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INTRODUCTION

The notion of distance is fundamental to many aspects of computational geometry.
A classic approach to characterize the distance properties of planar (and high-
dimensional) point sets that has been studied since the early 1980s uses proximity
graphs (Section 32.1). Proximity graphs are geometric graphs in which two vertices
p, q are connected by an edge (p, q) if and only if a certain exclusion region for p, q
contains no points from the vertex set. Depending on the specific exclusion region,
many variants of proximity graphs can be defined, such as relative neighborhood
graphs, Delaunay triangulations, β-skeletons, empty-strip graphs, etc. Since prox-
imity graphs encode interesting information on the intrinsic structure of the point
set, they have found many applications. From an algorithmic point of view, it is
extremely useful to have a compact representation of the distance structure of a
point set. The well-separated pair decomposition (WSPD) offers one way to achieve
this (Section 32.2). WSPDs have numerous algorithmic applications, and the no-
tion generalizes to certain non-Euclidean metrics. Furthermore, several variants of
the WSPD have been developed to address its shortcomings, e.g., semi-separated
pair decompositions and (α, β)-pair decompositions. Geometric spanners provide
another means to approximate the complete Euclidean metric (Section 32.3). Here,
the distance function is approximated by the shortest path distance in a sparse geo-
metric graph. There are four basic constructions for geometric spanners: the greedy
spanner, the Yao graph, the Θ-graph and the WSPD-spanner. To optimize various
parameters, many variants have been defined, and the notion can be generalized
beyond the Euclidean setting. Finally, we discuss work on making proximity struc-
tures dynamic, allowing for insertions and deletions of points (Section 32.4). The
fundamental problem here is the dynamic nearest neighbor problem, which serves
as a starting point for other structures. Additionally, there are several results on
making geometric spanners dynamic.

32.1 PROXIMITY GRAPHS

GLOSSARY

Geometric graph: A graph G = (V,E) together with an embedding in Rd that
maps V to points and E to straight line segments that do not pass through
nonincident vertices. (See Chapter 10.)

Planar straight-line graph (PSLG): A geometric graph G = (V,E) embed-
ded in R2 with noncrossing edges.
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δ(p, q): The distance between two points p and q.

Diameter of a point set V : The maximum distance δ(p, q) between two points
p, q ∈ V . A pair that achieves the diameter is called a diametric pair.

Closest pair of a point set V : A pair {p, q} of two distinct points in V with
minimum distance δ(p, q). The distance δ(p, q) is called the closest pair distance.

Spread Φ(V ) of a point set V ⊂ Rd: The ratio between the diameter and the
closest pair distance of V : Φ(V ) = maxs,t∈V δ(s, t)/mins6=t∈V δ(s, t).

Lp-metric: Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be two d-dimensional

points. For p ∈ [1,∞], we set δp(x, y) = (
∑d
i=1 |xi − yi|p)1/p.

In particular, we have δ1(x, y) =
∑d
i=1 |xi − yi| and δ∞(x, y) = maxdi=1 |xi − yi|.

Ball B(x, r): Let x be a point and r ≥ 0. Then, we define the open ball
B(x, r) = {y | δ(x, y) < r}.

Nearest-neighbor graph NNG(V ): The directed graph with vertex set V and
an edge (p, q) if and only if B(p, δ(p, q)) ∩ V = ∅.

Lune L(p, q): For two points p and q, we set

L(p, q) = B(p, δ(p, q)) ∩B(q, δ(p, q)).

Some authors prefer the term lens instead of lune.

Relative neighborhood graph RNG(V ): The graph with vertex set V and an
edge (p, q) if and only if L(p, q)∩ V = ∅. Thus, the edge is present if and only if

δ(p, q) = min
v∈V

max{δ(p, v), δ(q, v)}.

Gabriel graph GG(V ): The graph with vertex set V and an edge (p, q) if and
only if

B
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β-lune Lβ(p, q): Let p and q be two points. For β = 0, Lβ(p, q) is the open line
segment pq.

For β ∈ (0, 1), Lβ(p, q) is the intersection of the two open disks of radius
δ(p, q)/(2β) having bounding circles passing through both p and q.

For β ≥ 1, we set
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Lune-based β-skeleton Glβ(V ): Let β ≥ 0. We define Glβ(V ) as the graph with
vertex set V and an edge (p, q) if and only if Lβ(p, q) ∩ V = ∅.

Circle-based β-skeleton Gcβ(V ): For β = 0, we define Gcβ(V ) as the graph with
vertex set V and an edge (p, q) if and only if the open line segment pq contains
no other points from V .

For β ∈ (0, 1), we define Gcβ(V ) as the graph with vertex set V and an edge
(p, q) if and only if the intersection of the two open disks with radius δ(p, q)/(2β)
passing through p and q does not contain any other points from V .

For β ≥ 1, we define Gcβ(V ) as the graph with vertex set V and an edge (p, q)
if and only if the union of the two open disks with radius βδ(p, q)/2 passing
through p and q does not contain any other points from V .
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Lp-Delaunay triangulation Dp(V ): The graph with vertex set V that is the
straight-line dual of the Voronoi diagram of V with respect to the Lp-norm.

Empty strip graph: The graph with vertex set V and an edge (p, q) if and
only if the open infinite strip bounded by the two lines through p and through q
orthogonal to the line segment pq contains no points from V .

Sphere of influence graph SIG(V ): Let Cp be a circle centered at p with
radius equal to the distance to a nearest neighbor of p. Then, SIG(V ) is the
graph with vertex set V and an edge (p, q) if and only if Cp and Cq intersect in
at least two points.

Minimum-weight triangulation MWT(V ): A geometric triangulation (i.e.,
an edge maximal planar straight-line graph) with vertex set V and the minimum
total edge length.

BASIC STRUCTURES

Let V be a finite set in the Euclidean plane. The nearest neighbor graph NNG(V )
connects each point in V to its nearest neighbor. It is usually defined as a di-
rected graph, but some authors treat it as undirected. In general, NNG(V ) is not
connected, but each point in V has at least one incident edge.

The relative neighborhood graph RNG(V ) connects two points p and q if and
only if the lune L(p, q) is empty of points from V . It was defined by Tous-
saint [Tou80]. The Gabriel graph GG(V ) was first introduced by Gabriel and
Sokal [GS69]. It is defined similarly as RNG(V ), but two points p and q are
connected by an edge if and only if their diameter sphere (i.e., the sphere with
diameter pq) is empty. The RNG and the GG are always connected. (The RNG
can be disconnected if one defines the exclusion region as a closed set.)

The β-skeletons are a continuous generalization of the Gabriel graph and the
relative neighborhood graph [KR85]. They come in two variants, circle-based and
lune-based, depending on the region that needs to be empty for an edge to be
present. Both circle- and lune-based β-skeletons depend on a parameter β ≥ 0. In
circle-based β-skeletons, the union of two open generalized diameter circles needs
to be empty of other points from V . In lune-based β-skeletons, an open β-lune
needs to be empty; see Figure 32.1.1. The lune-based β-skeleton can be defined
for any Lp-metric. Unless stated otherwise, we refer to the Euclidean case. For
β ∈ [0, 1], the circle-based and the lune-based β-skeleton coincide. For β = 0,
the β-skeleton is the complete graph, provided that no three points of V lie on a
line. For β = 1, we have Gc1(V ) = Gl1(V ) = GG(V ). For β > 1, the circle-based
β-skeleton is a subgraph of the (Euclidean) lune-based β-skeleton. For β = 2, the
lune-based β-skeleton coincides with the relative-neighborhood graph. For β =∞,
the circle-based β-skeleton becomes the empty graph and the lune-based β-skeleton
becomes the empty-strip graph. For 0 ≤ β1 ≤ β2 ≤ ∞, we have Glβ2

(V ) ⊆ Glβ1
(V )

and Gcβ2
(V ) ⊆ Gcβ1

(V ).
These graph definitions capture the internal structure of a point set and are

motivated by various applications, such as computer vision, texture discrimination,
geographic analysis, pattern analysis, cluster analysis, and others. The following
theorem states some relationships between proximity graphs. A version of this
theorem was first established by Toussaint [Tou80]; see also [KR85, O’R82, MS80].
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FIGURE 32.1.1
The exclusion regions for the circle-based and Euclidean lune-based β-skeleton for various
values of β (cf. [Vel91]). For β = 1, the exclusion region coincides with the exclusion
region for the Gabriel graph. For β = 2, the exclusion region for the lune-based β-skeleton
is the exclusion region of the relative neighborhood graph. For β = ∞, the exclusion
region of the lune-based β-skeleton is the exclusion region of the empty strip graph and the
exclusion region of the circle-based β-skeleton is the whole plane.

THEOREM 32.1.1 Hierarchy Theorem

In any Lp metric, p ∈ (1,∞), for any finite point set V and for any 1 ≤ β ≤ 2,
we have

NNG ⊆ MSTp ⊆ RNG ⊆ Glβ ⊆ GG ⊆ DTp,

where MSTp is a minimum spanning tree of V in the Lp-norm and DTp is the
Delaunay triangulation of V .

O’Rourke showed that for p = 1 and p = ∞, the inclusion RNG ⊆ DTp
does not necessarily hold; however, with a slightly different definition of Delaunay
triangulation (in terms of empty open balls, instead of being the dual of the Voronoi
diagram), the inclusion can be rescued [O’R82]. The MST is always connected, so
by the Hierarchy Theorem, this also holds for the RNG, the GG and the lune-based
β-skeleton with β ∈ [0, 2]. In general, the circle-based β-skeleton is not connected
for β > 1.

Clearly, neighborhood graphs on n vertices can have at most
(
n
2

)
edges. In

many cases, this is also attained, for example, for the L1 and L∞ metric [Kat88],
for Gabriel graphs in three and more dimensions [CEG+94], and for RNGs in four
dimensions and higher. In the plane, the Euclidean RNG has at most 3n − 8
edges [BDH+12]; an earlier upper bound of 3n − 10 [Urq83] turned out to be
incorrect [BDH+12]. The planar Gabriel graph has at most 3n − 8 edges [MS80].
For 1 < p <∞, the fact that the RNG is contained in the Delaunay triangulation
yields an upper bound of 3n − 6 edges [JT92]. In three dimensions, Euclidean
RNGs have size at most O(n4/3) [AM92]. No matching lower bound is known. See
Table 32.1.1. Bose et al. [BDH+12] give bounds on a large number of parameters
in various proximity graphs.
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TABLE 32.1.1 Size of RNGs and Gabriel graphs.

DIM METRIC SIZE REFERENCE COMMENT

2 L2 ≤ 3n− 8 [BDH+12]
2 L2 ≤ 3n− 8 [MS80] Gabriel Graphs
2 Lp, 1 < p <∞ ∈ [n− 1, 3n− 6] [JT92]
≥ 2 L1, L∞ Θ(n2) [Kat88]

3 L2 O(n4/3) [AM92]
≥ 3 L2 Θ(n2) [CEG+94] Gabriel Graphs

≥ 4 L2 Θ(n2) [JT92]

TABLE 32.1.2 RNG algorithms.

DIM METRIC COMPLEXITY REFERENCE COMMENT

2 L2 O(n log n) [Sup83] arbitrary points
2 Lp, 1 < p <∞ O(n2) [Tou80, Kat88] arbitrary points
2 L1, L∞ O(n log n) [Lee85] general position
2 L1, L∞ O(n log n+m) [Kat88] m output size

arbitrary points

3 L2 O(n3/2+ε) [AM92] general position
3 L2 O(n7/4+ε) [AM92] arbitrary points
3 Lp, 1 < p <∞ O(n2) [Sup83, JK87, KN87] general position

3 L1, L∞ O(n log2 n) [Smi89] general position

d L2 O(n2(1−1/(d+1))+ε) [AM92] general position

d L1, L∞ O(n logd−1 n) [Smi89] general position

ALGORITHMS

It is an interesting algorithmic problem to construct proximity graphs efficiently.
Using the definition, O(n3) time complexity is trivial. In the case of general Lp-
metrics, for 1 < p < ∞, the fact that the Delaunay triangulation is a superset of
the RNG leads to an O(n2) time algorithm in the plane. A faster algorithm for the
Euclidean case was given by Supowit, who showed that in this case the RNG can
be computed in O(n log n) time [Sup83]. For the L1 and L∞ metric, Lee described
an O(n log n) time algorithm for planar point sets in general position, improving
a previous O(n2 log n) algorithm by O’Rourke [O’R82]. Katajainen [Kat88] gives
an output-sensitive algorithm for the L1 and L∞ that achieves O(n log n + m)
time, where m is the size of the resulting RNG. In three dimensions, Agarwal
and Matoušek obtain O(n3/2+ε) time for computing the Euclidean RNG of points
in general position, and O(n7/4+ε) for arbitrary points [AM92]. Their approach
generalizes to higher dimensions, yielding time O(n2(1−1/(d+1))+ε) for d-dimensional
point sets in general position. For the Lp-norm, 1 < p < ∞, several algorithms
with running time O(n2) are available for three-dimensional point sets in general
position [Sup83, JK87, KN87]. Finally, in the L1 and L∞-norm, the d-dimensional
RNG for points in general position can be found in time O(n logd−1 n) [Smi89]. See
Table 32.1.2.
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There are also many results that describe algorithmic relationships between
different proximity structures. Since planar graphs are closed under the minors
relation, one can use the Bor̊uvka-Sollin algorithm to find an MST of a planar
point set V in O(n) time, once DT(V ) is available [CT76]. This works in any
Lp-norm, 1 < p < ∞. Similarly, given DT(V ), we can compute the lune-based
β-skeleton for V with β ∈ [1, 2] in O(n) additional time [Lin94]. This result holds
in any Lp-metric, for 1 < p < ∞ [Lin94]. By setting β = 1 and β = 2, this
result applies in particular to GG(V ) and RNG(V ). A linear time algorithm to
construct GG(V ) from DT(V ) was also described by Matula and Sokal [MS80]. The
circle-based β-skeleton for a planar point set V with β ≥ 1 can be found in O(n)
additional time given DT(V ) [KR85, Vel91]. The fastest algorithm for computing
a β-skeleton for a planar point set with β ∈ [0, 1] takes O(n2) time [HLM03].
In some cases, the β-skeleton for β ∈ [0, 1] can have Θ(n2) edges. Given the
Euclidean MST (or any connected subgraph of DT(V )), we can compute DT(V )
in O(n) additional time [CW98, KL96]. There exists a general reduction from
computing Delaunay triangulations to computing NNGs: Suppose we are given
an algorithm that computes the NNG of any planar m-point set in T (m) time,
where m 7→ T (m)/m is monotonically increasing. Then, we can compute the
Delaunay triangulation of a planar n-point set in O(T (n)) expected time [BM11].
This reduction is useful in settings where faster NNG algorithms are available, e.g.,
in transdichotomous models that allow manipulations at the bit-level [BM11].

APPLICATIONS AND VARIANTS

An important connection between the circle-based β-skeleton and the minimum-
weight triangulation (MWT) was discovered by Keil: for β =

√
2 ≈ 1.41421, we

have Gcβ(V ) ⊆ MWT(V ) [Kei94]. Cheng and Xu later improved this to β =√
1 +

√
4/27 ≈ 1.17682 [CX01]. For β =

√
5/4 +

√
1/108 ≈ 1.16027, the circle-

based β-skeleton need not be a subgraph of the MWT [WY01]. Even though it
is NP-hard to compute the minimum weight triangulation [MR08], the β-skeleton
provides a good heuristic for well-behaved point sets.

Just as Delaunay triangulations/Voronoi diagrams have been generalized to
kth-order diagrams (see Chapter 27), the relative neighborhood graph and the
Gabriel graph have kth-order generalizations, k-RNG and k-GG, in which the
exclusion region may contain up to k points of V . The k-GG has O(k(n − k))
edges and can be constructed in time O(k2n log n) [SC90]; the k-GG is (k + 1)-
connected [BCH+13], and the 10-GG is Hamiltonian (while the 1-GG is not nec-
essarily Hamiltonian) [KSVC15]. The 17-RNG contains the Euclidean bottleneck
matching, which leads to an efficient (roughly O(n1.5)) algorithm for computing a
bottleneck matching [CTL92].

There are many ways to generalize the proximity graphs described in this sec-
tion. The sphere-of-influence (SIG) graph was defined by Toussaint as a graph-
theoretical “primal sketch” [Tou88]. In the SIG, two points are connected by an edge
if and only if their nearest-neighbor circles intersect. In the plane, the SIG has at
most 15n = O(n) edges [Sos99], and it can be computed in Θ(n log n) time [AH85].
Veltkamp defines a family of γ-neighborhood graphs [Vel91]. Veltkamp’s graphs are
parameterized by two parameters γ0 and γ1, and they provide a common gener-
alization for the Delaunay triangulation, the convex hull, the Gabriel graph, and
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the circle-based β-skeleton [Vel91]. Empty-ellipse graphs [DEG08] are a more recent
variant of proximity graphs. They were defined by Devillers, Erickson and Goaoc to
study the local behavior of Delaunay triangulations on surfaces in three-dimensional
space. Here, two points are connected if and only if they lie on an axis-aligned el-
lipse with no other points from V in its interior. Devillers et al. show that the
empty ellipse graph for a point set with stretch Φ has O(nΦ) edges [DEG08]. Car-
dinal, Collette and Langerman reverse the viewpoint of previous work on proximity
graphs [CCL09]: in an empty region graph, two points form an edge if and only if
some neighborhood around them—derived from a template region—is empty. In-
stead of analyzing the properties of certain given proximity graphs, Cardinal et al.
start with certain desirable graph properties, such as connectivity, planarity, bipar-
titeness, or cycle-freeness, and they characterize maximal and minimal template
regions that ensure these properties.

The field of proximity drawings studies which graphs can be represented as
proximity graphs. For example, a tree can be represented as an RNG if and only if
it has maximum vertex degree at most 5 [BLL96]. There is also a characterization
of the trees representable as Gabriel graphs [BLL96]. Refer to [DBLL94, Lio13]
for many more results. Chapter 54 discusses applications of proximity graphs in
pattern recognition.

OPEN PROBLEMS

1. The complexity of Euclidean RNGs in R3 has still not been settled. Agarwal
and Matoušek showed an upper bound of O(n4/3), where n is the number of
points [AM92]. No super-linear lower bound is known.

2. What is the complexity of the SIG? The best upper bound for n vertices is
15n, but no lower bound exceeding 9n is known [Sos99]. The SIG has a linear
number of edges in any fixed dimension [GPS94], and bounds on the expected
number of edges are known [Dwy95]. However, there are no tight results.

32.2 QUADTREES AND WSPDS

GLOSSARY

Quadtree T associated with a set S ⊂ Rd: A tree in which each inner node
has exactly 2d children, with each node ν having an associated subset S(ν) ⊆ S
and an axis-parallel bounding hypercube R(ν) for S(ν), such that (i) |S(ν)| = 1
if ν is a leaf; and (ii) for each internal node ν, the hypercubes for the 2d children
of ν constitute a partition of R(ν) into 2d congruent hypercubes.

Compressed quadtree T associated with a set S ⊂ Rd: A tree in which each
inner node has exactly one or 2d children, with each node ν having an associated
subset S(ν) ⊆ S and an axis-parallel bounding hypercube R(ν) for S(ν), such
that (i) |S(ν)| = 1 if ν is a leaf; (ii) if ν has 2d children, the hypercubes for
the 2d children partition R(ν) into 2d congruent hypercubes; and (iii) if ν has
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one child ν′, then R(ν′) ⊂ R(ν) and R(ν′) is smaller than R(ν) by at least a
constant factor. Usually, a compressed quadtree is obtained from a quadtree by
contracting long paths in which each node has only one non-empty child square.

Fair-split tree T associated with a set S ⊂ Rd: A binary tree, where each
node ν has an associated subset S(ν) ⊆ S and the axis-parallel bounding box
R(ν) of S(ν), such that (i) |S(ν)| = 1 if ν is a leaf; and (ii) for each internal
node ν, let ν1 and ν2 be the two children of ν. Then, there exists a hyperplane
hν orthogonal to the longest edge, ξ, of R(ν) separating S(ν1) and S(ν2) such
that hν is at distance at least |ξ|/3 from each of the sides of R(ν) parallel to it.

s-well-separated pair: Let s ≥ 1 be a fixed separation constant. Two non-
empty point sets X and Y constitute an s-well-separated pair if and only if
there are two radius-r enclosing balls, BX ⊃ X and BY ⊃ Y , such that the
distance between BX and BY is at least sr.

Well-separated pair decomposition (WSPD) of a set S ⊂ Rd of points for a
fixed separation constant s ≥ 1: A set, {{A1, B1}, {A2, B2}, . . . , {Am, Bm}},
of pairs of nonempty subsets of S such that (i) Ai ∩ Bi = ∅, for i = 1, 2, . . . ,m;
(ii) each pair of distinct elements {a, b} ⊆ S has a unique pair {Ai, Bi} with
a ∈ Ai, b ∈ Bi; and (iii) Ai and Bi are s-well-separated. The size of the WSPD
is m.

Doubling dimension of a metric space (S, δ): The doubling parameter λ ∈ N
is the smallest integer such that for every r ≥ 0 and every p ∈ S, the ball B(p, r)
can be covered by at most λ balls of radius r/2. The doubling dimension of
(S, δ) is log λ. A family of metric spaces has bounded doubling dimension c if the
doubling dimension of all spaces in the family is at most c.

(Unit) disk graph: The graph with vertex set V where each p ∈ V has an
associated radius rp > 0. There is an edge (p, q) if and only if δ(p, q) ≤ rp + rq,
i.e., if the closed balls with radius rp around p and with radius rq around q
intersect. The graph is called a unit disk graph if rp = 1/2, for all p ∈ V .

s-semi-separated pair: Let s > 1 be a fixed separation constant. Two non-
empty point sets X and Y constitute an s-semi-separated pair if and only if
there are two enclosing balls, BX ⊃ X and BY ⊃ Y with radius rA and rB ,
respectively such that the distance between BX and BY is at least smin{rA, rB}.

Semi-separated pair decomposition (SSPD) of a set S ⊂ Rd of points for a
fixed separation constant s > 1: A set, {{A1, B1}, {A2, B2}, . . . , {Am, Bm}},
of pairs of nonempty subsets of S such that (i) Ai ∩ Bi = ∅, for i = 1, 2, . . . ,m;
(ii) each pair of distinct elements {a, b} ⊆ S has a unique pair {Ai, Bi} with
a ∈ Ai, b ∈ Bi; and (iii) Ai and Bi are s-semi-separated. The size of the SSPD
is m.

QUADTREES

For every set S of n points, there is a quadtree with O(n log Φ(S)) nodes and
depth O(log Φ(S)), and it can be computed in the same time [BCKO08, Sam90].
In general, the size and depth of a (regular) quadtree can be unbounded in n. To
address this issue, one can define compressed quadtrees. The precise definition of a
compressed quadtree varies in the literature [HP11, LM12], but the essential idea
is to take a (regular) quadtree and to contract long paths in which each node has

Preliminary version (August 8, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 32: Proximity algorithms 857

FIGURE 32.2.1
A regular and a compressed quadtree for a planar point set.

only a single non-empty child into single edges; see Figure 32.2.1. For every set S of
n points, there is a compressed quadtree with O(n) nodes. The depth may also be
Θ(n). A compressed quadtree can be computed in O(n log n) time [HP11, LM12].
In fact, given the Delaunay triangulation DT(S) of a planar point set S, we can
find a compressed quadtree for S in O(n) additional time [KL98]. Conversely, given
a suitable compressed quadtree for a planar point set S, we can find DT(S) in O(n)
additional time [BM11, LM12].

COMPUTATIONAL MODELS

When dealing with compressed quadtrees, it is important to keep the computational
model in mind. Algorithms that use compressed quadtrees often rely on the real
RAM model of computation and require the floor function x 7→ bxc, x ∈ R [PS85].
In fact, Har-Peled pointed out that if we want the squares of a compressed quadtree
to be aligned to a grid, some kind of non-standard operation is inevitable [HP11].
Nonetheless, the floor function provides unexpected computational power. It can
be used to circumvent established lower bounds in the algebraic decision tree
model [Ben83]. For example, using the floor function, we can use Rabin’s algo-
rithm to find the closest pair of a set of n points in O(n) expected time, despite
an Ω(n log n) lower bound for algebraic decision trees [Ben83]. Not only that, the
floor function lets us solve PSPACE-complete problems in polynomial time [Sch79].
Despite these issues, algorithms that use the floor function are often simple, effi-
cient and practical. There is also a way to define compressed quadtrees in a way
that is compatible with the algebraic decision model, but this usually comes at
the cost of increased algorithmic complexity [BLMM11, LM12]. When comparing
results that involve quadtrees, we should be aware of the details of the underlying
computational model.

WELL-SEPARATED PAIR DECOMPOSITION

Callahan and Kosaraju [CK95] defined the notion of a well-separated pair decom-
position (WSPD) for a point set S. They also showed the remarkable theorem that
a WSPD of size O(n) can be constructed in time O(n), given a fair split tree of an
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FIGURE 32.2.2
Let s > 1. Any WSPD for the shortest path metric of the star graph with separation
parameter s has size Ω(n2). For every pair of distinct vertices vi, vj, there must be a
distinct s-well-separated pair {A,B} with vi ∈ A, vj ∈ B: if there were another vk with,
say, vk ∈ A, then A would have diameter 2 and distance at most 2 from B, making {A,B}
not s-well-separated.

input set S of n points in Rd, for any fixed dimension d and separation constant
s ≥ 1. (More precisely, the size of the WSPD is O(sdn).) A fair split tree can
be constructed using quadtree methods in time O(n log n) for any fixed dimension.
Alternatively, the WSPD can be computed from a (compressed) quadtree in O(n)
additional time [BM11, Cha08, HP11, LM12]. In the algebraic decision tree model,
it takes Ω(n log n) steps to compute the WSPD.

Well-separated pair decompositions have countless applications in proximity
problems [Smi07]. For example, let S be a set of n points. Given a WSPD for
S of size m with separation parameter s > 2, we can find a closest pair in S in
O(m) additional time, since the closest pair occurs as a well-separated pair in the
decomposition [CK95]. In fact, given a fair-split tree or a compressed quadtree
that represents a WSPD for S with separation parameter s > 2, we can compute
NNG(S) in O(n) additional time [CK95]. This fact, together with the connection
between fast algorithms for NNG(S) and fast algorithms for DT(S), can be used to
obtain improved running times for computing Delaunay triangulations in various
models of computation, such as the word RAM [BM11]. WSPDs are also extremely
useful in the context of approximation algorithms. For example, they can be used
to approximate the diameter and the minimum-spanning tree of high-dimensional
point sets. As we will see in the next section, they also play an important role in
spanner construction. The survey of Smid contains further applications [Smi07].

Not every metric space admits a WSPD of subquadratic size. For example, in
the shortest path metric of the unweighted star graph, every WSPD with separation
parameter s > 1 must have Ω(n2) pairs; see Figure 32.2.2. Notwithstanding, there
are large families of finite metrics that have WSPDs with linear or near-linear size.

A family of metric spaces has bounded doubling dimension c if the doubling
dimension of all spaces in the family is at most c. This notion was defined by
Gupta, Krauthgamer and Lee [GKL03], following earlier work by Assouad [Ass83].
The family of finite subsets of Rd has bounded doubling dimension Θ(d). Talwar
gave an algorithm to compute a WSPD with separation parameter s ≥ 1 of size
O(slog λn log Φ(S)), where Φ(S) is the spread of S [Tal04]. This was improved by
Har-Peled and Mendel, who showed how to compute a WSPD of size O(slog λn) in
time O(λn log n + slog λn), asymptotically matching the bounds for the Euclidean
case [HP11, HPM06].

Another interesting metric is given by unit disk graphs. In a unit disk graph,
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there is an edge (p, q) between two vertices if and only δ(p, q) ≤ 1. Even though
the shortest path metric in unit disk graphs (with Euclidean edge lengths) does not
have bounded doubling dimension, Gao and Zhang showed that it admits WSPDs
of near-linear size [GZ05]. More specifically, they showed that the planar unit disk
graphs with n vertices have WSPDs of size O(s4n log n) that can be computed in
the same time. In dimension d ≥ 3, there is a WSPD of size O(n2−2/d) that can

be found in time O(n4/3 logO(1) n) for d = 3 and in time O(n2−2/d) for d ≥ 4. The
bound on the size is tight for d ≥ 4. The result of Gao and Zhang can be extended
to general disk graphs where the ratio between the largest and the smallest radius
is bounded [GZ05, Wil16]. For an unbounded radius ratio, however, no WSPD
of subquadratic size is possible in general. Generalizations to the shortest path
metric in unweighted disk graphs (also known as hop distance) are also possible,
albeit with somewhat weaker results [GZ05].

For Euclidean point sets, there is always a WSPD with a linear number of
pairs, but the total number of points in the sets of the pairs may be quadratic.
In many applications, this is not an issue, because the sets can be represented
implicitly and the algorithms do not need to inspect all sets in the WSPD. However,
if this becomes necessary, a quadratic running time becomes hard to avoid. To
address this, Varadarajan [Var98] introduced the notion of s-semi-separated pair
decomposition (s-SSPD). In d dimensions, an s-SSPD with O(sdn) pairs whose sets
contain O(sdn log n) points in total can be computed in O(sdn log n) time [ABFG09,
AH12]. SSPDs have numerous applications, e.g., in computing the min-cost perfect
matching of a planar point set [Var98] or in constructing spanners with certain
properties [ABFG09, AH12, ACFS13]. Abu-Affash et al. [AACKS14] introduce
the (α, β)-pair decomposition, another variant of the WSPD. They provide several
applications, including its application to the Euclidean bottleneck Steiner path
problem.

In general, the WSPD is the method of choice when we need to represent
approximately the pairwise distances in a point set. The SSPD offers weaker guar-
antees, but it can be useful if we need to inspect all sets of the decomposition
explicitly. The (α, β)-pair decomposition does not give a general approximation
of distances, but it works only at a fixed scale. It is simpler to work with than
the other two decompositions and it can provide stronger guarantees for certain
problems.

OPEN PROBLEMS

1. What is the right bound of the size for WSPDs for unit disk graphs in the
plane? Gao and Zhang’s result gives an upper bound of O(n log n) [GZ05],
but no super-linear lower bound is known.

2. Disk graphs with an unbounded radius ratio generally do not admit a WSPD
of subquadratic size. Is there another way to represent the pairwise distances
in these graphs compactly?

Preliminary version (August 8, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



860 J.S.B. Mitchell and W. Mulzer

32.3 GEOMETRIC SPANNERS

GLOSSARY

Euclidean graph: A geometric graph with Euclidean lengths associated with
the edges.

Complete Euclidean graph Ed: A d-dimensional Euclidean graph (V,E) whose
edge set E joins each pair of points of V ⊂ Rd.

Yao-graph Yk: For integer k ≥ 2, a geometric graph in which each v ∈ V is
joined by an edge to the closest point u ∈ V ∩ Ci, where, in dimension d = 2,
each Ci is one of k = 2π/θ equal-sized sectors (cones) with apex v and angle θ.

Theta-graph Θk: For integer k ≥ 2, a geometric graph, similar to the Yao-graph,
in which each v ∈ V is joined by an edge to the “closest” point u ∈ V ∩Ci, where
“closest” is based on the projections of the points V ∩ Ci onto a ray with apex
v within Ci, a sector of angle 2π/k; typically, the ray is the bisector of Ci.

t-Spanner: A subgraph G′ = (V,E′) of a graph G = (V,E) such that for any
u, v ∈ V the distance δG′(u, v) within G′ is at most t times the distance δG(u, v)
within G. We focus on Euclidean t-spanners for which the underlying graph
G is the complete Euclidean graph in Rd.

Plane t-spanner: A Euclidean t-spanner that is a PSLG in R2. (Also known
as a planar t-spanner.)

Stretch factor, t∗, of a Euclidean graph G = (V,E):

t∗ = max
u,v∈V,u6=v

{
δG(u, v)

δ2(u, v)

}
where δ2(u, v) is the Euclidean distance between u and v. Thus, t∗ is the smallest
value of t for which G is a Euclidean t-spanner. The stretch factor is also known
as the spanning ratio or the dilation of G.

Size of a Euclidean graph G = (V,E): The number of edges, |E|.
Weight of a Euclidean graph G = (V,E): The sum of the Euclidean lengths

of all edges e ∈ E.

Degree of a graph G = (V,E): The maximum number of edges incident on a
common vertex v ∈ V .

k-vertex fault-tolerant t-spanner: A t-spanner with the property that the
removal of any subset of at most k nodes, along with the incident edges, results
in a subgraph that remains a t-spanner on the remaining set of points.

t-SPANNERS

A natural greedy algorithm, similar to Kruskal’s minimum spanning tree algorithm,
can be used to construct t-spanners:

Given an input geometric graph G = (V,E) and a real number t > 1.
Initialize edge set E′ ← ∅. For each edge (u, v) ∈ E, considered in
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nondecreasing order of length δ2(u, v), if δG′(u, v) > t · δ2(u, v), then
E′ ← E′ ∪ {(u, v)}. Output the graph G′ = (V,E′).

The greedy algorithm results in a t-spanner of size O(n), weight O(log n) · |MST|,
and degree O(1), for any fixed dimension d and spanning ratio t > 1 [ADD+93,
CDNS95]. It can be applied also to general (nongeometric) graphs with weighted
edges. The greedy spanner can be computed in O(n2 log n) time with O(n2)
space [BCF+10] and in O(n2 log2 n) time with O(n) space [ABBB15].

The Yao-graphs Yk and theta-graphs Θk explicitly take advantage of geometry,
and each yields a t-spanner with spanning ratio t = 1 +O(1/k) arbitrarily close to
1, for sufficiently large k [ADD+93, Cla87, Kei92, RS91, Yao82]. The Yao-graphs
Yk and theta-graphs Θk are connected for k ≥ 2; see [ABB+14].

TABLE 32.3.1 Spanning ratios of Yao-graphs and Θ-graphs in R2.

GRAPH SPANNING RATIO REFERENCE

Y2, Y3 unbounded [EM09]

Y4 ≤ 8(29 + 23
√

2) ≈ 663 [BDD+12]

Y5 ∈ [2.87, 2 +
√

3 ≈ 3.74] [BBD+15]
Y6 ∈ [2, 5.8] [BBD+15]
Yk, k ≥ 7 lower/upper bounds [BBD+15]

depending on k (mod 4)
Θ2,Θ3 unbounded [EM09]
Θ4 [7,237] [BBC+13]
Θ5 [3.79, 9.96] [BMRV15]
Θk, k ≥ 6, k ≡ 2 (mod 4) 1 + 2 sin(π/k) (tight) [BDCM+16, BGHI10]
Θk, k ≥ 7 lower/upper bounds [BDCM+16]

depending on k (mod 4)

The known bounds on spanning ratios of Yao-graphs and Θ-graphs are shown
in Table 32.3.1; see also the detailed tables in [BDCM+16] for Θ-graphs and in
[BBD+15] for Yao-graphs. Note that Y5 has spanning ratio 3.74 < 3.79, making
it the only known case (k = 5) in which there is a strict separation between the
spanning ratio of a theta-graph Θk and that of a Yao-graph Yk; for other values of
k ≥ 4, it is not known which graph (Yk or Θk) has a smaller spanning ratio. The
spanning ratio for Θ-graphs does not necessarily decrease with an increase in k; for
k = 6, the spanning ratio is 2 (and this is tight), while for k = 8, it is known that
the spanning ratio is at least 2.17 [BDCM+16].

By selecting a representative edge from each pair in a WSPD, one obtains a
t-spanner of size O(n) with a spanning ratio that can be made arbitrarily close to
1, depending on the separation constant s.

One can in fact obtain t-spanners for n points in Rd that are simultaneously
good with respect to size, weight, and degree—size O(n), weight O(|MST|), and
bounded degree (independent of the dimension d). Gudmundsson et al. [GLN02]
show that such spanners can be computed in time O(n log n), improving the pre-
vious bound of O(n log2 n) [DN97] and re-establishing the time bound claimed in
Arya et al. [ADM+95] (which was found to be flawed). Ω(n log n) time is required
for constructing any t-spanner for n points in Rd in the algebraic decision tree
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model [CDS01].
It was shown by Levcopoulos, Narasimhan, and Smid [LNS02] that k-vertex

fault-tolerant spanners of size O(k2n) can be constructed in time O(n log n+ k2n);
alternatively, spanners of size O(kn log n) can be constructed in time O(kn log n).
Lukovszki [Luk99] and Czumaj and Zhao [CZ04] showed how to obtain even smaller,
degree-bounded low-weight k-vertex fault-tolerant spanners; degreeO(k) and weight
O(k2|MST|) can be obtained, and these bounds are asymptotically optimal.

The spanning ratio of a given graph G = (V,E) can be computed exactly in
worst-case time O(n2 log n + n|E|) using an all-pairs shortest path computation.
Given a Euclidean graph with n vertices and m edges, its spanning ratio (stretch
factor) can be (1 + ε)-approximated in time O(m+n log n) [GLNS08]. Narasimhan
and Smid [NS02] have studied the bottleneck stretch factor problem, in which the
goal is to be able to compute quickly, for any given b > 0, an approximate stretch
factor of the bottleneck graph Gb = (V,Eb) whose edge set Eb consists of those
edges of the complete graph whose length is at most b. We say that t is a (c1, c2)-
approximate stretch factor of a graph if the true stretch factor, t∗, satisfies t/c1 ≤
t∗ ≤ c2t. A data structure of size O(log n) can be constructed that supports
O(log log n)-time queries, for any b > 0, yielding a (c1, c2)-approximate stretch
factor of Gb. The construction of the data structure, which is based on a WSPD,
is done using a randomized algorithm with expected running time that is slightly
subquadratic.

Spanners can be computed for geodesic distances in a polygonal domain P : a
(1+ε)-spanner of the visibility graph VG(P ) can be computed in time O(n log n),
for any ε > 0 [ACC+96]. Geometric spanners can be used to obtain very efficient
approximate two-point shortest path distance queries: for any constant t > 1, a
t-spanner G for n points in Rd with m edges can be processed in time O(m log n),
building a structure of size O(n log n), to support (1+ε)-approximate shortest path
(in G) distance queries in O(1) time between any two vertices of G. (A path can be
reported in additional time proportional to the number of its edges.) Then, if the
visibility graph VG(P ) is a t-spanner of the vertices of P , for some constant t, one
obtains O(1)-time (resp., O(log n)-time) (1+ε)-approximate shortest path distance
queries between any two vertices (resp., points) of P . The assumption on VG(P )
holds if P has the “t-rounded” property for some t: the shortest path distance
between any pair of vertices is at most t times the Euclidean distance between
them; such is the case if the obstacles are fat, as shown by Chew et al. [CDKK02].

PLANE t-SPANNERS

For finite point sets in the plane it is natural to consider constructing plane t-
spanner networks, whose edges do not cross. One cannot hope, in general, to
obtain plane t-spanners with t arbitrarily close to 1: four points at the corners of a
square have no plane t-spanner with t <

√
2.

The first result on plane t-spanners is due to Chew [Che86], who showed that
the Delaunay triangulation in the L1 metric is a

√
10-spanner for the complete

Euclidean graph. (It is a
√

5-spanner for the complete graph whose edge lengths
are measured in the L1 metric.) Chew [Che89] improved this result, showing that
the Delaunay triangulation in the convex distance function based on an equilateral
triangle (also known as the triangular-distance Delaunay or TD-Delaunay graph)
is a plane graph with spanning ratio at most 2; this bound is now known to be

Preliminary version (August 8, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 32: Proximity algorithms 863

tight [BGHI10]. This had been the best known spanning ratio for a plane t-spanner
until the work of Xia [Xia13], who showed that the Euclidean Delaunay triangula-
tion has a spanning ratio less than 1.998. The lower bound of

√
2 on the spanning

ratio of a plane t-spanner, given by the four corners of a square, has been improved
by Mulzer [Mul04] to 1.41611 (by considering vertices of a regular 21-gon), and
then by Dumitrescu and Ghosh [DG16] to 1.4308 (by considering vertices of a reg-
ular 23-gon). For points in convex position a spanning ratio of 1.88 can always be
achieved [ABB+16].

The spanning ratio, τDel, of the Euclidean (L2) Delaunay triangulation is not
less than π/2, as shown by the example of placing points around a circle. This lower
bound has been improved recently to 1.5932 > π/2 [XZ11]. Dobkin, Friedman, and
Supowit [DFS90] were able to show that τDel ≤ φπ, where φ = (1 +

√
5)/2 is

the golden ratio. This upper bound was improved by Keil and Gutwin [KG92] to
4π
3
√
3
≈ 2.42. The current best known upper bound on τDel is 1.998, as shown by

Xia [Xia13]. For the Delaunay triangulation in the L1 metric, the original bound

of
√

10 [Che86] on the spanning ratio has been improved to
√

4 + 2
√

2, and this is
tight [BGHP15]. More generally, the Delaunay triangulation defined with respect
to any convex distance function is a t-spanner [BCCS10].

Minimum spanning trees do not have a bounded spanning ratio. It is also known
that lune-based β-skeletons, for any β > 0, can have an unbounded spanning ratio;
see [Epp00]. Since for β ≥ 1, the lune-based β-skeleton is a subgraph of the Gabriel
graph (β = 1), it is a plane graph. In particular, the Gabriel graph (β = 1) and the
relative neighborhood graph (β = 2) are not t-spanners for any constant t. Growth
rates, as a function of n, for the spanning ratios of Gabriel graphs and β-skeletons
for other values of β are given by [BDEK06].

The minimum weight triangulation and the greedy triangulation (see Chap-
ter 31) are t-spanners for constant t. This follows from a more general result of Das
and Joseph [DJ89], who show that a PSLG is a t-spanner if it has the “diamond
property” and the “good polygon property.” This result is similar to the empty
region graphs of Cardinal et al. discussed in Section 32.1, where certain graph
properties were obtained by requiring that an edge is present if and only if certain
template regions were empty [CCL09]. The difference is that the diamond propery
by Das and Joseph is only a necessary condition. A fat triangulation of S, for
which the aspect ratio (ratio of the length of the longest side to the corresponding
height) of every triangle is at most α, is known to be a 2α-spanner [KG01].

All of the plane spanners mentioned above have potentially unbounded degree.
Bounded degree plane spanners are important in wireless network applications,
especially in routing. One needs degree at least 3 to achieve a bounded spanning
ratio (a Hamiltonian path has an unbounded spanning ratio). While Das and
Heffernan [DH96] showed that t-spanners exist of maximum degree 3, their spanner
is not necessarily plane. The best upper bounds on spanning ratio bounds currently
known for plane spanners of degree at most δ are 20 for degree δ = 4 [KPT16], 6
for δ = 6 [BGHP10], 2.91 for δ = 14 [KP08], and ≈ 4.414 for δ = 8 [BHS16]; see
[KPT16] for more details and a comprehensive table. While for points in convex
position, degree-3 plane spanners are known [BBC+17, KPT16], it is not clear if
there exist plane t-spanners of degree 3 for general point sets in the plane.

One can compute plane t-spanners of low weight. In linear time, for any r > 0,
a plane t-spanner, with t = (1+1/r)τDel, of weight at most (2r+1)|MST| can be
computed from a Delaunay triangulation, where τDel is the spanning ratio of the
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Delaunay triangulation [LL92]. From any t-spanner, [GLN02] show that one can
compute a subgraph of it that is low weight (O(|MST|)) and a t′-spanner (for a
larger constant factor t′); thus, in order to find spanners that are of both bounded
degree and of low weight, it suffices to focus on bounding the degree. One can
compute in time O(n log n) a plane t-spanner that is simultaneously low weight
(O(|MST|)) and low degree (degree at most k), with t = (1+2π(k cos(π/k))−1)·τDel

for any integer k ≥ 14 [KPX10]; in particular, for degree 14, the stretch factor is
at most ≈ 2.918.

Planar t-spanners are also known for geodesic distances. A conforming trian-
gulation for a polygonal domain P having triangles of aspect ratio at most α is a
2α-spanner for geodesic distances between vertices of P [KG01]. (A triangulation is
conforming for P if each vertex of P is a vertex of the triangulation and each edge
of P is the union of some edges of the triangulation.) The constrained Delaunay
triangulation of P is a φπ-spanner [KG01].

NON-EUCLIDEAN METRICS

The WSPD-construction of Har-Peled and Mendel implies that for every ε > 0,
a space of bounded doubling dimension d has a spanner with nε−O(d) edges and
stretch factor 1 + ε that can be found in 2O(d)n log n + nε−O(d) time [HPM06].
Independently, Chan et al. [CGMZ16] obtained a similar result. They showed the
existence of a spanner with stretch factor 1 + ε in which every vertex has degree at
most ε−O(d). Subsequently, several improved constructions of spanners for bounded
doubling metrics were described [CLNS15]. The weight was also considered in
this context. Smid showed that the greedy (1 + ε)-spanner in spaces of bounded
doubling dimension has O(n) edges and weight O(log n|MST|) [Smi09]. Gottlieb
provided an intricate construction of (1 + ε)-spanners with weight O(|MST|) and
O(n) edges [Got15]. Filtser and Solomon proved that this is also achieved by the
greedy spanner: for any ε > 0, the greedy (1 + ε)-spanner in a space of doubling
dimension d has weight (d/ε)O(d)|MST| and n(1/ε)O(d) edges [FS16]. Moreover,
an approximate version of the greedy spanner shows that for any ε > 0, one can
construct in time ε−O(d)n log n a (1 + ε)-spanner with weight (d/ε)O(d)|MST| and
degree ε−O(d) [FS16]. This matches the best result for the Euclidean case [GLN02].

Sparse spanners also exist for disk graphs. Fürer and Kasiviswanathan [FK12]
used a modification of the Yao graph to show that for fixed ε > 0, every disk graph
has a spanner with O(n) edges and stretch factor 1 + ε. They also described an

algorithm to find such spanners in time O(n4/3+τ log2/3 Ψ), where τ > 0 can be
made arbitrarily small and Ψ is the radius ratio between the largest and the smallest
radius of a vertex in V . Kaplan et al. extended this result to transmission graphs, a
directed version of disk graphs in which each vertex p ∈ V has an associated radius
rp > 0 and we have a directed edge (p, q) if and only if δ(p, q) ≤ rp, i.e., if q lies in the
closed radius-rp disk around p [KMRS15]. For any fixed ε > 0, every transmission
graph has a spanner with stretch factor 1 + ε and O(n) edges. This spanner can
be found in O(n(log n+ log Ψ)) time, where Ψ is again the radius ratio [KMRS15,
Sei16]. Alternatively, the spanner can be found in O(n log5 n) time, independent of
Ψ. The results of Kaplan et al. can also be applied to general disk graphs. Here,
the time to construct the spanner described by Fürer and Kasiviswanathan [FK12]
can be improved to O(n2α(n) log10 n) expected time, where α(n) is the inverse
Ackermann function [KMR+17, Sei16].
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OPEN PROBLEMS

1. What is the best possible spanning ratio for a plane t-spanner? It is known
to be between 1.4308 and 1.998. For points in convex position an upper
bound of 1.88 is known. The upper bound of 1.998 comes from the Euclidean
Delaunay graph; is there a plane t-spanner with a spanning ratio better than
the Delaunay?

2. Determine tight bounds for the spanning ratio of theta-graphs Θk for k ≥ 7.

3. What exactly is the spanning ratio of the Euclidean Delaunay triangulation?
It is known to be between 1.5932 and 1.998.

4. What are the best possible spanning ratios for bounded degree plane spanners,
for various degree bounds? Are there plane spanners of bounded spanning
ratio having degree at most 3?

5. For a given set of points in the plane, can one compute in polynomial time a
plane graph having the minimum possible spanning ratio?

6. How efficiently can Yao and theta-graphs be constructed in higher dimen-
sions?

7. Is it possible to compute the greedy spanner in subquadratic time?

32.4 DYNAMIC PROXIMITY ALGORITHMS

GLOSSARY

Additively weighted Euclidean distance: Let S ⊂ R be a set of sites, such
that each s ∈ S has an associated weight ws ∈ R. The additively weighted
Euclidean distance δ : R× S → R is defined as δ(p, s) = ws + δ2(p, s).

Dynamic nearest neighbor: The problem of maintaining a set S of sites under
the following operations: (i) insert a new site into S; (ii) delete a site from S;
and (iii) given a query point q, find the site in S that minimizes the distance to
q.

Dynamic bichromatic closest pair: The problem of maintaining two sets R
and B of red and blue points such that points can be inserted into and deleted
from R and B and such that we always have available a pair (r, b) ∈ R×B that
minimizes the distance δ(r, b) among all pairs in R×B.

In dynamic proximity algorithms, we would like to maintain some proxim-
ity structure for a point set that changes through insertions and deletions. The
quintessential problem is the dynamic nearest neighbor problem: maintain a point
set S under the following operations: (i) insert a new point into S; (ii) delete a
point from S; (iii) given a query point q, determine a point p ∈ S with δ(p, q) =
minr∈S δ(r, q).
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For the Euclidean case, the first solution to this problem is due to Agarwal and
Matoušek [AM95], who obtained amortized update time O(nε), for every ε > 0,
and worst-case query time O(log n). This was dramatically improved more than
ten years later by Chan [Cha10]. His data structure achieves worst-case query
time O(log2 n) with amortized insertion time O(log3 n) and amortized deletion time
O(log6 n) (Chan’s original data structure was randomized, but a recent result of
Chan and Tsakalidis yields a deterministic structure [CT16]). Kaplan et al. provide
a variant of Chan’s data structure that improves the amortized deletion time to
O(log5 n) [KMR+17]. Similar results hold for more general metrics. Extending the
results by Agarwal and Matoušek [AM95] for the Euclidean case, Agarwal, Efrat,
and Sharir describe a dynamic nearest neighbor structure with amortized update
time O(nε), for any fixed ε > 0, and worst-case query time O(log n) [AES99]. The
result by Agarwal, Efrat, and Sharir holds for a wide range of distance functions,
including Lp-metrics and the additively weighted Euclidean distance. This result
was improved by Kaplan et al. [KMR+17]. Kaplan et al. built on Chan’s data
structure [Cha10] to construct a dynamic nearest neighbor structure for general
metrics with worst-case query time O(log2 n), amortized expected insertion time
O(log5 nλs+2(log n)) and amortized expected deletion time O(log9 nλs+2(log n)).
Here, s is a constant that depends on the metric under consideration, and λt(·) is
the function that bounds the maximum length of a Davenport-Schinzel sequence of
order t [SA95]. See Section 28.10 for more details on Davenport-Schinzel sequences.

Eppstein describes several reductions that provide fast dynamic algorithms
for proximity problems once an efficient dynamic nearest neighbor structure is at
hand [Epp95]. In particular, he showed that if there is a dynamic nearest neighbor
structure whose queries all run in time T (n), where T (n) is monotonically increasing
and T (3n) = O(T (n)), then the dynamic bichromatic nearest neighbor problem can
be solved with amortized insertion time O(T (n) log n) and amortized deletion time
O(T (n) log2 n) [Epp95]. This implies that the MST of a planar point set can be
maintained in O(T (n) log4 n) amortized time per update (this result is not stated
in the original paper, since it also needs a fast data structure for maintaining an
MST in a general dynamic graph [HdLT01] that was not available when Eppstein
wrote his paper).

Dynamic algorithms for geometric spanners have also been considered. The
first result in this direction is due to Arya et al. [AMS99] who show how to con-
struct a data structure of size O(n logd n) that maintains a d-dimensional Euclidean
spanner in O(logd n log log n) expected amortized time per insertion and deletion
in a model of random updates. A dynamic spanner by Gao et al. [GGN06] can
handle arbitrary update sequences, with the performance bounds depending on the
spread of the point set. The first dynamic spanner whose performance depends
only on the number of points is due to Roditty [Rod12]. This result was improved
several times [GR08a, GR08b]. An optimal construction was eventually obtained
by Gottlieb and Roditty [GR08b]. Their spanner has stretch factor 1 + ε, for any
ε > 0, constant degree ε−O(d), and update time ε−O(d) log n. It also works in general
metric spaces of constant doubling dimension d.

OPEN PROBLEMS

1. Can the Euclidean dynamic nearest neighbor problem be solved with amor-
tized update time O(log n)?
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2. Can Eppstein’s reduction from the bichromatic nearest neighbor problem to
the dynamic nearest neighbor problem be improved?

32.5 SOURCES AND RELATED MATERIAL

SURVEYS

Several other surveys offer a wealth of additional material and references:

[BE97]: A survey of approximation algorithms for geometric optimization problems.

[BS13]: A survey on plane geometric spanners, with 22 highlighted open problems.

[Epp00]: A survey of results on spanning trees and t-spanners.

[GK07]: A survey on geometric spanners and related problems.

[HP11]: A book on geometric approximation algorithms.

[JT92]: A survey on relative neighborhood graphs.

[Lio13]: A survey on proximity drawings.

[NS07]: A book on geometric spanners.

[Sam90]: A book on quadtrees and related structures.

[Smi07]: A survey on well-separated pair decompositions.

[Tou14]: A recent survey on sphere-of-influence graphs.

RELATED CHAPTERS

Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 31: Shortest paths and networks
Chapter 38: Point location
Chapter 39: Collision and proximity queries
Chapter 40: Range searching
Chapter 54: Pattern recognition
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