodes to the plane
such that edge (x, y) is in G if and only if the segment xy does not intersect any
“obstacle.” An obstacle is any connected subset of R2. The obstacle number of G is
the minimum number of obstacles in an obstacle representation of G. At least one
obstacle is needed to represent any graph other than the complete graph. There
are graphs with obstacle number Ω(n/(log log n)2) [DM13]. No upper bound better
than O(n2) is known.

When the obstacles are points and G is the empty graph on n vertices, this
quantity is known as the blocking number b(n); see [Mat09, PW10]. It is conjectured
that limn→∞ b(n)/n =∞, but the best bound is b(n) ≥ (25/8− o(1))n [DPT09].

INVISIBILITY GRAPHS

For a set X ⊆ Rd, its invisibility graph I(X ) has a vertex for each point in X, and
an edge between two vertices u and v if the segment uv is not completely contained
in X. The chromatic number χ(X) and clique number ω(X) of I(X ) have been
studied, primarily in the context of the covering number, the fewest convex sets
whose union is X. It is clear that ω(X) ≤ χ(X), and it was conjectured in [MV99]
that for planar sets X, there is no upper bound on χ as a function of ω. This
conjecture was settled positively in [CKM+10].

OTHER VISIBILITY GRAPHS

The notion of a visibility graph can be extended to objects such as disjoint disks:
each disk is a node, with an arc if there is a segment connecting them that avoids
touching any other disk. Rappaport proved that the visibility graph of disjoint con-
gruent disks is Hamiltonian [Rap03]. Rectangle visibility graphs, which restrict
visibility to vertical or horizontal lines of sight between disjoint rectangles, have
been studied for their role in graph drawing (Chapter 55). A typical result is that
any graph with a maximum vertex degree 4 can be realized as a rectangle visibility
graph [BDHS97].

OPEN PROBLEMS

Ghosh and Goswami list 44 open problems on visibility graphs in their survey [GG13].
Below we list just three.

1. Given a visibility graph G and a Hamiltonian circuit C, construct in polyno-
mial time a simple polygon such that its vertex visibility graph is G, with C
corresponding to the polygon’s boundary.

2. Given a visibility graph G of a simple polygon P , find the Hamiltonian cycle
that corresponds to the boundary of P .

3. Develop an algorithm to recognize whether a polygon vertex visibility graph
is planar. Necessary and sufficient conditions are known [LC94].
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33.4 ALGORITHMS FOR VISIBILITY IN A POLYGON

Designing algorithms to compute aspects of visibility in a polygon P was a major
focus of the computational geometry community in the 1980s. For most of the
basic problems, optimal algorithms were found, several depending on Chazelle’s
linear-time triangulation algorithm [Cha91]. See [Gho07] for a book-length survey.

GLOSSARY

Throughout, P is a simple polygon.

Kernel: The set of points in P that can see all of P . See Figure 33.4.4.

Point visibility polygon: The region visible from a point in P .

Segment visibility polygon: The region visible from a segment in P .

MAIN RESULTS

The main algorithms are listed in Table 33.4.1. We discuss two of these algorithms
below to illustrate their flavor.

TABLE 33.4.1 Polygon visibility algorithms.

ALGORITHM TO COMPUTE TIME COMPLEXITY SOURCE

Kernel O(n) [LP79]

Point visibility polygon O(n) [JS87]

Segment visibility polygon O(n) [GHL+87]

Shortest illuminating segment O(n) [DN94]

Vertex visibility graph O(E) [Her89]

VISIBILITY POLYGON ALGORITHM

Let x ∈ P be the visibility source. Lee’s linear-time algorithm [JS87] processes
the vertices of P in a single counterclockwise boundary traversal. At each step, a
vertex is either pushed on or popped off a stack, or a wait event is processed. The
latter occurs when the boundary at that point is invisible from x. At any stage,
the stack represents the visible portion of the boundary processed so far.

Although this algorithm is elementary in its tools, it has proved delicate to
implement correctly.

VISIBILITY GRAPH ALGORITHM

In contrast, Hershberger’s vertex visibility algorithm [Her89] uses sophisticated
tools to achieve output-size sensitive time complexity O(E), where E is the num-
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ber of edges of the graph. His algorithm exploits the intimate connection between
shortest paths and visibility in polygons. It first computes the shortest path map
(Chapter 31) in O(n) time for a vertex, and then systematically transforms this
into the map of an adjacent vertex in time proportional to the number of changes.
Repeating this achieves O(E) time overall.

Most of the above algorithms have been parallelized; see, for example, [GSG92].

33.5 ALGORITHMS FOR VISIBILITY AMONG OBSTACLES

The shortest path between two points in an environment of polygonal obstacles
follows lines of sight between obstacle vertices. This has provided an impetus for
developing efficient algorithms for constructing visibility regions and graphs in such
settings. The obstacles most studied are noncrossing line segments, which can be
joined end-to-end to form polygonal obstacles. Many of the questions mentioned
in the previous section can be revisited for this environment.

The major results are shown in Table 33.5.1; the first three are described
in [O’R87]; the fourth is discussed below.

TABLE 33.5.1 Algorithms for visibility among obstacles.

ALGORITHM TO COMPUTE TIME COMPLEXITY

Point visibility region O(n logn)

Segment visibility region Θ(n4)

Endpoint visibility graph O(n2)

Endpoint visibility graph O(n logn + E)

ENDPOINT VISIBILITY GRAPH

The largest effort has concentrated on constructing the endpoint visibility graph.
Worst-case optimal algorithms were first discovered by constructing the line ar-
rangement dual to the endpoints in O(n2) time. Since many visibility graphs have
less than a quadratic number of edges, an output-size sensitive algorithm was a
significant improvement: O(n log n + E) where E is the number of edges of the
graph [GM91]. This was further improved to O(n + h log h + E) for h polygonal
obstacles with a total of n vertices [DW15].

A polygon with n vertices and h holes can be preprocessed into a data structure
with space complexity O(min(|E|, nh) + n) in time O(E + n log n), and can report
the visibility polygon V (q) of a query point q in time O(|V (q)| log n+ h) [IK09].

33.6 VISIBILITY PATHS

A fruitful idea was introduced to visibility research in the mid-1980s: the notion
of “link distance” between two points, which represents the smallest number of
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mutually visible relay stations needed to communicate from one point to another;
see Section 31.3. A related notion called “watchman tours” was introduced a bit
later, mixing shortest paths and visibility problems, and employing many of the
concepts developed for link-path problems (Section 31.4).

33.7 MIRROR REFLECTIONS

GLOSSARY

Light ray reflection: A light ray reflects from an interior point of a mirror
with reflected angle equal to incident angle; a ray that hits a mirror endpoint is
absorbed.

Mirror polygon: A polygon all of whose edges are mirrors reflecting light rays.

Periodic light ray: A ray that reflects from a collection of mirrors and, after a
finite number of reflections, rejoins its path (and thenceforth repeats that path).

Trapped light ray: One that reflects forever, and so never “reaches” infinity.

Klee asked whether every polygonal room whose walls are mirrors (a mirror poly-
gon) is illuminable from every interior point [Kle69, KW91]. Tokarsky answered no
by constructing rooms that leave one point dark when the light source is located at
a particular spot [Tok95]. Complementing Tokarsky’s result, it is now known that
if P is a rational polygon (angles rational multiples of π), for every x there are at
most finitely many dark points y in P [LMW16]. However, a second question of
Klee remains open: Is every mirror polygon illuminable from some interior point?

FIGURE 33.7.1
100 mirror disks fail to trap 10 rays
from a point source (near the center) [OP01].

The behavior of light reflecting in a polygon is complex. Aronov et al. [ADD+98]
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proved that after k reflections, the boundary of the illuminated region has combi-
natorial complexity O(n2k), with a matching lower bound for any fixed k. Even de-
termining whether every triangle supports a periodic ray is unresolved; see [HH00].

Pach asked whether a finite set of disjoint circular mirrors can trap all the rays
from a point light source [Ste96]. See Fig. 33.7.1. This and many other related
questions [OP01] remain open.

33.8 VISIBILITY IN THREE DIMENSIONS

Research on visibility in three dimensions (3D) has concentrated on three topics:
hidden surface removal, polyhedral terrains, and various 3D visibility graphs.

33.8.1 HIDDEN SURFACE REMOVAL

“Hidden surface removal” is one of the key problems in computer graphics (Chap-
ter 52), and has been the focus of intense research for two decades. The typical
problem instance is a collection of (planar) polygons in space, from which the view
from z = ∞ must be constructed. Traditionally, hidden-surface algorithms have
been classified as either image-space algorithms, exploiting the ultimate need to
compute visible colors for image pixels, and object-space algorithms, which perform
exact computations on object polygons. We only discuss the latter.

The complexity of the output scene can be quadratic in the number of input
vertices n. A worst-case optimal Θ(n2) algorithm can be achieved by projecting
the lines containing each polygon edge to a plane and constructing the resulting
arrangement of lines [Dév86, McK87]. More recent work has focused on obtaining
output-size sensitive algorithms, whose time complexity depends on the number of
vertices k in the output scene (the complexity of the visibility map), which is often
less than quadratic in n. See Table 33.8.1 for selected results. In the table, k is
the complexity of the visibility map, the “wire-frame” projection of the scene. A
notable example is based on careful construction of “visibility maps,” which leads,
e.g., to a complexity of O((n+ k) log2 n) for performing hidden surface removal on
nonintersecting spheres, where k is the complexity of the output map.

TABLE 33.8.1 Hidden-surface algorithm complexities.

ENVIRONMENT COMPLEXITY SOURCE

Isothetic rectangles O((n + k) logn) [BO92]

Polyhedral terrain O((n + k) logn log logn) [RS88]

Nonintersecting polyhedra O(n
√
k logn) [SO92]

O(n1+ε
√
k) [BHO+94]

O(n2/3+εk2/3 + n1+ε) [AM93]

Arbitrary intersecting spheres O(n2+ε) [AS00]

Nonintersecting spheres O(k + n3/2 logn) [SO92]

Restricted-intersecting spheres O((n + k) log2 n) [KOS92]

Preliminary version (August 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 33: Visibility 887

33.8.2 BINARY SPACE PARTITION TREES

Binary Space Partition (BSP) trees are a popular method of implementing the
basic painter’s algorithm, which displays objects back-to-front to obtain proper
occlusion of front-most surfaces. A BSP partitions Rd into empty, open convex
sets by hyperplanes in a recursive fashion. A BSP for a set S of n line segments
in R2 is a partition such that all the open regions corresponding to leaf nodes of
the tree are empty of points from S: all the segments in S lie along the boundaries
of the regions. An example is shown in Fig. 33.8.1. In general, a BSP for S will
“cut up” the segments in S, in the sense that a particular s ∈ S will not lie in the
boundary of a single leaf region. In the figure, partitions 1 and 2 both cut segments,
but partition 3 does not.

An attractive feature of BSPs is that an implementation to construct them is
easy: In R3, select a polygon, partition all objects by the plane containing it, and
recurse. Bounding the size (number of leaves) of BSP trees has been a challenge.
The long-standing conjecture that O(n) size in R2 is achievable was shown to be
false. See Table 33.8.2 for selected results.

1

2

3
A

5

4

B

C

D

EF
A B C D

E F

1

2

3 5

4

FIGURE 33.8.1
A binary space partition tree for 3 segments.

TABLE 33.8.2 BSP complexities.

DIM CLASS BOUND SOURCE

2 segments O(n logn) [PY90]

2 isothetic Θ(n) [PY92]

2 fat Θ(n) [BGO97]

2 segments Θ(n logn/ log logn) [Tót03a, Tót11]

3 polyhedra O(n2) [PY90]

3 polyhedra Ω(n2) [Cha84]

3 isothetic Θ(n3/2) [PY92]

3 fat orthog. rects. O(n log8 n) [Tót08]

33.8.3 POLYHEDRAL TERRAINS

Polyhedral terrains are an important special class of 3D surfaces, arising in a variety
of applications, most notably geographic information systems (Chapter 59).
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GLOSSARY

Polyhedral terrain: A polyhedral surface that intersects every vertical line in
at most a single point.

Perspective view: A view from a point.

Orthographic view: A view from infinity (parallel lines of sight).

Ray-shooting query: A query asking which terrain face is first hit by a ray
shooting in a given direction from a given point. (See Chapter 41.)

α(n): The inverse Ackermann function (nearly a constant). See Section 28.10.

COMBINATORIAL BOUNDS

Several almost-tight bounds on the maximum number of combinatorially different
views of a terrain have been obtained, as listed in Table 33.8.3.

TABLE 33.8.3 Bounds for polyhedral terrains.

VIEW TYPE BOUND SOURCE

Along vertical O(n22α(n)) [CS89]

Orthographic O(n5+ε) [AS94]

Perspective O(n8+ε) [AS94]

Bose et al. established that bn/2c vertex guards are sometimes necessary and
always sufficient to guard a polyhedral terrain of n vertices [BSTZ97, BKL96].

ALGORITHMS

Algorithms seek to exploit the terrain constraints to improve on the same compu-
tations for general polyhedra:

1. To compute the orthographic view from above the terrain:
time O((k + n) log n log log n), where k is the output size [RS88].

2. To preprocess for O(log n) ray-shooting queries for rays with origin on a ver-
tical line [BDEG94].

33.8.4 3D VISIBILITY GRAPHS

GLOSSARY

Aspect graph: A graph with a node for each combinatorially distinct view of a
collection of polyhedra, with two nodes connected by an arc if the views can be
reached directly from one another by a continuous movement of the viewpoint.
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Isothetic: Edges parallel to Cartesian coordinate axes.

Box visibility graph: A graph realizable by disjoint isothetic boxes in 3D with
orthogonal visibility.

Kn: The complete graph on n nodes.

There have been three primary motivations for studying visibility graphs of
objects in three dimensions.

1. Computer graphics: Useful for accelerating interactive “walkthroughs” of
complex polyhedral scenes [TS91], and for radiosity computations [TH93].
See Chapter 52.

2. Computer vision: “Aspect graphs” are used to aid image recognition. The
maximum number of nodes in an aspect graph for a polyhedron of n vertices
depends on both convexity and the type of view. See Table 33.8.4. Note that
the nonconvex bounds are significantly larger than those for terrains.

TABLE 33.8.4 Combinatorial complexity of visibility graphs.

CONVEXITY ORTHOGRAPHIC PERSPECTIVE SOURCE

Convex polyhedron Θ(n2) Θ(n3) [PD90]

Nonconvex polyhedron Θ(n6) Θ(n9) [GCS91]

3. Combinatorics: It has been shown that K22 is realizable by disjoint iso-
thetic rectangles in “2 1

2D” with vertical visibility (all rectangles are paral-
lel to the xy-plane), but that K56 (and therefore all larger complete graphs)
cannot be so represented [BEF+93]. It is known that K42 is a box visibility
graph [BJMO94] but that K184 is not [FM99].

33.9 PENETRATING ILLUMINATION OF CONVEX BODIES

A rich vein of problems was initiated by Hadwiger, Levi, Gohberg, and Markus;
see [MS99] for the complex history. The problems employ a different notion of
exterior illumination, which could be called penetrating illumination (or perhaps
“stabbing”), and focuses on a single convex body in Rd.

GLOSSARY

Penetrating illumination: An exterior point x penetratingly illuminates a point
y on the boundary ∂K of an object K if the ray from x through y has a non-
empty intersection with the interior int K of K.

Direction illumination: A point y ∈ ∂K is illuminated from direction v if the
ray from the exterior through y with direction v has a non-empty intersection
with int K.
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Affine symmetry: An object in R3 has affine symmetry if it unchanged after
reflection through a point, reflection in a plane, or rotation about a line by angle
2π/n, n = 2, 3, . . ..

The central problem may be stated: What is the minimum number of exterior
points sufficient to penetratingly illuminate any compact, convex body K in Rd?
The problem is only completely solved in 2D: 4 lights are needed for a parallelo-
gram, and 3 for all other convex bodies. In 3D it is known that 8 lights are needed
for a parallelepiped (Fig. 33.9.1), and conjectured that 7 suffice for all other con-
vex bodies. Bezdek proved that 8 lights suffice for any 3-polytope with an affine
symmetry [Bez93]. Lassak proved that no more than 20 lights are needed for any
compact, convex body in 3D [Bol81].

FIGURE 33.9.1
A parallelepiped requires 23 = 8
lights for penetrating illumination
of its boundary.

One reason for the interest in this problem is its connection to other problems,
particularly covering problems. Define:

I0(K) : the minimum number of points sufficient to penetratingly illuminate K.

I∞(K) : the minimum number of directions sufficient to direction-illuminate K.

H(K) : the minimum number of smaller homothetic copies of K that cover K.

i(K) : the minimum number of copies of int K that cover K.

Remarkably,
I0(K) = I∞(K) = H(K) = i(K) ,

as established by Boltjanski, Hadwiger, and Soltan; see again [MS99]. Several have
conjectured that these quantities are ≤ 2d for compact, convex bodies in Rd, with
equality only for the d-parallelotope. The conjecture has been established only for
special classes of bodies in 3 and higher dimensions, e.g., [Bol01, Bez11].

33.10 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys.

[O’R87]: A monograph devoted to art gallery theorems and visibility algorithms.

[She92]: A survey of art gallery theorems and visibility graphs, updating [O’R87].

Preliminary version (August 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 33: Visibility 891

[O’R92]: A short update to [She92].

[Urr00]: Art gallery results, updating [She92].

[GG13]: Survey of open problems on visibility graphs.

[O’R93]: Survey of visibility graph results.

[Gho07]: Survey of visibility algorithms in R2.

[MSD00]: Survey of link-distance algorithms.

[Mur99]: A Ph.D. thesis on hidden-surface removal algorithms.

[Tót05]: Survey of binary space partitions.

[MS99, Bez06, BK16]: Surveys of illumination of convex bodies.

RELATED CHAPTERS

Chapter 29: Triangulations and mesh generation
Chapter 30: Polygons
Chapter 31: Shortest paths and networks
Chapter 41: Ray shooting and lines in space
Chapter 42: Geometric intersection
Chapter 52: Computer graphics
Chapter 54: Pattern recognition
Chapter 59: Geographic information systems
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[MV99] J. Matoušek and P. Valtr. On visibility and covering by convex sets. Israel J. Math.,

113:341–379, 1999.

[McK87] M. McKenna. Worst-case optimal hidden-surface removal. ACM Trans. Graph.,

6:19–28, 1987.

[MP12] T.S. Michael and V. Pinciu. Guarding orthogonal prison yards: An upper bound.

Congr. Numerantium, 211:57–64, 2012.

[MS99] H. Martini and V. Soltan. Combinatorial problems on the illumination of convex

bodies. Aequationes Math., 57:121–152, 1999.

[MSD00] A. Maheshwari, J.-R. Sack, and H.N. Djidjev. Link distance problems. In J.-R.

Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 519–558,

Elsevier, Amsterdam, 2000.

Preliminary version (August 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 33: Visibility 895

[Mur99] T.M. Murali. Efficient Hidden-Surface Removal in Theory and in Practice. Ph.D.

thesis, Brown University, Providence, 1999.

[O’R83] J. O’Rourke. Galleries need fewer mobile guards: A variation on Chvátal’s theorem.
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[Tót11] C.D. Tóth. Binary plane partitions for disjoint line segments. Discrete Comput.

Geom., 45:617–646, 2011.
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