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INTRODUCTION

Computing an optimal path in a geometric domain is a fundamental problem in
computational geometry, with applications in robotics, geographic information sys-
tems (GIS), wire routing, etc.

A taxonomy of shortest-path problems arises from several parameters that de-
fine the problem:

1. Objective function: the length of the path may be measured according to
the Euclidean metric, an Lp metric, the number of links, a combination of
criteria, etc.

2. Constraints on the path: the path may have to get from s to t while visiting
a specified set of points or regions along the way.

3. Input geometry: the map of the geometric domain also specifies constraints
on the path, requiring it to avoid various types of obstacles.

4. Type of moving object: the object to be moved along the path may be a
single point or may be a robot of some specified geometry.

5. Dimension of the problem: often the problem is in 2 or 3 dimensions, but
higher dimensions arise in some applications.

6. Single shot vs. repetitive mode queries.

7. Static vs. dynamic environments: in some cases, obstacles may be inserted or
deleted or may be moving in time.

8. Exact vs. approximate algorithms.

9. Known vs. unknown map: the on-line version of the problem requires that
the moving robot sense and discover the shape of the environment along its
way. The map may also be known with some degree of uncertainty, leading
to stochastic models of path planning.

We survey various forms of the problem, primarily in two and three dimensions,
for motion of a single point, since most results have focused on these cases. We
discuss shortest paths in a simple polygon (Section 31.1), shortest paths among
obstacles (Section 31.2), and other metrics for length (Section 31.3). We also sur-
vey other related geometric network optimization problems (Section 31.4). Higher
dimensions are discussed in Section 31.5.
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GLOSSARY

Polygonal s-t path: A path from point s to point t consisting of a finite number
of line segments (edges, or links) joining a sequence of points (vertices).

Length of a path: A nonnegative number associated with a path, measuring its
total cost according to some prescribed metric. Unless otherwise specified, the
length will be the Euclidean length of the path.

Shortest/optimal/geodesic path: A path of minimum length among all paths
that are feasible (satisfying all imposed constraints).

Shortest-path distance: The metric induced by a shortest-path problem. The
shortest-path distance between s and t is the length of a shortest s-t path; in
many geometric contexts, it is also referred to as geodesic distance.

Locally shortest/optimal path: A path that cannot be improved by making a
small change to it that preserves its combinatorial structure (e.g., the ordered
sequence of triangles visited, for some triangulation of a polygonal domain P );
also known as a taut-string path in the case of a shortest obstacle-avoiding
path.

Simple polygon P of n vertices: A closed, simply-connected region whose
boundary is a union of n (straight) line segments (edges), whose endpoints are
the vertices of P .

Polygonal domain of n vertices and h holes: A closed, multiply-connected
region whose boundary is a union of n line segments, forming h+1 closed (poly-
gonal) cycles. A simple polygon is a polygonal domain with h = 0.

Triangulation of a simple polygon P: A decomposition of P into triangles
such that any two triangles intersect in either a common vertex, a common
edge, or not at all. A triangulation of P can be computed in O(n) time. See
Section 29.2.

FIGURE 31.0.1

The visibility graph VG(P ). Edges of VG(P ) are of
two types: (1) the heavy dark boundary edges of P , and
(2) the edges that intersect the interior of P , shown with
thin dashed segments. A shortest s-t path is highlighted.
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Obstacle: A region of space whose interior is forbidden to paths. The comple-
ment of the set of obstacles is the free space. If the free space is a polygonal
domain P , the obstacles are the h+1 connected components (h holes, plus the
face at infinity) of the complement of P .

Visibility graph VG(P ): A graph whose nodes are the vertices of P and whose
edges join pairs of nodes for which the corresponding segment lies inside P . See
Chapter 33. An example is shown in Figure 31.0.1.
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Single-source query: A query that specifies a goal point t, and requests the
length of a shortest path from a fixed source point s to t. The query may
also require that a shortest s-t path be reported; in general, this can be done
in additional time O(k), where k is the number of edges in the output path.
(Throughout this survey, when we report query times we omit the “+O(k)” that
generally allows one to report a path after spending the initial query time to
determine the length of a path.)

FIGURE 31.0.2

A shortest path map with respect to source point s
within a polygonal domain. The dotted path indicates
the shortest s-t path, which reaches t via the root r of
its cell.

s

r
t

Shortest path map, SPM(s): A decomposition of free space into regions
(cells) according to the “combinatorial structure” of shortest paths from a fixed
source point s to points in the regions. Specifically, for shortest paths in a polyg-
onal domain, SPM(s) is a decomposition of P into cells such that for all points
t interior to a cell, the sequence of obstacle vertices along a shortest s-t path
is fixed. In particular, the last obstacle vertex along a shortest s-t path is the
root of the cell containing t. Each cell is star-shaped with respect to its root,
which lies on the boundary of the cell. See Figure 31.0.2, where the root of the
cell containing t is labeled r. If SPM(s) is preprocessed for point location (see
Chapter 38), then single-source queries can be answered efficiently by locating
the query point t within the decomposition.

Two-point query: A query that specifies two points, s and t, and requests the
length of a shortest path between them. It may also request that a path be
reported.

Geodesic Voronoi diagram (VD): A Voronoi diagram for a set of sites, in
which the underlying metric is the geodesic distance. See Chapters 27 and 29.

Geodesic center of P: A point within P that minimizes the maximum of the
shortest-path lengths to any other point in P .

Geodesic diameter of P: The length of a longest shortest path between a pair
of points s, t ∈ P ; s and t are vertices for any longest s-t shortest path.

31.1 PATHS IN A SIMPLE POLYGON

The most basic geometric shortest-path problem is to find a shortest path inside a
simple polygon P (having no holes), connecting two points, s and t. The comple-
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ment of P serves as an obstacle through which the path is not allowed to travel. In
this case, there is a unique taut-string path from s to t, since there is only one way
to “thread” a string through a simply-connected region.

Algorithms for computing a shortest s-t path begin with a triangulation of P
(O(n) time; Section 29.2), whose dual graph is a tree. The sleeve is comprised of
the triangles that correspond to the (unique) path in the dual that joins the triangle
containing s to that containing t. By considering the effect of adding the triangles in
order along the sleeve, it is not hard to obtain an O(n) time algorithm for collapsing
the sleeve into a shortest path. At a generic step of the algorithm, the sleeve has
been collapsed to a structure called a funnel (with base ab and root r) consisting
of the shortest path from s to a vertex r, and two (concave) shortest paths joining r
to the endpoints of the segment ab that bounds the triangle abc processed next (see
Figure 31.1.1). In adding triangle abc, we “split” the funnel in two according to the
taut-string path from r to c, which will, in general, include a segment uc joining c
to some (vertex) point of tangency u, along one of the two concave chains of the
funnel. After the split, we keep that funnel (with base ac or bc) that contains the s-t
taut-string path. The work needed to search for u can easily be charged off to those
vertices that are discarded from further consideration. Thus, a shortest s-t path is
found in time O(n), which is worst-case optimal. See [GH89, GHL+87, LP84] for
further details about computing shortest paths in simple polygons.

FIGURE 31.1.1

Splitting a funnel.
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SHORTEST PATH MAPS

The shortest path map SPM(s) for a simple polygon has a particularly simple
structure, since the boundaries between cells in the map are (line segment) chords
of P obtained by extending appropriate edges of the visibility graph VG(P ). It can
be computed in time O(n) by using somewhat more sophisticated data structures to
do funnel splitting efficiently; in this case, we cannot discard one side of each split
funnel. Single-source queries can be answered in O(log n) time, after storing the
SPM(s) in an appropriate O(n)-size point location data structure (see Chapter 38).
SPM(s) includes a tree of shortest paths from s to every vertex of P . For further
details and proofs involving shortest path maps, see [GH89, GHL+87, LP84, Mit91].

TWO-POINT QUERIES

A simple polygon can be preprocessed in time O(n), into a data structure of size
O(n), to support shortest-path queries between any two points s, t ∈ P . In time
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O(log n) the length of the shortest path can be reported, and in additional time
O(k), the shortest path can be reported, where k is the number of vertices in the
output path [GH89, Her91].

DYNAMIC VERSION

In the dynamic version of the problem, one allows the polygon P to change with
addition and deletion of edges and vertices. If the changes are always made in such
a way that the set of all edges yields a connected planar subdivision of the plane
into simple polygons (i.e., no “islands” are created), then one can maintain a data
structure of size O(n) that supports two-point query time of O(log2 n) (plus O(k) if
the path is to be reported), and update time of O(log2 n) for each addition/deletion
of an edge/vertex [GT97].

TABLE 31.1.1 Shortest paths and geodesic distance in simple polygons.

PROBLEM VERSION COMPLEXITY NOTES SOURCE

Shortest s-t path O(n) space O(n) [LP84]

O(n
2

m
+ n logm log4( n

m
)) exp. space m [Har15]

O(n2/m) expected space m = O( n
log2 n

) [Har15]

Single-source query O(logn) query builds SPM(s) [GHL+87]

O(n) preproc/space

Two-point query O(logn) query [GH89]

O(n) preproc/space

Two-polygon query O(log k + logn) query between convex k-gons [CT97]

O(n) space in simple n-gon

Dynamic two-point query O(log2 n) update/query [GT97]

O(n) space

Dynamic two-polygon O(log k + log2 n) query between convex k-gons [CT97]

O(log2 n) update in simple n-gon

O(n) space

Parallel algorithm O(logn) time in triangulated polygon [Her95]

(CREW PRAM) O(n/ logn) processors also builds SPM(s)

Geodesic VD O((n+ k) log(n+ k)) k point sites [PL98]

All nearest neighbors O(n) for set of vertices [HS97]

Geodesic farthest-site VD O((n+ k) log(n+ k)) time k point sites [AFW93]

O(n+ k) space

Geodesic farthest-site VD O((n+ k) log logn) time k sites on ∂P [OBA16]

All farthest neighbors O(n) for set of vertices [HS97]

Geodesic diameter O(n) [HS97]

Geodesic center O(n) [ABB+16]

OTHER RESULTS

Several other problems studied with respect to geodesic distances induced by a
simple polygon are summarized in Table 31.1.1. See also Table 29.4.1.
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Shortest paths within simple polygons yield a wealth of structural information
about the polygon. In particular, they have been used to give an output-sensitive
algorithm for constructing the visibility graph of a simple polygon ([Her89]) and
can be used for constructing a geodesic triangulation of a simple polygon, which
allows for efficient ray-shooting (see [CEG+94]). They also form a crucial step in
solving link distance problems, as we will discuss later. Simplification of a simple
polygon to preserve geodesic distances leads to algorithms whose running times can
be written in terms of the number of reflex vertices (having internal angle greater
than π), instead of the total number, n, of vertices; see [AHK+14]. An output-
sensitive algorithm for computing geodesic disks within a simple polygon is given
in [BKL11], along with a clustering algorithm in the geodesic metric within a simple
polygon.

OPEN PROBLEMS

1. Can one devise a simple O(n) time algorithm for computing the shortest path
between two points in a simple polygon, without resorting to a (complicated)
linear-time triangulation algorithm?

2. What are the best possible query/update times possible for the dynamic ver-
sions of the shortest path problem?

3. Can the geodesic Voronoi diagram for k sites within P be computed in time
O(n + k log k)?

31.2 PATHS IN A POLYGONAL DOMAIN

While in a simple polygon there is a unique taut-string path between two points, in
a general polygonal domain P , there can be an exponential number of taut-string
simple paths between two points.

The homotopy type of a path can be expressed as a sequence (with repe-
titions) of triangles visited, for some triangulation of P . For any given homo-
topy type, expressed with N triangles, a shortest path of that type can be com-
puted in O(N) time [HS94]. Efficient algorithms for computing a set of homo-
topic shortest paths among obstacles, for many pairs of start and goal points, are
known [Bes03b, EKL06]. One can also efficiently test, in time O(n log n), if two
simple paths are of the same homotopy type in a polygonal domain; here, n is the
total number of vertices of the input paths and the polygonal domain [CLMS02].
For more details on shortest curves of a specified topology, see Chapter 23.

SEARCHING THE VISIBILITY GRAPH

Without loss of generality, we can assume that s and t are vertices of P (since we
can make “point” holes in P at s and t). It is easy to show that any locally optimal
s-t path must lie on the visibility graph VG(P ) (Figure 31.0.1). We can construct
VG(P ) in output-sensitive time O(EVG + n logn), where EVG denotes the number
of edges of VG(P ) [GM91], even if we allow only O(n) working space [PV96a]. In
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fact, a recent result [CW15b] shows that, after triangulation of P , VG(P ) can be
computed in time O(EVG + n+ h log h). Given the graph VG(P ), whose edges are
weighted by their Euclidean lengths, we can use Dijkstra’s algorithm to construct a
tree of shortest paths from s to all vertices of P , in time O(EVG + n logn) [FT87].
Thus, Euclidean shortest paths among obstacles in the plane can be computed in
time O(EVG + n logn). This bound is worst-case quadratic in n, since EVG ≤

(

n
2

)

;
note too that domains exist with EVG = Ω(n2).

Given the tree of shortest paths from s, we can compute SPM(s) in time
O(n logn), by computing an additively weight Voronoi diagram (see Chapter 27)
of the vertices, with each vertex weighted by its distance from s.

CONTINUOUS DIJKSTRA METHOD

Instead of searching the visibility graph (which may have quadratic size), an alter-
native paradigm for shortest-path problems is to construct the (linear-size) shortest
path map directly. The continuous Dijkstra method was developed for this pur-
pose.

Building on the success of the method in solving (in nearly linear time) the
shortest-path problem for the L1 metric, Mitchell [Nit96] developed a version of
the continuous Dijkstra method applicable to the Euclidean shortest-path problem,
obtaining the first subquadratic (O(n1.5+ε)) time bound. Subsequently, this result
was improved by Hershberger and Suri [HS99], who achieve a nearly optimal algo-
rithm based also on the continuous Dijkstra method. They give an O(n logn) time
and O(n logn) space algorithm, coming close to the lower bounds of Ω(n+ h logh)
time and O(n) space.

The continuous Dijkstra paradigm involves simulating the effect of a wavefront
propagating out from the source point, s. The wavefront at distance δ from s is
the set of all points of P that are at geodesic distance δ from s. It consists of a
set of curve pieces, called wavelets, which are arcs of circles centered at obstacle
vertices that have already been reached. At certain critical “events,” the structure
of the wavefront changes due to one of the following possibilities:

(1) a wavelet disappears (due to the closure of a cell of the SPM);

(2) a wavelet collides with an obstacle vertex;

(3) a wavelet collides with another wavelet; or

(4) a wavelet collides with an obstacle edge at a point interior to that edge.

It is not difficult to see from the fact that SPM(s) has linear size, that the total
number of such events is O(n). The challenge in applying this propagation scheme
is devising an efficient method to know what events are going to occur and in being
able to process each event as it occurs (updating the combinatorial structure of the
wavefront).

One approach, used in [Nit96], is to track a “pseudo-wavefront,” which is al-
lowed to run over itself, and to “clip” only when a wavelet collides with a vertex
that has already been labeled due to an earlier event. Detection of when a wavelet
collides with a vertex is accomplished with range-searching techniques. An alter-
native approach, used in [HS99], simplifies the problem by first decomposing the
domain P using a conforming subdivision, which allows one to propagate an approx-
imate wavefront on a cell-by-cell basis. A key property of a conforming subdivision
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is that any edge of length L of the subdivision has only a constant number of
(constant-sized) cells within geodesic distance L.

APPROXIMATION ALGORITHMS

One can compute approximate Euclidean shortest paths using standard methods
of discretizing the set of directions. Clarkson [Cla87] gives an algorithm that
uses O((n log n)/ε) time to build a data structure of size O(n/ε), after which
a (1 + ε)-approximate shortest path query can be answered in time O(n log n +
n/ε). (These bounds rely also on an observation in [Che95].) Using a related
approach, based on approximating Euclidean distance with fixed orientation dis-
tances, Mitchell [Mit92] computes a (1 + ε)-approximate shortest path in time
O((n log n)/

√
ε) using O(n/

√
ε) space. Chen, Das, and Smid [CDM01] have shown

an Ω(n logn) lower bound, in the algebraic computation tree model, on the time
required to compute any approximation to the shortest path.

TWO-POINT QUERIES

Two-point queries in a polygonal domain are much more challenging than in the case
of simple polygons, where optimal algorithms are known. One natural approach
(observed by Chen et al. [CDK01]) is to store the shortest path map, SPM(v),
rooted at each vertex v; this requires O(n2) space. Then, for a query pair (s, t),
we compute the set of ks vertices visible to s and kt vertices visible to t, in time
O(min{ks, kt} logn), using the visibility complex of Pocchiiola and Vegter [PV96b].
Then, assuming that ks ≤ kt, we simply locate t in each of the ks SPM’s rooted
at the vertices visible from s. This permits two-point queries to be answered in
time O(min{ks, kt} logn), which is worst-case Ω(n logn), making it no better than
computing a shortest path from scratch, in the worst case.

Methods for exact two-point queries that are efficient in the worst case utilize an
equivalence decomposition of the domain P , for which all points z within a cell
of the decomposition have topologically equivalent shortest path maps. Given query
points s and t, one locates s within the decomposition, and then uses the resulting
SPM, along with a parametric point location data structure, to locate t within the
SPM with respect to s. The complexity of the decomposition can be quite high;
there can be Ω(n4) topologically distinct shortest path maps with respect to points
within P . Chiang and Mitchell [CM99] have utilized this approach to obtain various
tradeoffs between space and query time; see Table 31.2.1. Unfortunately, the space
bounds are all impractically high. Quadratic space is possible with a query time of
O(h logn) [GMS08]. If the query points are restricted to lie on the boundary, ∂P ,
of the domain, then O(log n) query can be achieved with preprocessing time/space
of Õ(n5) [BO12], where Õ(·) indicates that polylogarithmic factors are ignored.

More efficient methods allow one to approximately answer two-point queries.
As observed in [Che95], the method of Clarkson [Cla87] can be used to construct a
data structure of size O(n2+n/ε) in O(n2 logn+(n/ε) logn) time, so that two-point
(1 + ε)-optimal queries can be answered in time O((log n)/ε), for any fixed ε > 0.
Chen [Che95] was the first to obtain nearly linear-space data structures for approx-
imate shortest path queries; these were obtained, though, at the cost of a higher
approximation factor. He obtains a (6 + ε)-approximation, using O(n3/2/ log1/2 n)
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time to build a data structure of size O(n log n), after which queries can be answered
in time O(log n). Arikati et al. [ACC+96] give a spectrum of results based on pla-
nar t-spanners (see Section 32.3), with tradeoffs among the approximation factor
and the preprocessing time, storage space, and query time. One such result gives a
(3
√
2+ ε)-approximation in query time O(log n), after using O(n3/2/ log1/2 n) time

to build a data structure of size O(n logn).
In the special case that the polygonal domain is “t-rounded,” meaning that the

shortest path distance between any two vertices is at most some constant t times
the Euclidean distance between them, Gudmundsson et al. [GLNS08] show that
in query time O(log n), one can give a (1 + ε)-approximate answer to a two-point
shortest path query while using only O(n log n) space and preprocessing time. Their
result utilizes approximate distance oracles in t-spanner graphs, giving O(1)-time
approximate distance queries between pairs of vertices; see Section 32.3.

OTHER RESULTS

The geodesic Voronoi diagram of k sites inside P can be constructed in time O((n+
k) log(n+k)), using the continuous Dijkstra method, simply starting with multiple
source points. While the geodesic center/diameter problem has been solved in
linear time for the case of simple polygons, in polygonal domains, the problem
becomes much harder and the time bounds are much worse. For computing the
geodesic diameter, [BKO13] show time bounds of O(n7.73) or O(n7(logn+h)); one
complicating fact is that the endpoints of a shortest path achieving the geodesic
diameter can be interior to the domain. The geodesic center can be computed in
time O(n12+ε) [BKO15], which has been recently improved to O(n11 logn) [Wan16].

In the case of a planar domain with h curved obstacles, specified as a set of
splinegons (polygons in which edges are replaced by convex curved arcs), having a
total complexity of n, recent results have generalized the methods that were devel-
oped for polygonal domains. In particular, [HSY13] employ the continuous Dijkstra
paradigm to obtain shortest paths in time O(n log n), under certain assumptions
on the curved arcs, and (1 + ε)-approximate shortest paths (and a shortest path
map) in time O(n log n + n log(1/ε)), under mild assumptions on the curved arcs.
Further, [CW15a] provide an algorithm with running time O(n + k + h log1+ε h),
where k = O(h2) is the number of free common tangents among curved obstacles
(related to the size of the relevant visibility graph); while the running time is worst-
case quadratic in the number of obstacles, it is linear in n. Shortest paths for a
point moving among curved obstacles arises in optimal path planning for a robot
(e.g., a circular disk) among polygonal obstacles.

In [AEK+16], the notion of a shortest path map is generalized to consider
geodesic length queries from a source point s to a query line segment within P ,
or to a query visibility polygon; this allows one to rapidly compute the geodesic
distance from s to a point that sees the query point t. Another generalization of
the notion of a shortest path map is the kth shortest path map, k-SPM, in which
the domain is decomposed according to the combinatorial type of the kth shortest
homotopically distinct (different “threading”) path from source s to destination t.
The combinatorial complexity of the k-SPM is Θ(k2h+kn), and it can be computed
in time O((k3h+ k2n) log(kn)) [EHP+15].

Table 31.2.1 summarizes various results.
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TABLE 31.2.1 Shortest paths among planar obstacles, in a polygonal domain.

PROBLEM COMPLEXITY NOTES SOURCE

Shortest s-t path O(n logn) O(n logn) space [HS99]

O(n+ h2 logn) O(n) space [KMM97]

O(n1.5+ε) O(n) space [Nit96]

Approx shortest s-t path O((n logn)/
√
ε) O(n/

√
ε) space [Mit92]

SPM(s)/geodesic VD O(n logn) O(n logn) space [HS99]

O(n1.5+ε) O(n) space [Nit96]

Two-point query O(logn) query exact [CM99]

O(n11) preproc/space

Two-point query O(log2 n) query exact [CM99]

O(n10 logn) preproc/space

Two-point query O(n1−δ logn) query exact [CM99]

O(n5+10δ+ε) preproc/space 0 < δ ≤ 1

Two-point query O(logn+ h) query exact [CM99]

O(n5) preproc/space

Two-point query O(h logn) query exact [CM99]

O(n+ h5) preproc/space

Two-point query O(h logn) query exact [GMS08]

O(n2) space

Two-point query O(logn) query exact [BO12]

Õ(n5) space queries on ∂P

Approx two-point query O(logn+ ρ) query (1 + ε)-approx [Che13]

O(n2/ρ) space any integer ρ

O(n2/ρ) preproc 1 ≤ ρ ≤ √
n

Approx two-point query O(n) query (1 + ε)-approx [Che13]

O(n) space

O(n logn) preproc

Approx two-point query O(logn) query (2 + ε)-approx [Che13]

O(n3/2) space

O(n3/2) preproc

Approx two-point query O(logn) query (3 + ε)-approx [Che13]

O(n logn) space q is cover number

O(n logn+ q3/2/
√
log q) preproc 1 ≤ q ≤ n

Approx two-point query O(logn) query (1 + ε)-approx [GLNS08]

O(n logn) space t-rounded domain [GLNS08]

O(n logn) preproc

Geodesic diameter O(n7.73) or O(n7(logn+ h)) [BKO13]

Geodesic center O(n12+ε), O(n11 logn) [BKO15, Wan16]

OPEN PROBLEMS

1. Can the Euclidean shortest-path problem be solved in O(n + h log h) time
and O(n) space? (The L1 shortest path problem can be solved in time O(n+
h log h) in a triangulated domain [CW13].)

2. How efficiently, and using what size data structure, can one preprocess a
polygonal domain for exact two-point queries? Can one obtain sublinear
queries using a reasonable amount of space (say, subquadratic)?

3. How efficiently can one compute a geodesic center/diameter for a polygonal
domain? Current polynomial-time bounds are likely far from optimal.
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31.3 OTHER METRICS FOR LENGTH

In the problems considered so far, the Euclidean metric has been used to measure
the length of a path. We consider now several other possible objective functions
for measuring path length. Tables 31.3.1 and 31.3.2 summarize results.

GLOSSARY

Lp metric: The Lp distance between q = (qx, qy) and r = (rx, ry) is given by
dp(q, r) = [|qx − rx|p + |qy − ry|p]1/p. The Lp length of a polygonal path is the
sum of the Lp lengths of each edge of the path. Special cases of the Lp metric
include the L1 metric (Manhattan metric) and the L∞ metric (d∞(q, r) =
max{|qx − rx|, |qy − ry|}).

Rectilinear path: A polygonal path with each edge parallel to a coordinate axis;
also known as an isothetic path.

C-oriented path: A polygonal path with each edge parallel to one of a finite
set C of c = |C| fixed orientations.

Link distance: The minimum number of edges in a polygonal path from s to
t within a polygonal domain P . If the paths are restricted to be rectilinear or
C-oriented, then we obtain the rectilinear link distance or C-oriented link
distance.

Min-link s-t path: A polygonal path from s to t that achieves the link distance.

Weighted region problem: Given a piecewise-constant function f : R2 → R

that is defined by assigning a nonnegative weight to each face of a given tri-
angulation in the plane. The weighted length of an s-t path π is the path
integral,

∫

π f(x, y)dσ, of the weight function along π. The weighted region
metric associated with f defines the distance df (s, t) to be the infimum over all
s-t paths π of the weighted length of π. The weighted region problem (WRP)
asks for an s-t path of minimum weighted length.

Anisotropic path problem: Compute a minimum-cost path, where the cost of
motion is direction-dependent. Additionally, the cost of motion may depend on
a weight function f , as in the WRP.

Sailor’s problem: Compute a minimum-cost path, where the cost of motion is
direction-dependent, and there is a cost L per turn (in a polygonal path).

Bounded curvature shortest-path problem: Compute a shortest obstacle-
avoiding smooth (C1) path joining point s, with prescribed velocity orientation,
to point t, with prescribed velocity orientation, such that at each point of the
path the radius of curvature is at least 1.

Maximum concealment path: A path within polygonal domain P that min-
imizes the length during which the robot is exposed to a given set of “enemy”
observers. This problem is a special case of the weighted region problem, in
which weights are 0 (for travel in concealed free space), 1 (for travel in exposed
free space), or ∞ (for travel through obstacles).

Total turn for an s-t path: The sum of the absolute values of all turn angles
for a polygonal s-t path.
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Minimum-time path problem: Find a path to minimize the total time required
to move from an initial position, at an initial velocity, to a goal position and
velocity, subject to bounds on the allowed acceleration and velocity along the
path. This problem is also known as the kinodynamic motion planning
problem.

LINK DISTANCE

In the min-link path problem, our goal is to minimize the number of links (and hence
the number of turns) in a path connecting s and t. In many problems, the link
distance provides a more natural measure of path complexity than the Euclidean
length, as well as having applications to curve simplification.

In a simple polygon P , a min-link path can be computed in time O(n); see
also [LSD00] for a survey on link distance. In fact, in time O(n) a window par-
tition of P with respect to a point s can be computed, after which a min-link
path from s to t can be reported in time proportional to the link distance. The
algorithm, due to Suri [Sur90], computes the partition via “staged illumination,”
essentially a form of the continuous Dijkstra method under the link distance metric.

In a polygonal domain with holes, min-link paths can also be computed using
a staged illumination method, but the algorithm is not simple: it relies on efficient
methods for computing a single face in an arrangement of line segments (see Chap-
ter 28). A min-link s-t path can be computed in time O(EVGα

2(n) log n), where
α(n) is the inverse Ackermann function; see Section 28.10. Computing link distance
in a polygonal domain in significantly subquadratic time may not be possible; de-
ciding if the link distance between two points is 3 is 3SUM-hard [MPS14]. This
implies that obtaining a 4/3 − ε factor approximation is also 3SUM-hard; in fact,
obtaining an O(1) additive approximation or a factor (2− ε) approximation is also
3SUM-hard, even in rectilinear domains [MPS14]. If we consider C-oriented and
rectilinear link distance, in which edges of the polygonal path must be from among
a given set of C directions (axis-parallel in the rectilinear case), then significantly
better time/space bounds are possible, and some of these apply also to combined
metrics, in which there is a cost for length as well as links.

Refer to Table 31.3.1 for many related results on link distance, including recti-
linear link distance, and on two-point queries.

L1 METRIC

Instead of measuring path length according to the L2 (Euclidean) metric, consider
the problem of computing shortest paths in a polygonal domain P that are short
according to the L1 metric.

A method based on visibility graph principles allows one to construct a sparse
graph (with O(n logn) nodes and edges) that is path-preserving in that it is
guaranteed to contain a shortest path between any two vertices. Applying Dijkstra’s
algorithm then gives an O(n log1.5 n) time (O(n log n) space) algorithm for L1-
shortest paths.

A method based on the continuous Dijkstra paradigm allows the SPM(s) to
be constructed in time O(n logn), using O(n) space [Mit92], and, most recently in
time O(n + h logh) for a triangulated domain with h holes [CW13]. The special

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 31: Shortest paths and networks 823

TABLE 31.3.1 Link distance shortest-path problems.

PROBLEM COMPLEXITY NOTES SOURCE

Min-link path O(EVGα2(n) logn) polygonal domain [MRW92]

Min-link path 3SUM-hard polygonal domain [MPS14]

Min-link path O(
√
h)-approx polygonal domain, h holes [MPS14]

Min-link path O(n) simple polygon [Sur86, Sur90]

Rectilinear link path O(n) rectilinear simple polygon [Ber91, HS94]

Rectilinear link path O(n+ h log h) time rectilinear domain [MPSW15]

O(n) space, O(logn) query h holes, triangulated

C-oriented link path O(C2n logn) time polygonal domain [MPS14]

O(Cn) space, O(C logn) query

C-oriented link path O(Cn logn) time polygonal domain [MPS14]

O(n) space, O(logn) query 2-approx [MPS14]

Two-point link query O(logn) query simple polygon [AMS95]

O(n3) space, preproc

Two-point rectilinear O(logn) query rectilinear simple polygon [Sch96]

link query O(n logn) preproc, O(n) space also is L1-opt

Shortest k-link path O(n3k3 log (Nk/ε1/k)) simple polygon [MPA92]

property of the L1 metric that is exploited in this algorithm is the fact that the
wavefront in this case is piecewise-linear, with wavelets that are line segments of
slope ±1, so that the first vertex hit by a wavelet can be determined by rectangular
range searching techniques (see Chapter 40).

Methods for finding L1-shortest paths generalize to the case of C-oriented
paths, in which c = |C| fixed directions are given. Shortest C-oriented paths
can be computed in time O(cn logn). Since the Euclidean metric is approximated
to within accuracy O(1/c2) if we use c equally-spaced orientations, this results in
an algorithm that computes, in time O((n/

√
ε) logn), a path guaranteed to have

length within a factor (1+ε) of the Euclidean shortest path length.

WEIGHTED REGION METRIC

The weighted region problem (WRP) seeks an optimal s-t path according to the
weighted region metric df induced by a given weight function f , often specified
by a piecewise-constant (or piecewise linear) function on a given triangulated do-
main in two (or more) dimensions. This problem is a natural generalization of the
shortest-path problem in a polygonal domain: consider a weight function that as-
signs weight 1 to P and weight ∞ (or a sufficiently large constant) to the obstacles
(the complement of P ). The WRP models the minimum-time path problem for a
point robot moving in a terrain of varied types (e.g., grassland, brushland, black-
top, bodies of water, etc.), where each type of terrain has an assigned weight equal
to the reciprocal of the maximum speed of traversal for the robot.

A standard formulation of the WRP assumes a piecewise-constant weight func-
tion f , specified by a triangulation in the plane having n vertices, with each face
assigned an integer weight α ∈ {0, 1, . . . ,W,+∞}. (We can allow each edge of the
triangulation to have a weight that is possibly distinct from that of the triangular
facets on either side of it; in this way, linear features such as roads can be mod-

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



824 J.S.B. Mitchell

TABLE 31.3.2 Shortest paths in other metrics.

PROBLEM COMPLEXITY NOTES SOURCE

L1-shortest path, SPM(s) O(n logn) polygonal domain [Mit92, Mit89]

L1 geodesic diameter O(n) simple polygon [BKOW15]

L1 geodesic center O(n) simple polygon [BKOW15]

L1 geodesic diameter O(n2 + h4) polygon with h holes [BAE+17]

L1 geodesic center O((n4 + n2h4)α(n)) polygon with h holes [BAE+17]

L1 two-point query O(log2 n) query polygonal domain [CKT00]

O(n2 logn) space

O(n2 log2 n) preproc

L1 two-point query O(logn+ k) query polygonal domain [CIW14]

O(n+ h2+ε) space, preproc

L1 two-point query O(logn) query rectangle obstacles [AC91, AC93]

O(n2) space, preproc [EM94]

L1 two-point query O(
√
n) query rectangle obstacles [EM94]

O(n1.5) space, preproc

L1 two-point query O(logn) query 3-approx [CK96]

O(n logn) space rectangle obstacles

O(n log2 n) preproc

C-oriented shortest path O(cn logn) [Mit92]

two-point query O(c2 log2 n) query O(c2n2 log2 n) preproc [CDK01]

Weighted region problem O(ES), or O(n8L) (1+ε)-approx [MP91]

L = O(log nNW
ε

)

Weighted region problem O(kn+k4 log(k/ε)
ε

log2 Wn
ε

) (1+ε)-approx [CJV15]

parameter 3 ≤ k ≤ n weights [1,W ] ∪ {∞} [CJV15]

Weighted region problem O( n√
ε
log n

ε
log 1

ε
) (1+ε)-approx [AMS05]

geometric parameters

Weighted region problem O((W logW )n
3

ε
log Wn

ε
) (1+ε)-approx [CNVW08]

indep of geometry

also anisotropic cost

Weighted region problem O(n2) weights 0, 1, ∞ [GMMN90]

L1 weighted region prob O(n log3/2 n) preproc rectilinear regions [CKT00]

O(logn) query single-source queries

O(n logn) space

L1 WRP, two-point query O(log2 n) query rectilinear regions [CKT00]

O(n2 log2 n) space, preproc

L1 WRP, two-point query O(logn) query rectilinear regions [CIW14]

O(n2+ε) space, preproc

Bounded curvature path O(n4 logn) moderate obstacles [BL96]

Bounded curvature path O(n2 logn) within convex polygon [ABL+02]

Anisotropic path problem O( ρ
2n3

ε2
(log ρn

ε
)2) parameter ρ ≥ 1 [CNVW10]

O( ρ
2n3

ε2
log ρn

ε
) space O(log ρn

ε
) query

Sailor’s problem (L = 0) O(n2) polygonal domain [Sel95]

Sailor’s problem (L > 0) poly(n, ε) ε-approx [Sel95]

Max concealment O(v2(v + n)2) simple polygon [GMMN90]

v viewpoints O(v4n4) polygonal domain [GMMN90]

Min total turn O(EVG logn) polygonal domain [AMP91]
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eled.) The local optimality condition, which follows from basic calculus, is that
an optimal path must be polygonal (for piecewise-constant f), bending according
to Snell’s Law of Refraction when crossing a region boundary, and, if it utilizes a
portion of an edge of the triangulation, it must turn to enter/leave the edge at the
“critical angle” of refraction determined by the weight of the edge and the weight
of the adjacent face.

Exact solution of the general WRP in the plane seems to be very difficult for
algebraic reasons; the problem cannot be solved in the “algebraic computational
model over the rational numbers” [DCG+14]. Algorithms are, therefore, focused on
approximation and generally fall into two categories: (1) those based on the con-
tinuous Dijkstra paradigm, propagating “intervals of optimality,” which partition
edges according to the combinatorial type of paths that optimally reach the edge
from either side, while utilizing the local optimality condition during a breadth-first
propagation; and, (2) those based on placing discrete sample points along edges or
interior to faces, and searching for a shortest path in a corresponding network of
edges interconnecting the sample points.

An algorithm of type (1) can be viewed as “exact” in the sense that it would give
exactly optimal paths if the underlying predicates could be performed exactly. The
predicates require determining a refraction path through a specified edge sequence
in order to reach a specified vertex, or to find a “bisector” point b along an edge
where the refraction paths to b through two specified edge sequences have the same
lengths. The first provable result for the WRP was of type (1) [MP91]; it computes
a (1+ε)-approximate optimal path, for any fixed ε > 0, in time O(E · S), where
E is the number of “events” in the continuous Dijkstra algorithm, and S is the
complexity of performing a numerical search to solve approximately the refraction-
path predicates. It is shown that O(n4) is an upper bound on E, and that this
bound is tight in the worst case, since there are instances in which the total number
of intervals of optimality is Ω(n4). The numerical search can be accomplished
in time S = O(k2 log(nNW/ε)), on k-edge sequences, and it is shown that the
maximum length k of an edge sequence is O(n2); thus, the overall time bound is at
most O(n8 log(nNW/ε) [MP91]. (A new variant utilizing a “discretized wavefront”
approach, saving a factor of O(n3), has recently been announced [IK15].)

Algorithms of type (2) carefully place Steiner points on the edges (or, possibly
interior to faces) of the input subdivision. Using a logarithmic discretization (as
in [Pap85]), with care in how Steiner points are placed near vertices, provable
approximation guarantees are obtained. A time bound with near-linear dependence
on n, specifically O((n/

√
ε) log(n/ε) log(1/ε)), is possible [AMS05]; however, this

bound has a hidden constant (in the big-O) that depends on the geometry (smallest
angles) of the triangulation in such a way that a single tiny angle can cause the
bounds to go to infinity. Using a different discretization method, [CNVW08] give
an algorithm with running time O(((W logW )/ε)n3 log(Wn/ε)), independent of
the angles of the triangulation; in fact, this algorithm solves also the anisotropic
generalization, in which a (possibly asymmetric) convex distance function, specified
for each face of the triangulation, is utilized. Single-source approximate optimal
path queries can be answered efficiently, even in anisotropic weighted regions, using
a type of shortest path map data structure [CNVW10]. In [CJV15], new bounds
that depend on k, the smallest integer so that the sum of the k smallest angles in
the triangular faces is at least π; specifically, they obtain a (1 + ε)-approximation
in time O((kn + k4 log(k/ε))(1/ε) log2(Wn/ε)). If the triangulation is “nice,” one
expects k to be a small constant, and the running time is near-linear in n. It should
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be noted that in algorithms of type (2) the dependence on 1/ε is polynomial (versus
logarithmic in algorithms of type (1)), and the methods are not “exact” in that no
matter how accurately predicates are evaluated, the algorithms do not guarantee
to find the correct combinatorial type of an optimal path.

There are special cases of the weighted region problem that admit faster and
simpler algorithms. For example, if the weighted subdivision is rectilinear, and
path length is measured according to weighted L1 length, then efficient algorithms
for single-source and two-point queries can be based on searching a path-preserving
graph [CKT00]. Similarly, if the region weights are restricted to {0, 1,∞} (while
edges may have arbitrary nonnegative weights), then an O(n2) time algorithm can
be based on a path-preserving graph similar to a visibility graph [GMMN90]. This
also leads to an efficient method for performing lexicographic optimization, in
which one prioritizes various types of regions according to which is most important
for path length minimization.

The anisotropic path problem includes a generalization to the case in which
each face of a given polygonal subdivision may have a different cost function, and
the cost may depend on the direction of movement. In the model of Cheng et
al. [CNVW10], distance in face f is measured according to a (possibly asymmetric)
convex distance function whose unit disk Df is contained within a (concentric)
Euclidean unit disk and contains a (concentric) Euclidean disk of radius 1/ρ, for
a real parameter ρ ≥ 1 that quantifies the degree of directionality of asymmetry

in the cost function. Their algorithm uses time O(ρ
2n3

ε2 (log ρn
ε )2) to compute a

data structure of size O(ρ
2n3

ε2 log ρn
ε ) that enables (1+ε)-approximate optimal path

queries in time O(log ρn
ε ).

The weighted region model applies also to the problem of computing “high-
quality” paths among obstacles. In particular, it is natural to consider the cost of
motion that is very close to an obstacle to be more costly than motion that has high
clearance from obstacles. Letting the cost of motion at clearance δ from the nearest
obstacle be weighted by 1/δ, and the cost of a path to be the weighted length (path
integral of the cost function), one can obtain a fully polynomial time approxima-
tion scheme to compute a path with cost at most (1 + ε) times optimal in time
O((n2/ε2) log(n/ε)) in a planar polygonal environment with n vertices [AFS16].

MINIMUM-TIME PATHS

The kinodynamic motion planning problem (also known as the minimum-time path
problem) is a nonholonomic motion planning problem in which the objective is
to compute a trajectory (a time-parameterized path, (x(t), y(t))) within a domain
P that minimizes the total time necessary to move from an initial configuration
(position and initial velocity) to a goal configuration (position and velocity), subject
to bounds on the allowed acceleration and velocity along the path. (Algorithmic
motion planning is discussed in detail in Chapter 50.) The minimum-time path
problem is a difficult optimal control problem; optimal paths will be complicated
curves given by solutions to differential equations.

The bounds on acceleration and velocity are most often given by upper bounds
on the L∞ norm (the “decoupled case”) or the L2 norm (the “coupled case”).

If there is an upper bound on the L∞ norm of the velocity and acceleration vec-
tors, one can obtain an exact, exponential-time, polynomial-space algorithm, based
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on characterizing a set of “canonical solutions” (related to “bang-bang” controls)
that are guaranteed to include an optimal solution path. This leads to an expression
in the first-order theory of the reals, which can be solved exactly; see Chapter 37.
However, it remains an open question whether or not a polynomial-time algorithm
exists.

Donald et al. [DXCR93, DX95, RW00] developed approximation methods, in-
cluding a polynomial-time algorithm that produces a trajectory requiring time at
most (1 + ε) times optimal, for the decoupled case. Their approach is to dis-
cretize (uniformly) the four-dimensional phase space that represents position and
velocity, with special care to ensure that the size of the grid is bounded by a
polynomial in 1/ε and n. Approximation algorithms for the coupled case are also
known [DX95, RT94].

Optimal paths for a “car-like” robot (a “Dubins car”) leads to the closely re-
lated shortest-path problem, the bounded curvature shortest-path problem, in
which we require that no point of the path have a radius of curvature less than
1. For this problem, (1+ε)-approximation algorithms are known, with polyno-

mial (O(n
2

ε2 logn)) running time [AW01]. The problem is known to be NP-hard
in a polygonal domain [KKP11, RW98]; further, deciding if there exists a simple
curvature-constrained path is NP-hard [KKP11]. For the special case in which the
obstacles are “moderate” (have differentiable boundary curves, with radius of cur-
vature at least 1), both an approximation algorithm and an exact O(n4 logn) algo-
rithm have been found [BL96]. Within a convex polygon, one can determine if a cur-
vature constrained path exists and, if so, compute one in time O(n2 logn) [ABL+02].
See also [KO13] for an analysis of how bounded curvature impacts path length.

MULTIPLE CRITERION OPTIMAL PATHS

The standard shortest-path problem asks for paths that minimize some one ob-
jective (length) function. Frequently, however, an application requires us to find
paths to minimize two or more objectives; the resulting problem is a bicriterion
(or multi-criterion) shortest-path problem. A path is called efficient or Pareto
optimal if no other path has a better value for one criterion without having a
worse value for the other criterion.

Multi-criterion optimization problems tend to be hard. Even the bicriterion
path problem in a graph is NP-hard: Does there exist a path from s to t whose
length is less than L and whose weight is less than W? Pseudo-polynomial-time
algorithms are known, and many heuristics have been devised.

In geometric problems, various optimality criteria are of interest, including any
pair from the following list: Euclidean (L2) length, rectilinear (L1) length, other
Lp metrics, link distance, total turn, and so on. NP-hardness is known for several
versions [AMP91]. One problem of particular interest is to compute a Euclidean
shortest path within a polygonal domain, constrained to have at most k links. No
exact solution is currently known for this problem. Part of the difficulty is that
a minimum-link path will not, in general, lie on the visibility graph (or on any
simple discrete graph). Furthermore, the computation of the turn points of such
an optimal path appears to require the solution to high-degree polynomials. A
(1 + ε)-approximation to the shortest k-link path in a simple polygon P can be
found in time O(n3k3 log (Nk/ε1/k)), where N is the largest integer coordinate of
any vertex of P [MPA92]. In a simple polygon, one can always find an s-t path
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that simultaneously is within a factor 2 of optimal in link distance and within a
factor

√
2 of optimal in Euclidean length; a corresponding result is not possible

for polygons with holes. However, in O(kE2
VG) time, one can compute a path in

a polygonal domain having at most 2k links and length at most that of a shortest
k-link path.

In a rectilinear polygonal domain, efficient algorithms are known for the bicri-
terion path problem that combines rectilinear link distance and L1 length [LYW96].
For example, efficient algorithms are known in two or more dimensions for comput-
ing optimal paths according to a combined metric, defined to be a linear combination
of rectilinear link distance and L1 path length [BKNO92]. (Note that this is not the
same as computing the Pareto-optimal solutions.) Chen et al. [CDK01] give efficient
algorithms for computing a shortest k-link rectilinear path, a minimum-link shortest
rectilinear path, or any combined objective that uses a monotonic function of rec-
tilinear link length and L1 length in a rectilinear polygonal domain. Single-source
queries can be answered in time O(log n), after O(n log3/2 n) preprocessing time to
construct a data structure of size O(n log n); two-point queries can be answered in
time O(log2 n), using O(n2 log2 n) preprocessing time and space [CDK01].

OPEN PROBLEMS

1. Can one approximate link distance in a polygonal domain with a factor better
than O(

√
h) in significantly subquadratic time? (Obtaining approximation

factor (2− ε) is 3SUM-hard [MPS14].)

2. What is the smallest size data structure for a simple polygon P that allows
logarithmic-time two-point link distance queries?

3. For a polygonal domain (with holes), what is the complexity of computing a
shortest k-link path between two given points?

4. What is the complexity of the ladder problem for a polygonal domain, in
which the cost of motion is the total work involved in translation/rotation?

5. Is it NP-hard to minimize the d1-distance of a ladder endpoint?

6. What is the complexity of the bounded curvature shortest-path problem in a
simple polygon?

31.4 GEOMETRIC NETWORK OPTIMIZATION

All of the problems considered so far involved computing a shortest path from
one point to another (or from one point to all other points). We consider now
some other network optimization problems, in which the objective is to compute
a shortest path, cycle, tree, or other graphs, subject to various constraints. A
summary of results is given in Table 31.4.1.
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GLOSSARY

Minimum spanning tree (MST) of S: A tree of minimum total length whose
nodes are a given set S of n points, and whose edges are line segments joining
pairs of points.

Minimum Steiner spanning tree (Steiner tree) of S: A tree of minimum
total length whose nodes are a superset of a given set S of n points, and whose
edges are line segments joining pairs of points. Those nodes that are not points
of S are called Steiner points.

Minimum Steiner forest of n point pairs: A forest of minimum total length
such that each of the given point pairs lies within the same tree of the forest.
The forest is allowed to utilize (Steiner) points that are not among the input
points.

k-Minimum spanning tree (k-MST): A minimum-length tree that spans
some subset of k ≤ n points of S.

Traveling salesman problem (TSP): Find a shortest cycle that visits every
point of a set S of n points.

MAX TSP: Find a longest cycle that visits every point of a set S of n points.

Minimum latency tour problem: Find a tour on S that minimizes the sum
of the “latencies,” where the latency of p ∈ S is the length of the tour from the
given depot to p. Also known as the deliveryman problem , the school-bus
driver problem , or the traveling repairman problem.

k-Traveling repairman problem: Find k tours covering S for k repairmen,
minimizing the total latency. The repairmen may originate at a single common
depot or at multiple depots.

Min/max-area TSP: Find a cycle on a given set S of points such that the
cycle defines a simple polygon of minimum/maximum area.

TSP with neighborhoods: Find a shortest cycle that visits at least one point
in each of a set of neighborhoods (e.g., polygons), {P1, P2, . . . , Pk}.

Touring polygons problem: Find a shortest path/cycle that visits in order
at least one point of each polygon in a sequence (P1, P2, . . . , Pk).

Watchman route (path) problem: Find a shortest cycle (path) within a poly-
gonal domain P such that every point of P is visible from some point of the cycle.

Lawnmowing problem: Find a shortest cycle (path) for the center of a disk
(a “lawnmower” or “cutter”) such that every point of a given (possibly discon-
nected) region is covered by the disk at some position along the cycle (path).

Milling problem: Similar to the lawnmowing problem, but with the constraint
that the cutter must at all times remain inside the given region (the “pocket” to
be milled). When milling a polygonal region with a circular cutter, the portion
that must be covered is the union of all disks within the polygonal region; the
cutter cannot reach into convex corners of the polygon.

Zookeeper’s problem: Find a shortest cycle in a simple polygon P (the zoo)
through a given vertex v such that the cycle visits every one of a set of k disjoint
convex polygons (cages), each sharing an edge with P .

Aquarium-keeper’s problem: Find a shortest cycle in a simple polygon P (the
aquarium) such that the cycle touches every edge of P .
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Safari route problem: Find a shortest tour visiting a set of convex polygonal
cages attached to the inside wall of a simple polygon P .

Relative convex hull of point set S within simple polygon P : The shortest
cycle within P that surrounds S. The relative convex hull is necessarily a simple
polygon, with vertices among the points of S and the vertices of P .

Monotone path problem: Find a shortest monotone path (if any) from s to
t in a polygonal domain P . A polygonal path is monotone if there exists a
direction vector d such that every directed edge of the path has a nonnegative
inner product with d.

Doubling dimension (ddim): A metric space X is said to have doubling con-
stant cd if any ball of radius r can be covered by cd balls of radius r/2; the
logarithm of cd is the doubling dimension (ddim) of X . Euclidean d-space, Rd,
has ddim O(d).

MINIMUM SPANNING TREES

The (Euclidean) minimum spanning tree problem can be solved to optimality in
the plane in time O(n logn) by appealing to the fact that the MST is a subgraph
of the Delaunay triangulation; see Chapters 27 and 29. Efficient approximations in
R

d are based on spanners (Section 32.3).
The Steiner tree and k-MST problems, however, are NP-hard; both have poly-

nomial-time approximation schemes [Aro98, Mit99]. (In comparison, in graphs a
2-approximation is known for k-MST, as well as k-TSP [Gar05].) A PTAS for
Steiner tree that takes time O(n log n) in any fixed dimension has been devised
based on the concept of banyans, a generalization of the notion of t-spanners (Sec-
tion 32.3), in combination with the PTAS techniques developed for the TSP and
related problems [Aro98, Mit99, RS98]. A “t-banyan” approximates to within fac-
tor t the interconnection cost (allowing Steiner points) for subsets of sites of any
cardinality (not just 2 sites, as in the case of t-spanners); [RS98] show that for any
fixed ε > 0 and d ≥ 1, there exists a (1 + ε)-banyan having O(n) vertices and O(n)
edges, computable in O(n log n) time.

TRAVELING SALESMAN PROBLEM

The traveling salesman problem is a classical problem in combinatorial optimiza-
tion, and has been studied extensively in its geometric forms. The problem is
NP-hard, but has a simple 2-approximation algorithm based on “doubling” the
minimum spanning tree. The Christofides heuristic augments a minimum span-
ning tree with a minimum-length matching on the odd-degree nodes of the tree,
thereby obtaining an Eulerian graph from which a tour can be extracted; this
yields a 1.5-approximation algorithm. (For the s-t path TSP, of computing a short-
est Hamiltonian path between specified endpoints s and t, there is a (1 +

√
5)/2-

approximation in metric spaces [AKS15].) For the graphic TSP, in which dis-
tances are given by shortest path lengths in an unweighted graph, there is a (13/9)-
approximation [Muc14].

Geometry helps in obtaining improved approximations: There are polynomial-
time approximation schemes for geometric versions of the TSP, allowing one, for
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TABLE 31.4.1 Other optimal path/cycle/network problems.

PROBLEM COMPLEXITY NOTES SOURCE

Min spanning tree O(n logn) exact, in R
2

[PS85]

(MST) in R
d

O(n logn) (1+ε)-approx, fixed d [CK95]

Steiner tree in R
d

O(n logn) (1+ε)-approx, fixed d [RS98]

Steiner forest in R
2

O(n logc n) (1+ε)-approx [BKM15]

k-MST in R
d

O(n logn) (1+ε)-approx, fixed d [RS98]

Min bicon. subgraph (1+ε)-approx O(n logn) [CL00]

Traveling salesman prob O(n logn) (1+ε)-approx, fixed d [Aro98, Mit99, RS98]

(TSP) in R
d

O(n) (1+ε)-approx, fixed d [BG13]

(randomized) real RAM, atomic floor [BG13]

TSP in low-dimensional 2(k/ε)
O(k2)

n+ (1+ε)-approx [BGK12, Got15]

metric space +(k/ε)O(k)n log2 n ddim k, randomized

MAX TSP NP-hard in R
3

(1+ε)-approx [BFJ03]

O(n) L1, L∞ in R
2

O(nf−2 logn) f -facet polyhedral norm

Min-area TSP NP-complete [Fek00]

Max-area TSP NP-complete (1/2)-approx [Fek00]

TSP w/neighborhoods NP-hard O(logn)-approx [MM95, GL99]

no O(1)-approx disconnected regions, R
2

[SS06]

APX-hard connected regions, R
2

[SS06]

O(1)-approx disjoint regions, R
2

[Mit10]

(1+ε)-approx disjoint fat regions, R
2

[Mit07]

(1+ε)-approx fat, weakly disjoint, [CJ16]

ddim k

Touring polygons prob NP-hard (1+ε)-approx [DELM03, AMZ14]

O(nk2 logn) convex polygons [DELM03]

O(nk log(n/k)) disjoint convex polygons [DELM03]

Minimum latency prob 3.59-approx metric space [CGRT03, GK97]

(1+ε)-approx polytime in R
2

[Sit14]

k-Traveling repairman 8.497-approx single depot [CGRT03, FHR07]

k-Traveling repairman (12 + ε)-approx multidepot [CK04]

Watchman route O(n4 logn) simple polygon [DELM03]

(fixed source) O(n3 logn) simple polygon [DELM03]

O(n) rectilinear simple polygon [CN91]

NP-hard polygonal domain [CN88]

O(log2 n)-approx polygonal domain [Mit13]

Min-link watchman NP-hard O(logn)-approx [AMP03]

NP-hard simple polygon [AL93]

O(1)-approx simple polygon [AL95]

Lawnmowing problem NP-hard O(1)-approx, PTAS [AFM00, FMS12]

Milling problem O(1)-approx, PTAS simple polygon [AFM00, FMS12]

NP-hard, O(1)-approx polygonal domain [AFM00, AFI+09]

Simple Hamilton path O(n2m2) m points in simple n-gon [CCS00]

NP-complete polygonal domain [CCS00]

Aquarium-keeper’s prob O(n) simple polygon [CEE+91]

Zookeeper’s problem O(n logn) simple polygon [Bes03a]

Relative convex hull Θ(n+ k log kn) k points in simple n-gon [GH89]

Monotone path prob O(n3 logn) [ACM89]
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any fixed ε > 0, to get within a factor (1+ε) of optimality [Aro98, Mit99]. Using
the key idea of using t-spanners, the running time was improved to O(n logn)
in any fixed dimension [RS98]. In fact, in the real RAM model (with atomic
floor or mod function), a randomized linear-time PTAS is known in fixed di-
mension [BG13]. More generally, the TSP in metric spaces of bounded dou-
bling dimension (ddim) also has a PTAS; specifically, for ddim k there is a PTAS

running in time 2(k/ε)
O(k2)

n + (k/ε)O(k)n log2 n, based on computing light span-
ners [BGK12, Got15]. The geometric TSP has also been studied with the objec-
tive of minimizing the sum of the direction changes at the points along the tour;
this angular metric TSP is known to be NP-hard and to have a polynomial-time
O(log n)-approximation [ACK+00].

The TSP-with-neighborhoods (TSPN) problem arises when we require the
tour/path to visit a set of regions, rather than a set of points. An O(log n)-
approximation algorithm is known for general connected regions in the plane [MM95,
GL99]. It is NP-hard to approximate TSPN to within factor 2 − ε for connected
regions that are allowed to overlap in the plane [SS06]. TSPN is APX-hard even for
regions that are (intersecting) line segments, all of about the same length [EFS06].
Constant-factor approximation algorithms are known for some special cases [AH94,
BGK+05, DM03], as well as for the general case of disjoint connected regions in the
plane [Mit10]. Polynomial-time approximation schemes are known for disjoint (or
“weakly disjoint”) fat regions in the plane [Mit07], and, more generally, in metric
spaces of bounded doubling dimension [CJ16]. For general disconnected regions in
the plane, no constant factor approximation is possible (unless P=NP) [SS06]. For
regions consisting each of k discrete points, a (3/2)k-approximation holds (even
in general metric spaces) [Sla97]; for instances in the Euclidean plane, there is a
lower bound of Ω(

√
k), for k > 4, on the approximation factor [SS06], and the

problem is APX-hard for k = 2 [DO08]. Results in higher dimensions include
O(1)-approximation for neighborhoods that are planes or unit disks and O(log3 n)-
approximation for lines [DT16]. It is NP-hard to approximate within any constant
factor, even for connected, disjoint regions in 3-space [SS06].

LAWNMOWER AND WATCHMAN ROUTE PROBLEM

The lawnmowing problem is a TSP variant that seeks an optimal path for a lawn-
mower, modeled as, say, a circular cutter that must sweep out a region that covers
a given domain of “grass.” The milling problem requires that the cutter remains
within the given domain. These problems are NP-hard in general, but constant-
factor approximation algorithms are known [AFM00, AFI+09], and some variants
have a PTAS [FMS12].

The watchman route problem seeks a shortest-path/tour so that every point
of a domain is seen from some point along the path/tour; i.e., the path/tour must
visit the visibility region associated with each point of the domain. In the case of
a simple polygonal domain, the watchman route problem has an O(n4 logn) time
algorithm to compute an exact solution and O(n3 logn) is possible if we are given
a point through which the tour must pass [DELM03]. In the case of a polygonal
domain with holes, the problem is easily seen to be NP-hard (from Euclidean TSP);
an O(log2 n)-approximation algorithm is given by [Mit13], as well as a lower bound
of Ω(log n) on the approximation factor (assuming P 6=NP).
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OPEN PROBLEMS

1. Is the MAX TSP NP-hard in the Euclidean plane? What if the tour is required
to be noncrossing?

2. Is there a PTAS for the minimum latency problem and for the k-traveling
repairman problem for points in any fixed dimension? (In R

2, the minimum
latency problem has a PTAS [Sit14].)

3. Can one obtain a PTAS for the TSP with neighborhoods (TSPN) problem in
the plane if the regions are disjoint and each is a connected set? (Without
disjointness, the problem is APX-hard even for regions that are line segments
all of very nearly the same length [EFS06].) For (disconnected) regions each
consisting of a discrete set of k points in the plane, what approximation factor
(as a function of k) can be achieved? (The known (3/2)k-approximation does
not exploit geometry [Sla97]; the lower bound Ω(

√
k) applies to instances in

the plane [SS06].) Is there a polynomial-time exact algorithm for TSPN in
3-space for neighborhoods that are planes?

4. Is the milling problem in simple polygons NP-hard?

5. Can the (Euclidean) watchman route in a simple polygon be computed in
(near) linear time? (The fixed-source version is currently solved in O(n3 logn)
time [DELM03] in general, but in time O(n) in rectilinear polygons [CN91].)

31.5 HIGHER DIMENSIONS

GLOSSARY

Polyhedral domain: A set P ⊂ R
3 whose interior is connected and whose

boundary consists of a union of a finite number of triangles. (The definition is
readily extended to d dimensions, where the boundary must consist of a union
of (d−1)-simplices.) The complement of P consists of connected (polyhedral)
components, which are the obstacles.

Orthohedral domain: A polyhedral domain having each boundary facet or-
thogonal to one of the coordinate axes.

Polyhedral surface: A connected union of triangles, with any two triangles in-
tersecting in a common edge, a common vertex, or not at all, and such that every
point in the relative interior of the surface has a neighborhood homeomorphic
to a disk.

Polyhedral terrain surface: A polyhedral surface given by an altitude function
of position (x, y); a vertical line meets the surface in at most one point.

Edge sequence: The ordered list of obstacle edges that are intersected by a
path.
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COMPLEXITY

In three or more dimensions, most shortest-path problems become very difficult. In
particular, there are two sources of complexity, even in the most basic Euclidean
shortest-path problem in a polyhedral domain P .

One difficulty arises from algebraic considerations. In general, the shortest
path in a polyhedral domain need not lie on any kind of discrete graph. Shortest
paths in a polyhedral domain will be polygonal, with bend points that generally
lie interior to obstacle edges, obeying a simple “unfolding” property: The path
must enter and leave at the same angle to the edge. It follows that any locally
optimal subpath joining two consecutive obstacle vertices can be “unfolded” at
each edge along its edge sequence, thereby obtaining a straight segment. Given
an edge sequence, this local optimality property uniquely identifies a shortest path
through that edge sequence. However, to compare the lengths of two paths, each
one shortest with respect to two (different) edge sequences, requires exponentially
many bits, since the algebraic numbers that describe the optimal path lengths may
have exponential degree.

A second difficulty arises from combinatorial considerations. The number of
combinatorially distinct (i.e., having distinct edge sequences) shortest paths be-
tween two points may be exponential. This fact leads to a proof of the NP-hardness
of the shortest-path problem [CR87]. In fact, the problem is NP-hard even for the
case of obstacles that are disjoint axis-aligned boxes, even if the obstacles are all
“stacked” axis-aligned rectangles (i.e., horizontal rectangles, orthogonal to the z-
axis, with edges parallel to the x- and y-axes), and even if the rectangles are quad-
rants, each of which is unbounded to the northeast or to the southwest [MS04].

Thus, it is natural to consider approximation algorithms for the general case,
or to consider special cases for which polynomial bounds are achievable.

SPECIAL CASES

If the polyhedral domain P has only a small number k of convex obstacles, a shortest
path can be found in nO(k) time [Sha87]. If the obstacles are known to be vertical
“buildings” (prisms) having only k different heights, then shortest paths can be
found in time O(n6k−1) [GHT89], but it is not known if this version of the problem
is NP-hard if k is allowed to be large.

If we require paths to stay on a polyhedral surface (i.e., the domain P is essen-
tially 2D), then the unfolding property of optimal paths can be exploited to yield
polynomial-time algorithms. The continuous Dijkstra paradigm leads to an algo-
rithm requiring O(n2 logn) time to construct a shortest path map (or a geodesic
Voronoi diagram), where n is the number of vertices of the surface [MMP87]. The
worst-case running time has been improved to O(n2) by Chen and Han [CH96].
For the case of shortest paths on a convex polyhedral surface (or avoiding a sin-
gle convex polytope obstacle in 3-space), Schreiber and Sharir [SS08] have given
an optimal time O(n logn) algorithm based on the continuous Dijkstra paradigm;
Schreiber [Sch07] has extended the methods to yield an O(n log n) time algorithm
on “realistic” polyhedral surfaces. Kapoor [Kap99, O’R99] has announced an
O(n log2 n) time algorithm for general polyhedral surfaces, also based on the contin-
uous Dijkstra paradigm. Since shortest paths on polyhedral surfaces are critical in
many applications in computer graphics, practical experimental studies of shortest
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path algorithms have been conducted; see, e.g., [SSK+05]. There has been con-
siderable study of shortest paths and cycles on surfaces of complex topology; see
Chapter 23.

Several facts are known about the set of edge sequences corresponding to short-
est paths on the surface of a convex polytope P in R

3. In particular, the worst-case
number of distinct edge sequences that correspond to a shortest path between some
pair of points is Θ(n4), and the exact set of such sequences can be computed in time
O(n6β(n) logn), where β(n) = o(log∗ n) [AAOS97]. (A simpler O(n6) algorithm
can compute a small superset of the sequences.) The number of maximal edge
sequences for shortest paths is Θ(n3). Some of these results depend on a careful
study of the star unfolding with respect to a point p on the boundary, ∂P , of P .
The star unfolding is the (nonoverlapping) cell complex obtained by subtracting
from ∂P the shortest paths from p to the vertices of P , and then flattening the
resulting boundary.

Results on exact algorithms for special cases are summarized in Table 31.5.1.

TABLE 31.5.1 Shortest paths in 3-space, d-space: exact algorithms.

OBSTACLES/DOMAIN COMPLEXITY NOTES SOURCE

Polyhedral domain NP-hard convex obstacles [CR87]

Axis-parallel stacked rect. NP-hard L2 metric [MS04]

One convex 3D polytope O(n logn) time O(n logn) space [SS08]

k convex polytopes nO(k) fixed k [Sha87]

Vertical buildings O(n6k−1) k different heights [GHT89]

Axis-parallel boxes O(n2 log3 n) L1 metric [CKV87]

Axis-parallel O(n2 logn) L1 metric [CY95]

(disjoint) path monotonicity, R
d

[CY96]

Axis-parallel boxes, R
d

O(nd logn) preproc combined L1, link dist [BKNO92]

O(logd−1 n) query single-source queries

O((n logn)d−1) space

Above a terrain O(n3 logn) time L1 metric [MS04]

Polyhedral surface O(n2) time builds SPM(s) [CH96, MMP87]

geodesic Voronoi

Polyhedral surface O(n2 log4 n) time L1, L∞ metric [CJ14b]

Two-point query O((
√
n/m1/4) logn) query convex polytope [AAOS97]

O(n6m1+δ) space, preproc 1 ≤ m ≤ n2, δ > 0

Geodesic diameter O(n8 logn) convex polytope [AAOS97]

APPROXIMATION ALGORITHMS

Papadimitriou [Pap85] was the first to study the general problem from the point of
view of approximations, giving a fully polynomial approximation scheme that pro-
duces a path guaranteed to be no longer than (1+ε) times the length of a shortest
path, in time O(n3(L + log(n/ε))2/ε), where L is the number of bits necessary to
represent the value of an integer coordinate of a vertex of P . An alternate bound
of Clarkson [Cla87] improves the running time in the case that nε3 is large. Choi,
Sellen, and Yap [CSY95, CSY97] introduce the notion of “precision-sensitivity,”
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writing the complexity in terms of a parameter, δ, that measures the implicit pre-
cision of the input instance, while drawing attention to the distinction between bit
complexity and algebraic complexity.

Har-Peled [Har99b] shows how to compute an approximate shortest path
map in polyhedral domains, computing, for fixed source s and 0 < ε < 1, a
subdivision of size O(n2/ε4+δ) in time roughly O(n4/ε6), so that for any point
t ∈ R

3 a (1 + ε)-approximation of the length of a shortest s-t path can be reported
in time O(log(n/ε)).

Considerable effort has been devoted to approximation algorithms for short-
est paths on polyhedral surfaces. Given a convex polytope obstacle, Agarwal et
al. [AHPSV97] show how to surround the polytope with a constant-size (O(ε−3/2),
now improved to O(ε−5/4) [CLM05]) convex polytope having the property that
shortest paths are approximately preserved (within factor (1+ε)) on the outer poly-
tope. This results in an approximation algorithm of time complexity O(n log(1/ε)+
f(ε−5/4)), where f(m) denotes the time complexity of solving exactly a shortest-
path problem on an m-vertex convex surface (e.g., f(m) = O(m2) using [CH96]).
Har-Peled [Har99a] gives an O(n)-time algorithm to preprocess a convex polytope
so that a two-point query can be answered in time O((log n)/ε3/2 +1/ε3), yielding
the (1 + ε)-approximate shortest path distance, as well as a path having O(1/ε3/2)
segments that avoids the interior of the input polytope.

Varadarajan and Agarwal [VA99] obtained the first subquadratic-time algo-
rithms for approximating shortest paths on general (nonconvex) polyhedral sur-

faces, computing a (7 + ε)-approximation in O(n5/3 log5/3 n) time, or a (15 + ε)-

approximation in O(n8/5 log8/5 n) time. Their method is based on a partitioning
of the surface into O(n/r) patches, each having at most r faces, using a planar

separator theorem. (The parameter r is chosen to be n1/3 log1/3 n or n2/5 log2/5 n.)
Then, on the boundary of each patch, a carefully selected set of points (“portals”)
is chosen, and these are interconnected with a graph that approximates shortest
paths within each patch.

For a polyhedral terrain surface, one often wants to model the cost of motion
that is anisotropic, depending on the steepness (gradient) of the ascent/descent.
Cheng and Jin [CJ14b] give a (1 + ε)-approximation, taking time O( 1√

ε
n2 logn +

n2 log4 n), in this model in which the cost of movement is a linear combination
of path length and total ascent, and there are constraints on the steepness of the
path. For the problem of computing a shortest path on a polyhedral terrain surface,
subject to the constraint that the path be descending in altitude along the path,
Cheng and Jin [CJ14a] have given a (1+ ε)-approximation algorithm with running
time O(n4 log(n/ε)). Exact solution of the shortest descending path problem on a
polyhedral terrain seems to be quite challenging; see, e.g., [AL09, AL11, RDN07].

Practical approximation algorithms are based on searching a discrete graph
(an “edge subdivision graph,” or a “pathnet”)[LMS01, MM97] by placing Steiner
points judiciously on the edges (or, possibly interior to faces) of the input surface.
This approach applies also to the case of weighted surfaces and weighted convex
decompositions of R3; see the earlier discussion of the weighted region problem.
One can obtain provable results on the approximation factor; see Table 31.5.2. It is
worth noting, however, that these complexity bounds are under the assumption that
certain geometric parameters are “constants”; these parameters may be unbounded
in terms of ε and the combinatorial input size n.
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TABLE 31.5.2 Shortest paths in 3-space: approximation algorithms.

OBSTACLES/DOMAIN COMPLEXITY NOTES SOURCE

Polyhedral domain O(n4(L+ log(n
ε
))2/ε2) (1+ε)-approx [Pap85]

O(n2polylog n/ε4) (1+ε)-approx [Cla87]

Polyhedral domain O(n
2

ε3
log 1

ε
logn) (1+ε)-approx [AMS00]

geometric parameters

Polyhedral domain NP-hard in 3-space PTAS [KLPS16]

Orthohedral poly. dom. O(n
2

ε3
log 1

ε
logn) (1+ε)-approx [AMS00]

Orthohedral poly. dom. O(n2 log2 n) 3D, rectilinear link dist. [PS11]

Poly. terrain surface O( 1√
ε
n2 logn+ n2 log4 n) (1 + ε)-approx [CJ14b]

cost(length,ascent) gradient constraints

Weighted poly. dom. O(K n
ε3

log 1
ε
( 1√

ε
+logn)) (1+ε)-approx [ADMS13]

n tetrahedra geometric parameter K

Weighted poly. dom. O(22
O(κ) n

ε7
log2 W

ε
log2 NW

ε
) (1+ε)-approx [CCJV15]

n tetrahedra weights {1, . . . ,W}
coordinates {1, . . . , N} κ skinny tetra per comp

One convex obstacle O(ε−5/4√n) expected (1+ε)-approx [CLM05]

k convex polytopes O(n) 2k-approx [HS98]

Convex poly. surface O(n log 1
ε
+ 1

ε3
) (1+ε)-approx [AHPSV97]

Convex poly. surface O( 1
ε1.5

logn+ 1
ε3

) query (1+ε)-approx [Har99a]

O(n) preproc (pp.) two-point query

Convex poly. surface O(log n
ε
) query single-source queries [Har99b]

O( n
ε3

log 1
ε
+ n

ε1.5
log 1

ε
logn) pp. O(n

ε
log 1

ε
) size SPM

Nonconv. poly. surface O(log n
ε
) query single-source queries [Har99b]

O(n2 logn+n
ε
log 1

ε
log n

ε
) pp. O(n

ε
log 1

ε
) size SPM

Convex poly. surface O(n+ 1
ε6

) (1−ε)-approx diameter [Har99a]

Nonconv. poly. surface O(n5/3 log5/3 n) (7+ε)-approx [VA99]

O(n8/5 log8/5 n) (15+ε)-approx [VA99]

Nonconv. poly. surface O(n
ε
log 1

ε
logn) (1+ε)-approx [AMS00]

geometric parameters

Vertical buildings O(n2) 1.1-approx [GHT89]

OTHER METRICS

Link distance in a polyhedral domain in R
d can be approximated (within factor 2)

in polynomial time by searching a weak visibility graph whose nodes correspond to
simplices in a simplicial decomposition of the domain. Computing the exact link
distance is NP-hard in R

3, even on terrains; however, a PTAS is known [KLPS16].
If the domain is orthohedral, rectilinear link distance can be computed efficiently,
in time O(n2 log2 n) [PS11].

For the case of orthohedral domains and rectilinear (L1) shortest paths, the
shortest-path problem in R

d becomes relatively easy to solve in polynomial time,
since the grid graph induced by the facets of the domain serves as a path-preserving
graph that we can search for an optimal path. In R

3, we can do better than to
use the O(n3) grid graph induced by O(n) facets; an O(n2 log2 n) size subgraph
suffices, which allows a shortest path to be found using Dijkstra’s algorithm in time
O(n2 log3 n) [CKV87]. More generally, in R

d one can compute a data structure of
size O((n log n)d−1), in O(nd logn) preprocessing time, that supports fixed-source
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link distance queries in O(logd−1 n) time [BKNO92]. In fact, this last result can
be extended, within the same complexities, to the case of a combined metric, in
which path cost is measured as a linear combination of L1 length and rectilinear
link distance.

For the special case of disjoint rectilinear box obstacles and rectilinear (L1)
shortest paths, a structural result may help in devising very efficient algorithms:
There always exists a coordinate direction such that every shortest path from s to
t is monotone in this direction [CY96]. In fact, this result has led to an O(n2 logn)
algorithm for the case d = 3.

OPEN PROBLEMS

1. Can one compute shortest paths on a polyhedral surface in R
3 in O(n logn)

time using O(n) space?

2. Can one compute a shortest path map for a polyhedral domain in output-
sensitive time?

3. Is it 3SUM-hard to compute minimum-link rectilinear paths in 3D, or can one
obtain a subquadratic-time algorithm? A nearly-quadratic-time algorithm is
known [PS11].

4. What is the complexity of the shortest-path problem in 3-space among disjoint
unit disk obstacles or disjoint axis-aligned unit cubes?

5. Can two-point queries be solved efficiently for Euclidean (or L1) shortest paths
among obstacles in 3-space?

31.6 SOURCES AND RELATED MATERIAL

SURVEYS

Some other related surveys offer additional material and references:

[BMSW11]: A survey of shortest paths on 3D surfaces. [Har11]: A book on geo-
metric approximation algorithms.

[Mit00]: Another survey on geometric shortest paths and network optimization.

[Mit15]: A survey on approximation schemes for geometric network optimization.

RELATED CHAPTERS

Chapter 10: Geometric graph theory
Chapter 23: Computational topology of graphs on surfaces
Chapter 29: Triangulations and mesh generation
Chapter 30: Polygons
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Chapter 32: Proximity algorithms
Chapter 33: Visibility
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