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INTRODUCTION

Polygons are one of the fundamental building blocks in geometric modeling, and
they are used to represent a wide variety of shapes and figures in computer graph-
ics, vision, pattern recognition, robotics, and other computational fields. By a
polygon we mean a region of the plane enclosed by a simple cycle of straight line
segments; a simple cycle means that nonadjacent segments do not intersect and
two adjacent segments intersect only at their common endpoint. This chapter de-
scribes a collection of results on polygons with both combinatorial and algorithmic
flavors. After classifying polygons in the opening section, Section 30.2 looks at sim-
ple polygonizations, Section 30.3 covers polygon decomposition, and Section 30.4
polygon intersection. Sections 30.5 addresses polygon containment problems and
Section 30.6 touches upon a few miscellaneous problems and results.

30.1 POLYGON CLASSIFICATION

Polygons can be classified in several different ways depending on their domain of
application. In chip-masking applications, for instance, the most commonly used
polygons have their sides parallel to the coordinate axes.

GLOSSARY

Simple polygon: A closed region of the plane enclosed by a simple cycle of
straight line segments.

Convex polygon: The line segment joining any two points of the polygon lies
within the polygon.

Monotone polygon: Any line orthogonal to the direction of monotonicity inter-
sects the polygon in a single connected piece.

Star-shaped polygon: The entire polygon is visible from some point inside the
polygon.

Orthogonal polygon: A polygon with sides parallel to the (orthogonal) coordi-
nate axes. Sometimes called a rectilinear polygon.

Orthogonally convex polygon: An orthogonal polygon that is both x- and y-
monotone.

Polygonal chain: A sequence of connected, non-self-intersecting line segments
forming a subportion of a simple polygon’s boundary. A chain is convex or reflex
if all internal angles are convex or reflex respectively.
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Spiral polygon: A polygon bounded by one convex chain and one reflex chain.

Crescent polygon: A monotone spiral polygon.

Pseudotriangle: A polygon with exactly three convex angles. Each is pair of
convex vertices is connected either by a single segment or a reflex chain.

Histogram polygon: An orthogonal polygon bounded by an x-monotone polyg-
onal chain and a single horizontal line segment.

POLYGON TYPES

FIGURE 30.1.1
Various varieties of polygons: convex, monotone, star-shaped (with kernel), orthogonal,
orthogonally convex, histogram, spiral, crescent, and pseudotriangle.

Before starting our discussion on problems and results concerning polygons, we
clarify a few technical issues. The qualifier “simple” in the definition of a simple
polygon states a topological property, meaning “nonself-intersection.” Not to be
confused with “uncomplicated polygons,” in fact, these polygons include the most
complex among polygons that are topologically equivalent to a disk (see the clas-
sification below). Finally, we will make a standard general position assumption
throughout this chapter that no three vertices of a polygon are collinear.

The relationship between several classes of polygons can be understood using
the concept of visibility (see Chapter 33). We say that two points x and y in
a polygon P are mutually visible if the line segment xy does not intersect the
complement of P ; thus the segment xy is allowed to graze the polygon boundary
but not cross it. We call a set of points K ⊂ P the kernel of P if all points of P
are visible from every point in the kernel. Then, a polygon P is convex if K = P ;
the polygon is star-shaped if K 6= ∅ (see the star-shaped polygon in Fig. 30.1.1);
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FIGURE 30.1.2
A polygon with five holes.

otherwise, the polygon is merely a simple polygon. Speaking somewhat loosely, a
monotone polygon can be viewed as a special case of a star-shaped polygon with the
exterior kernel at infinity—that is, a monotone polygon can be decomposed into two
polygonal chains, each of which is entirely visible from the (same) point at infinity
in the extended plane. A pseudotriangle is often but not always star-shaped.

The kernel has been generalized to “left-” and “right-kernels,” whose definition
we leave to [TTW11].

By definition, a simple polygon P is a polygon without holes—that is, the inte-
rior of the polygon is topologically equivalent to a disk. A polygon with holes is
a higher-genus variant of a simple polygon, obtained by removing a nonoverlapping
set of strictly interior, simple subpolygons from P . Figure 30.1.2 illustrates the
distinction between a simple polygon and a polygon with holes.

An important class of polygons are the orthogonal polygons, where all edges are
parallel to the coordinate axes. These polygons arise quite naturally in industrial
applications, and often algorithms are faster on these more structured polygons.

30.2 SIMPLE POLYGONIZATIONS

It would be useful to have a clear notion of a “random polygon” so that algorithms
could be tested for typical rather than worst-case behavior. This leads to the
issue of generating the simple polygonalizations of a fixed point set S, a simple
polygon whose vertices are precisely the points of S. That every set S of n points
in general position has a simple polygonization has been known since Steinhaus in
1964. In fact, every such S has a star-shaped polygonization (Graham), a monotone
polygonization (Grünbaum), and a spiral polygonization. See [IM11] for the latter
result and a survey of earlier work.

The “space” of all polygonizations of a fixed point set S can be explored through
two elementary moves, which is one approach to generating random polygons: gen-
erate a random S, then walk between polygonizations to a “random” polygonization
in the space [DFOR10]. The size of this space can be exponential.

Considerable research has focused on quantifying this exponential, that is,
counting the maximum number of polygonizations over all n-point sets S. (Of
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course, the minimum is 1 because vertices of a convex polygon can form only one
simple polygon.) Current best bounds for the maximum are Ω(4.64n) [GNT00] and
O(54.55n) [SSW13].

Subsets of the full space have been explored, in particular, finding polygo-
nizations with special properties. The shortest perimeter polygonization is the
Euclidean TSP; see Chapter 31. There is a 2π approximation (under certain con-
ditions) for the longest perimeter polygonization [DT10]. Finding the minimum or
maximum area polygonization is NP-hard [Fek00]. Sufficient conditions have been
found for the existence of a polygonization of n red points while enclosing [HMO+09]
or excluding [FKMU13] a set of blue points.

Another goal has been to minimize the number of reflex vertices in a poly-
gonization of a point set S. This minimum is known as the reflexivity of S. A
tight upper bound is known as a function of nI , the number of points of S strictly
interior to the convex hull: the worst case is dnI/2e, and this can be achieved
by a class of examples [AFH+03]. As a function of n = |S|, the best bound is
5
12n+O(1) ≈ 0.4167n [AAK09]. Another criterion in the same spirit is to minimize
the sum of the “turn angles” at reflex interior angles [Ror14]. The worst case is
conjectured to be 2π(1− 1/(n− 1)), but only 2π − π/((n− 1)(n− 3)) is proved.

OPEN PROBLEMS

1. Simple polygonalization: Can the number of simple polygonalizations of a set
of n points in the plane be computed in polynomial time?

2. Partial polygons: Is there a polynomial time algorithm that can decide, for
a set of n points and a set of edges among them, whether there is a polygo-
nization that uses all the given edges?

30.3 POLYGON DECOMPOSITION

Many computational geometry algorithms that operate on polygons first decompose
them into more elementary pieces, such as triangles or quadrilaterals. There is a
substantial body of literature in computational geometry on this subject.

GLOSSARY

Steiner point: A vertex not part of the input set.

Diagonal: A line segment connecting two polygon nonadjacent vertices and con-
tained in the polygon. An edge connects adjacent vertices.

Polygon cover: A collection of subpolygons whose union is exactly the input
polygon.

Polygon partition: A collection of subpolygons with pairwise disjoint interiors
whose union is exactly the input polygon.

Dissection: A dissection of one polygon P to another Q is a partition of P into
a finite number of pieces that may be reassembled to form Q.
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Decompositions may be classified along two primary dimensions: covers or par-
titions, and with or without Steiner points. A cover permits a polygon in the shape
of the symbol “+” to be represented as the union of two rectangles, whereas a
minimal partition requires three rectangles, a less natural decomposition. Decom-
positions without Steiner points use diagonals, and are in general easier to find but
less parsimonious. For each of the four types of decomposition, different primitives
may be considered. The ones most commonly used are rectangles, convex polygons,
star-shaped polygons, spiral polygons, and trapezoids. Restrictions on the shape of
the piece being decomposed are often available; for example, orthogonal polygons
for rectangle covers. Lastly, the distinction between simple polygons and polygons
with holes is often relevant for algorithms. The most celebrated polygon partition
problem is the “polygon triangulation problem.”

TRIANGULATION ALGORITHMS

The polygon triangulation problem is to dissect a polygon into triangles by drawing
a maximal number of noncrossing diagonals. Only the vertices of the polygon are
used as triangle vertices, and no additional interior (Steiner) points are allowed. It
is an easy and well-known result that every simple polygon can be triangulated, and
that the number of triangles is invariant over all triangulations. More precisely:

THEOREM 30.3.1

Every simple polygon admits a triangulation, and every triangulation of an n-vertex
polygon has n− 3 diagonals and n− 2 triangles.

(But note that the natural generalization to R3—that every polyhedron admits
a tetrahedralization—is false: see Chapter 29.) The number of possible diagonals
in a polygon may vary from linear (e.g., a spiral polygon) to quadratic (e.g., a
convex polygon). A diagonal that breaks the polygon into two roughly equal halves
is called a balanced diagonal. In designing his O(n log n) time algorithm for tri-
angulating a polygon, Chazelle [Cha82] proved the following fact, which has found
numerous applications in divide-and-conquer based algorithms for polygons, e.g.,
to ray-shooting [HS95]:

THEOREM 30.3.2

Every n-vertex simple polygon admits a diagonal that breaks the polygon into two
subpolygons, neither one with more than d2n/3e+ 1 vertices.

By recursively dividing the polygon using balanced diagonals, we get a balanced
decomposition of P , which can be modeled by a tree of height O(log n). The
existence of a balanced diagonal follows easily once we consider the graph-theoretic
dual of a triangulation. This dual graph of a polygon triangulation is a tree, with
maximum node degree three. Diagonals of the triangulation correspond to the
edges of the dual tree, and thus a balanced diagonal corresponds to an edge whose
removal breaks the tree into two subtrees, each with at most d2n/3e+ 1 nodes.

The problem of computing a triangulation of a polygon has had a long and dis-
tinguished history [O’R87], culminating in Chazelle’s linear-time algorithm [Cha91].
Table 30.3.1 lists some of the best-known algorithms for this problem. The algo-
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rithm in [Sei91] is a randomized Las Vegas algorithm (see Chapter 44). All others
are deterministic algorithms, with worst-case time bounds as shown.

TABLE 30.3.1 Results on triangulating a simple polygon.

TIME COMPLEXITY ALGORITHM SOURCE

O(n logn) monotone pieces [GJPT78]

O(n logn) divide-and-conquer [Cha82]

O(n logn) plane sweep [HM85]

O(n log? n) randomized [Sei91]

O(n) polygon cutting [Cha91]

Chazelle’s deterministic linear-time algorithm is formidably complex, but has
led to a simpler randomized algorithm that runs in linear expected time [AGR01].

If the polygon contains holes (Figure 30.1.2), then Θ(n log n) time is both
necessary and sufficient for triangulating the region [HM85]. See Table 30.3.2.

TABLE 30.3.2 Results on triangulating a polygon with holes.

TIME COMPLEXITY ALGORITHM SOURCES

O(n logn) plane sweep [HM85]

O(n logn) local sweep [RR94]

COUNTING TRIANGULATIONS

The number of triangulations of a simple polygon with n vertices is at least 1 (every
polygon can be triangulated) and at most Cn−2 = 1

n−1

(
2n−4
n−2

)
, the (n−2)-th Catalan

number (for convex polygons). The number of triangulations of a given polygon of
n vertices can be determined in O(n3) time by dynamic programming [ES94]; or in
O(e3/2) time, where e = O(n2) is the number of diagonals of the polygon [DFH+99],
if the diagonals are given. In O(n log n) additional time, random triangulations
(with uniform distribution) can be generated [DQTW05], improving on an earlier
O(n4) algorithm [DFH+99].

SPECIAL TRIANGULATIONS

Polygon triangulations with either minimum or maximum edge length can be found
in O(n2) time via dynamic programming [Kli80].

Pseudotriangulations have many applications, for example, to motion planning,
and to kinetic data structures. Every simple polygon admits a pseudotriangulation
in which the maximum vertex-degree is at most 5, and this bound is the best
possible [AHST03]. However, the dual graph of a minimum pseudotriangulation
may have degree Ω(log n).
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COVERS AND PARTITIONS

The problem of decomposing polygons into different types of simpler polygons has
numerous applications within and outside computational geometry (see, e.g., Chap-
ter 57). Unlike the triangulation problem, most variants of the covering and par-
titioning problems turn out to be provably hard. In a covering problem, the goal
is to cover the interior of the polygon with the smallest number of subpolygons of
a particular type, for instance, convex or star-shaped polygons. Table 30.3.3 lists
results for various polygon covering problems. In this table, “cover type” refers to
the family of polygons allowed in the cover, while “domain” refers to the polygonal
region that needs to be covered. For the most part, we consider only four types of
domains: simple polygons, with and without holes, and orthogonal polygons, with
and without (orthogonal) holes. In all of these problems, the cover or partition
pieces are allowed to use Steiner points for their vertices. Almost all variations of
the covering problem are intractable. Even the minimum convex cover problem
without Steiner points is NP-complete [Chr11].

TABLE 30.3.3 Results on polygon covering problems.

COVER TYPE DOMAIN HOLES COMPLEXITY SOURCE

Rectangles orthogonal Y NP-complete [Mas78]

Convex–star polygons Y NP-hard [OS83]

Star polygons N NP-hard [Agg84]

APX-hard [ESW01]

Rectangles orthogonal N NP-hard [CR94]

Squares orthogonal N O(n3/2) [ACKO88]

Y NP-complete [ACKO88]

Convex polygons N NP-hard [CR94]

APX-hard [EW03]

The polygon-partitioning problems are similar to the covering problem, ex-
cept that the tessellating pieces are not allowed to overlap: they have pairwise
disjoint interiors. Table 30.3.4 collects results on polygon partitioning problems
permitting Steiner points. Polynomial-time algorithms can be achieved for simple
polygons using dynamic programming. The same problems, however, turn out to
be intractable when the polygon has holes. Disallowing Steiner points also leads to
polynomial-time algorithms. For example, partitioning a polygon without holes into
the fewest convex pieces, not employing Steiner points, is achievable in O(n3 log n)
time [Kei85, KS02].

CONVEX COVER APPROXIMATIONS

The intractability of most covering and partitioning problems naturally leads to the
question of approximability—how well can we approximate the size of an optimal
cover or partition in polynomial time. In many cases, there are only a polyno-
mial number of covering candidates—for instance, rectangle covers or convex poly-
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TABLE 30.3.4 Results on polygon partitioning problems.

PARTITION DOMAIN HOLES COMPLEXITY SOURCE

Convex polygons N O(n3) [CD79]

Convex polygons Y NP-hard [CD79]

Trapezoids polygons N O(n2) [Kei85]

Trapezoids polygons Y NP-complete [AAI86]

Rectangles orthogonal N O(n3/2 logn) [ACKO88]

Y NP-complete [ACKO88]

gon covers. An easy 4-approximation for minimum convex cover has been known
for some time: shoot a ray from each reflex vertex, splitting into two convex an-
gles [HM85]. Without Steiner points, balanced geometric separators have led to
a quasi-PTAS [BBV15]. Building on [CR94], a polynomial-time approximation
algorithm can achieve an approximation ratio of O(log n) [EW03].

STAR COVERS: ART GALLERY COVERAGE

Star-shaped covers of polygons corresponds to coverage of an “art gallery” by point-
guards (Chapter 33). Vertex-guards is a further, useful restriction to place the
guards at vertices. Because minimum star cover is APX-hard (Table 30.3.3) for
both point- and vertex-guards [ESW01], the focus has been on approximation al-
gorithms [Gho10]. An algorithm that runs in pseudopolynomial time achieves an
approximation factor of O(log OPT) for point or perimeter guards [DKDS07]. The
same approximation ratio was achieved via a randomized algorithm that runs in
fully polynomial expected-time [EHP06]. Among the strongest results in this di-
rection are an O(log log OPT)-approximation for vertex guards, running in O(n3),
and an O(log h log OPT)-approximation that runs in O(n3h2) for a polygon with h
holes [Kin13].

FAT PARTITIONS

Because many algorithms work faster on “fat” shapes, partitioning polygons into
fat pieces has become a recent focus. One notion of fatness asks for a partition into
convex polygons that minimizes the largest aspect ratio of any piece of the partition.
The aspect ratio of a polygon P is the ratio of the diameters of the smallest
circumscribing circle to the largest inscribed circle. Thus, the fatness corresponds
to circularity. If Steiner points are disallowed, i.e., if the pieces of the partition must
have their vertices chosen among P ’s vertices, then a polynomial-time algorithm
is known [DI04]. Permitting Steiner points leads to considerable complexity. For
example, the optimal partition of an equilateral triangle needs an infinite number
of pieces, and the optimal partition for a square is not yet known [DO03]. See
Figure 30.3.1.

A variation on the Treemap algorithm, for a tree of n nodes and height h, can
construct a convex partition into convex polygons with aspect ratio bounded by
O(poly(h, log n)) [BOS13]. This then leads to a tree partition into fat rectangles
with similarly bounded aspect ratio.

A chip manufacturing application has led to another type of “fat” rectangle
partition, where the goal is to maximize the shortest rectangle side over all rect-
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FIGURE 30.3.1
A 92-piece partition achieving an aspect ratio of 1.29950.

angles in the partition, i.e., avoid thin rectangles. The challenge is that the edges
of the optimal partition need not be “anchored” to a point on the boundary of the
polygon, but may instead float freely inside, as in Fig. 30.3.2. Nevertheless, for
simple orthogonal polygons, a polynomial-time algorithm can be achieved, albeit
with high complexity [OT04].

FIGURE 30.3.2
Not every cut of an optimal rectangle partition is “anchored” on the boundary.

ORTHOGONAL POLYGONS

Partitions and covers of orthogonal polygons into rectangles were mentioned above.
With the goal of achieving the fewest number of rectangles, finding optimal covers
is NP-complete, whereas finding optimal partitions is polynomial, O(n3/2 log n).
If the goal is to minimize the total length of the “cuts” between the rectan-
gles (minimum “ink”), then an optimum partition can be found in O(n4) time
for polygons without holes, but is NP-complete with holes [LTL89]. Approxi-
mations are available; for example, one that guarantees a solution within a fac-
tor of 3 of the minimum length [GZ90]. Another variation on ink minimization
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seeks a convex partition of a polygon P with the total perimeter of the convex
pieces a factor of the perimeter of P . Allowing Steiner points, a total perimeter of
O((log n/ log log n)perim(P )) can be achieved [DT11]. Covering orthogonal poly-
gons without holes with the fewest squares is polynomial, O(n3/2), but NP-complete
for polygons with holes [ACKO88].

AREA BISECTION

A particularly useful partition of a polygon P is an area bisection: a line deter-
mining a halfplane H such that H ∩ P and H̄ ∩ P have the same area. In [DO90]
an O(n log n) algorithm for area bisection was developed, and then used to “ham-
sandwich section” a pair of polygons. This result was subsequently improved to
O(n)-time [She92]. Motivated by positioning parts in industrial part-feeding sys-
tems, Böhringer et al. [BDH99] developed an output-size sensitive algorithm for
computing the complete set of combinatorially distinct area bisectors, which they
show can have size Ω(n2).

A ham-sandwich geodesic in a polygon P enclosing points is a shortest path
connecting two boundary points that simultaneously bisects red points and blue
points in the polygon. If n is the number of vertices of P plus the number of interior
points, such a geodesic can be found in O(n log r)-time, where r is the number of
reflex vertices of P [BDH+07]. This result has been generalized to the situation
where there are kn red points and km blue points, and the task is to partition P
into k relatively-convex regions (closed under shortest paths), each containing n red
and m blue points. Then a O(kn2 log2 n)-time algorithm is available [BBK06]. A
related result partitions a polygon of n vertices containing k points into equal-area
convex regions, each containing exactly one point. O(kn + k2 log n)-time can be
achieved [AP10].

A classic result known as Winternitz’s theorem says that in every convex poly-
gon P , there is a point x ∈ P such that any halfplane that contains x contains
at least 4/9’s of P ’s area. This has been generalized to nonconvex polygons P of
r ≥ 1 reflex vertices: there is a point x ∈ P such that any boundary-to-boundary
segment chord partitions P into two pieces, such that the piece that contains x
contains nearly a fraction 1/(2(r + 1)) of the area of P [BCHM11].

SUM-DIFFERENCE DECOMPOSITIONS

Permitting set subtraction as well as set union leads to natural shape decomposi-
tions. This is evident from the field of Constructive Solid Geometry, where shapes
are described with CSG trees whose nodes are union or difference operators, and
whose leaves are primitive shapes (Section 57.1). Batchelor developed a similar
concept for shape description, the convex deficiency tree [Bat80]. For a shape
P , the root of this tree is its hull conv(P ), the children of the root the hulls of the
convex deficiencies conv(P ) \ P , and so on [O’R98, p. 98].

Chazelle suggested [Cha79] representing a shape by the difference of convex
sets: A \ B where A and B are unions of convex polygons. It has been estab-
lished that finding the minimum number of convex pieces in such a sum-difference
decomposition of a multiply connected polygonal region is NP-hard [Con90].
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DISSECTIONS

A dissection of one polygon P to another Q is a partition of P into a finite
number of pieces that may be reassembled to form Q. P and Q are then said to be
equidecomposable. Dissections have been studied as puzzles for centuries. A typical
example is shown in Figure 30.3.3 [Fre97, p. 66]. It has been known since the early

A

B

A

B

FIGURE 30.3.3
Sam Loyd’s “A&P Baking Powder” puzzle reassembles a rectangle with a hole to a rectangle
without a hole via a two-piece dissection.

19th century that any two polygons of equal area are equidecomposable [Fre97,
p. 221]. The same question for the more constrained hinged dissections remained
open (implicitly) for years. See Fig. 30.3.4 for the famous Dudeney-McElroy hinged
dissection between a square and an equilateral triangle [Fre02]. Now the question
is settled positively: any finite collection of polygons of equal area has a common
hinged dissection [AAC+12]. For two polygons with vertices on the integer lattice,
both the number of pieces of the hinged dissection and the running time of the
construction algorithm are pseudopolynomial.

FIGURE 30.3.4
A four-piece hinged dissection between a square and an equilateral triangle.

OPEN PROBLEMS

1. Approximating the number of art gallery guards: Give a polynomial-time
algorithm for computing a constant-factor approximation of the minimum
number of point guards needed to cover a simple polygon.

2. Fat partition of a square: What is the optimal partition of a square into “fat”
convex polygons?
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30.4 POLYGON INTERSECTION

Polygon intersection problems deal with issues of detection and computation of
the collision between two polygonal shapes. In the detection problem, one is only
interested in deciding whether the two polygons have a point in common. In the
intersection computation problem, the algorithm is asked to report the overlapping
parts of the two polygons. Such problems arise naturally in robotics and computer
games; see Chapter 39 for additional material.

The maximum number of points at which the boundaries of two polygons may
cross each other depends on the type of polygons. If p and q, respectively, denote the
number of vertices of the two polygons, then the maximum number of intersections
is min(2p, 2q) if both polygons are convex, max(2p, 2q) if one is convex, and pq
otherwise.

Algorithmically, intersection-detection between convex polygons can be done
significantly faster than intersection computation, if we allow reasonable prepro-
cessing of polygons. By a reasonable preprocessing, we mean that the preprocessing
algorithm takes into account the structure of the polygons but not their positions.
In Table 30.4.1, n denotes the total number of vertices in the two polygons; that
is, n = p+ q.

TABLE 30.4.1 Intersecting polygons.

POLYGON TYPES PREPROCESSING QUERY SOURCE

Convex-convex O(1) O(n) [CD80]

Convex-convex O(n) O(logn) [CD80]

Simple-simple O(1) O(n) [Cha91]

Simple-simple O(n logn) O(m log2 n) [Mou92]

The parameter m in the query time for intersections of two simple polygons is
the complexity of a minimum link witness for the intersection or disjointness of the
two polygons, and we always have m ≤ n. The preprocessing space requirement is
linear when the polygons are preprocessed.

30.5 POLYGON CONTAINMENT

Polygon containment refers to a class of problems that deals with the placement of
one polygonal figure inside another. Polygon inscription, polygon circumscription,
and polygon nesting are other variants of this type of problem.

GLOSSARY

Inscribed polygon: We will say that a polygon Q is inscribed in polygon P if
Q ⊂ P . P is then called a circumscribing polygon.

Polygon nesting: P,Q is a nested pair if Q ⊂ P or vice versa.
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CONTAINMENT OF POLYGONS

Let P,Q be two simple polygons with p and q vertices, respectively. The polygon
containment problem asks for the largest copy of Q that can be contained in P
using rotations, translations, and scaling. (In this section, all scalings are assumed
to be uniform; thus “shearing” is not permitted.) The containment problems can
be solved using the parameter space of all translated or rotated copies of P , by
computing the free space of placements that lie in Q; see Section 50.2 for further
details). The largest scale factor of P for which such a placement exists can be
found with parametric search. Table 30.5.1 collects the best results known for the
most important cases. See Section 28.10 for a description of the near-linear λs
function.

TABLE 30.5.1 Results for the polygon containment problem.

P Q TRANSFORMS RESULTS SOURCE

Convex convex translate, scale O(p+ q log q) [ST94, GP13]

Convex polygon w holes translate, scale O(pq log(pq)) [For85, LS87]

Orthogonal orthogonal translate, scale O(pq log(pq)) [Bar96]

Simple polygon w holes translate, scale O(p2q2 log(pq)) [AFH02]

Convex convex translate, rotate, scale O(pq2 log q) [AAS98]

Convex polygon w holes translate, rotate, scale O(pqλ6(pq) logc(pq) [AAS99]

Simple polygon w holes translate, rotate, scale O(p3q3 log pq) [AB88]

It has been shown recently that the decision problem—whether there exists a
transformation of Q that permits it to be contained in P—is 3SUM-hard for simple
polygons under homotheties and for convex polygons under similarities [BHP01].
Despite recent breakthroughs on the computational complexity of 3SUM [Fre15], it
is unlikely the above bounds can be pushed much below quadratic [AVWY15].

When only rigid motions are allowed and P does not contain any copy of
Q, one can seek to maximize the area of the intersection of P and a copy of Q.
Under translations, this can be done in O((p+q) log(pq)) time for two convex poly-
gons [BCD+98], and in O(p2q2) time for two simple polygons [MSW96]; an (1− ε)-
approximation is available in O(p+ q) time for every ε > 0 [HPR14]. Under trans-
lations and rotations, only approximation algorithms are known [CL13, HPR14].

INSCRIBING/CIRCUMSCRIBING POLYGONS

We now consider problems related to inscribing and circumscribing polygons. In
these problems, a polygon P is given, and the task is to find a polygon Q of
some specified number of vertices k that is inscribed in (resp. circumscribes) P
while maximizing (resp. minimizing) certain measures of Q. The common measures
include area and perimeter. See Table 30.5.2 for results concerning this class of
problems; n denotes the number of vertices of P .

Preliminary version (July 25, 2017). To appear in the Handbook of Discrete and Computational Geometry,
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TABLE 30.5.2 Inscribing and circumscribing polygons.

TYPE k P MEASURE RESULTS SOURCE

Inscribe 3 convex max area O(n logn) [KLU+17]

Inscribe k convex max area/perimeter O(kn+ n logn) [AKM+87, KLU+17]

Inscribe convex simple max area, perimeter O(n7), O(n6) [CY86]

Inscribe 3 simple max area/perimeter O(n4) [MS90]

Circumscribe 3 convex min area O(n) [OAMB86]

Circumscribe 3 convex min perimeter O(n) [BM02]

Circumscribe k convex min area O(kn+ n logn) [AP88]

NESTING POLYGONS

The nested polygon problem asks for a polygon with the smallest number of vertices
that fits between two nested polygons. More precisely, given two nested polygons
P and Q, where Q ⊂ P , find a polygon K of the least number of vertices such that
Q ⊂ K ⊂ P . Generalizing the notion of nested polygons, one can also pose the
problem of determining a polygonal subdivision of the least number of edges that
“separates” a family of polygons. Table 30.5.3 lists the results on these problems.
In this table, n is the total number of vertices in the input polygons, while k is the
number of vertices in the output polygon (or subdivision).

TABLE 30.5.3 Results for polygon nesting.

TYPES OF P,Q TYPE OF K RESULTS SOURCE

Convex-convex convex O(n log k) [ABO+89]

Simple-simple simple O(n log k) [Gho91]

Polygonal family subdivision NP-complete [Das90]

Polygonal family subdivision O(1)-Opt in O(n logn) [MS95b]

Several other results on polygon nesting have been obtained. In particular, if
the minimum-vertex nested polygon is nonconvex, then it can be found in O(n)
time [GM90]. There is also a relation here to offset polygons [BG14] (Chapter 57),
and minimum-link separators (Chapter 53).

OPEN PROBLEMS

1. Large empty convex polygons: Danzer conjectured that for every set S of n
points in the unit square [0, 1]2, there is a convex polygon in [0, 1]2 \ S of
area Ω(1/ log n). There are (1 − ε)-approximation algorithms [DHPT14] for
finding the maximum area of a convex polygon in [0, 1]2 \ S.

2. Square Peg Problem: Toeplitz [Toe11] conjectured that every Jordan curve
C in the plane contains four points that are the vertices of a square. The

Preliminary version (July 25, 2017). To appear in the Handbook of Discrete and Computational Geometry,
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conjecture has been confirmed in many important special cases, such as
piecewise linear curves (e.g., the boundaries of polygons) [Pak10] or smooth
curves [CDM14], but remains open in general; see [Mat14] for a survey.

30.6 MISCELLANEOUS

There is a rather large number of results pertaining to polygons, and it would be
impossible to cover them all in a single chapter. Having focused on a selected list of
topics so far, we now provide below an unorganized collection of some miscellaneous
results.

POLYGON MORPHING

To morph one polygon into another is to find a continuous deformation from
the source polygon to the target polygon. In a parallel morph, the deformation
maintains the orientation of every edge of the polygon. A parallel morph exists
between any two simple n-gons if their edges, taken in counterclockwise order, are
parallel and oriented the same way [GCK91]. Hershberger and Suri [GHS00] show
that a sequence of O(n log n) morphing steps suffice where each step consists of a
uniform scaling or translation of a part of the polygon.

Between two arbitrary simple n-gons in the plane, there is always a morph
in O(n) steps such that in each step all vertices move at constant speed along
parallel lines [AAB+17]. Such a morph exists, in general, between any two isotopic
straight-line embeddings of a planar graph G; the case of two simple polygons with
n vertices corresponds to G = Cn. The morph can be computed in O(n3) time;
it crucially relies on the case of morphing triangulations. Aronov et al. [ASS93]
showed that for any two simple n-gons, P and Q, there exists straight-line isotopic
triangulations (so-called compatible triangulations) using O(n2) Steiner points, and
this bound cannot be improved.

Morphing between simple polygons of fixed edge lengths (i.e., linkages) is dis-
cussed in Chapter 9.

CSG REPRESENTATION

Peterson proved that every simple polygon in two dimensions admits a representa-
tion by a Boolean formula on the halfplanes supporting the edges of the polygon.
Furthermore, the resulting formula is monotone; that is, there is no negation and
each halfplane appears exactly once. A Peterson-style formula is a “construc-
tive solid geometry” representation, in which the polygon is presented as a set of
Boolean operations; see Chapter 57. Interestingly, it turns out that not all 3D
polyhedra admit a Peterson-style formula [DGHS93].

Dobkin et al. [DGHS93] give an O(n log n) time algorithm for computing a
Petersen-style formula for a simple n-gon. Chirst et al. [CHOU10] show that every
n-gon can be expressed as a monotone Boolean formula of at most b(4n2)/5c wedges
(where a wedge is the intersection or the union of two halfplanes), and d(3n4)/5e
wedges are sometimes necessary.

Preliminary version (July 25, 2017). To appear in the Handbook of Discrete and Computational Geometry,
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POLYGON SEARCHING AND PURSUIT-EVASION

In these problems, the goal is to design search strategies for an (identifiable) object
(intruder) in a polygon. The motivation often comes from surveillance applications
in robotics. The “polygon searching” line of research typically assumes that the
object of search is stationary, the searcher “discovers” the geometry of the polygon
during its navigation (on-line model), and the goal is to minimize the search cost
(distance traveled), measured by its competitive ratio. Table 30.6.1 summarizes
some basic results on the polygon searching problems. (The parameter k in the
second to last line denotes the number of distinct initial placements of the robot
having the same visibility polygon.) The survey article [GK10] is a good starting
point for this topic.

TABLE 30.6.1 Results for polygon searching.

ENVIRONMENT GOAL COMPETITIVE RATIO SOURCE

n oriented rectangles shortest path Θ(
√
n) [BRS97]

“Street” polygon shortest path
√

2 [IKLS04]

Star-shaped polygon reach kernel ≈ 3.12 [Pal00]

Orthogonal polygon exploration randomized 5/4 [Kle94]

Simple polygon localization with min travel (k−1)-Opt [DRW98]

Simple polygon shortest watchman tour 26.5-Opt [HIKK01]

In the “pursuit-evasion” line of research, one or more searchers (pursuers) co-
ordinate to locate and capture a mobile object (intruder), and the goal is to es-
tablish necessary and sufficient conditions for a successful pursuit. The survey
article [CHI11] is a good starting point for this topic. The origin of pursuit-evasion
goes back to the celebrated “Lion-and-Man” problem, attributed to Rado in 1930s:
if a man and a lion are confined to a closed arena, and both have equal maximum
speeds, can the lion catch the man? Surprisingly, the man can evade the lion in-
definitely as shown by Besicovitch [Lit86]—the lion fails to reach the man in any
finite time although it can get arbitrarily close to him. In computational geometry,
a primary focus of research is to bound the minimum number of pursuers needed
to locate or capture the evader, as a function of environment’s complexity. The
model assumes that pursuers and the evader can move with the same maximum
speed, the geometry of the environment (polygon) is known to all players, and the
players move taking alternating turns. Two models of visibility are considered: in
the full visibility model, each player knows the position of all other players at all
times (following the convention of the cops-and-robber game in graphs) while in the
LoS visibility model, each player is limited to its line-of-sight visibility. Table 30.6.2
below summarizes the current state of the art. (The minimum feature size (MFS)
condition requires that the minimum (geodesic) distance between two vertices is
lower bounded by the distance each player can move in one step.) Open problems
include closing the gap between upper and lower bounds as well as extending the
pursuit to three-dimensional environments.
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TABLE 30.6.2 Results for pursuit-evasion in polygons.

ENVIRONMENT GOAL VISIBILITY MODEL NUMBER OF PURSUERS SOURCE

Simple polygon Locate LoS Θ(logn) [GLL+99]

Polygon with h holes Locate LoS Θ(logn+
√
h) [GLL+99]

Polygon with h holes Capture Full 3 [BKIS12]

Polygon with holes Capture LoS without MFS Ω(n2/3), O(n5/6) [KS15a]

Polygon with h holes Capture LoS with MFS O(logn+
√
h) [KS15a]

3D polyhedral surface Capture Full 3 nec., 4 suff. [KS15b]

THREE-DIMENSIONAL POLYGONS

A 3D polygon is an unknotted closed chain of segments in R3 such that adjacent
segments share an endpoint, and nonadjacent segments do not intersect. A trian-
gulation of a 3D polygon has the same combinatorial structure as a triangulation
of a planar polygon—all triangle vertices are polygon vertices, each polygon edge
is a side of one triangle, each diagonal is shared by exactly two triangles—with
the surface they define a nonself-intersecting topological disk. This disk is said to
span the polygon. Barequet et al. [BDE98] proved that determining whether a 3D
polygon has a triangulation in this sense is NP-complete. Another negative result
along the same lines is that there exist 3D polygons of n vertices that can only
be spanned by nonself-intersecting piecewise-linear disks which, when triangulated,
need 2Ω(n) triangles [HST03]. Note that here the triangle vertices are not neces-
sarily polygon vertices, i.e., Steiner points are (necessarily) used. This exponential
lower bound shows that knot triviality algorithms (which check whether a closed
chain is the trivial “unknot”) that search for such spanning disks necessarily lead
to exponential-time algorithms [Bur04, Lac15]. This unknotting problem is known
to be in NP [HLP99] and co-NP [Lac16].

OPEN PROBLEMS

1. Random Polygonizations. Is there an efficient algorithm to generate a random
polygonization for n given points in the plane?

2. 3D Peterson formulas: Characterize the 3D polyhedra that can be repre-
sented by Peterson-style formulas.

3. Computational complexity of unknot recognition: Is there a polynomial-time
algorithm for deciding whether a 3D polygon is a trivial knot.

30.7 SOURCES AND RELATED MATERIAL

SURVEYS

The survey article by Mitchell and Suri [MS95a] addresses optimization problems
in computational geometry, many involving polygons. Keil surveys polygon decom-
position algorithms in [Kei00]. Link distance problems are surveyed in [MSD00].
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