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INTRODUCTION

Tilings of surfaces and packings of space have interested artisans and manufactur-
ers throughout history; they are a means of artistic expression and lend economy
and strength to modular constructions. Today scientists and mathematicians study
tilings because they pose interesting mathematical questions and provide mathe-
matical models for such diverse fields as the molecular anatomy of crystals, cell
packings of viruses, n-dimensional algebraic codes, “nearest neighbor” regions for a
set of discrete points, meshes for computational geometry, CW-complexes in topol-
ogy, the self-assembly of nano-structures, and the study of aperiodic order.

The world of tilings is too vast to discuss in a chapter, or even in a gargantuan
book. Even such basic questions as: What bodies can tile space? In what ways do

they tile? are intractable unless the tiles and tilings are subject to constraints, and
even then the subject is unmanageably large.

In this chapter, due to space limitations, we restrict ourselves, for the most
part, to tilings of unbounded spaces. Be aware that this is a severe restriction.
Tilings of the sphere and torus, for example, are also subtle and important.

In Section 3.1 we present some general results that are fundamental to the sub-
ject as a whole. Section 3.2 addresses tilings with congruent tiles. In Section 3.3 we
discuss the classical subject of periodic tilings, which continues to be an active field
of research. Section 3.4 concerns nonperiodic and aperiodic tilings. We conclude
with a very brief description of some kinds of tilings not considered here.

3.1 GENERAL CONSIDERATIONS

In this section we define terms that will be used throughout the chapter and state
some basic results. Taken together, these results state that although there is no
algorithm for deciding which bodies can tile, there are criteria for deciding the
question in certain cases. We can obtain some quantitative information about their
tilings in particularly well-behaved cases.

Like many ideas that seem simple in life, it is complicated to give a precise
mathematical definition of the notion of tiling. In particular this relates to the
hard problem of defining the general notion of shape. Beyond the simple examples
such as squares and circles there are shapes with holes, or fractal boundary, the
latter allowing a shape of finite volume to have an infinite number of holes. As
many of these strange examples turn up as examples of tilings, the definition needs
to include them. We therefore define a body to be a compact subset of a manifold
S ⊂ E

n that is the closure of its interior. A tiling is then a division of S into a
countable (finite or infinite) number of bodies.
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GLOSSARY

Body: A compact subset (of a manifold S ⊂ E
n) that is the closure of its

(nonempty) interior.

Tiling (of S): A decomposition of S into a countable number of n-dimensional
bodies whose interiors are pairwise disjoint. In this context, the bodies are also
called n-cells and are the tiles of the tiling (see below). Synonyms: tessellation,
parquetry (when n = 2), honeycomb (for n ≥ 2).

Tile: A body that is an n-cell of one or more tilings of S. To say that a body
tiles a region R ⊆ S means that R can be covered exactly by congruent copies
of the body without gaps or overlaps.

Locally finite tiling: Every n-ball of finite radius in S meets only finitely many
tiles of the tiling.

Prototile set (for a tiling T of S): A minimal subset of tiles in T such that
each tile in the tiling T is the congruent copy of one of those in the prototile set.
The tiles in the set are called prototiles and the prototile set is said to admit T .

k-face (of a tiling): An intersection of at least n− k + 1 tiles of the tiling that
is not contained in a j-face for j < k. (The 0-faces are the vertices and 1-faces
the edges; the (n−1)-faces are simply called the faces of the tiling.)

Cluster and Patch (in a tiling T ): The set of bodies in a tiling T that intersect
a compact subset of K ⊂ S is a cluster. The set is a patch if K can be chosen to
be convex. See Figure 3.1.1.

FIGURE 3.1.1

Three clusters in a tiling of the plane by “chairs.” Two of
these clusters are patches.

Normal tiling: A tiling in which (i) each prototile is homeomorphic to an n-ball,
and (ii) the prototiles are uniformly bounded (there exist r > 0 and R > 0 such
that each prototile contains a ball of radius r and is contained in a ball of radius
R). It is technically convenient to include a third condition: (iii) the intersection
of every pair of tiles is a connected set. (A normal tiling is necessarily locally
finite.)

Face-to-face tiling (by polytopes): A tiling in which the faces of the tiling
are also the (n−1)-dimensional faces of the polytopes. (A face-to-face tiling by
convex polytopes is also k-face-to-k-face for 0 ≤ k ≤ n− 1.) In dimension 2, this
is an edge-to-edge tiling by polygons, and in dimension 3, a face-to-face tiling
by polyhedra.
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Dual tiling: Two tilings T and T ∗ are dual if there is an incidence-reversing
bijection between the k-faces of T and the (n−k)-faces of T ∗ (see Figure 3.1.2).

Voronoi (Dirichlet) tiling: A tiling whose tiles are the Voronoi cells of a dis-
crete set Λ of points in S. The Voronoi cell of a point p ∈ Λ is the set of all points
in S that are at least as close to p as to any other point in Λ (see Chapter 27).

FIGURE 3.1.2

A Voronoi tiling (solid lines) and its Delaunay dual
(dashed lines).

Delaunay (or Delone) tiling: A face-to-face tiling by convex circumscribable
polytopes (i.e., the vertices of each polytope lie on a sphere).

Isometry: A distance-preserving self-map of S.

Symmetry group (of a tiling): The set of isometries of S that map the tiling
to itself.

MAIN RESULTS

1. The Undecidability Theorem. There is no algorithm for deciding whether
or not an arbitrary set of bodies admits a tiling of E2 [Ber66]. This was initially
proved by Berger in the context of Wang tiles, squares with colored edges (the
colors can be replaced by shaped edges to give a result for tiles). Berger’s result
showed that any attempted algorithm would not work (would run forever giving
no answer) for some set of Wang tiles. This set can be arbitrarily large. The
result was improved by Ollinger [Oll09] to show that any attempted algorithm
could be broken by a set of at most 5 polyominoes.

2. The Extension Theorem (for E
n). Let A be any finite set of bodies, each

homeomorphic to a closed n-ball. If A tiles regions that contain arbitrarily
large n-balls, then A admits a tiling of En. (These regions need not be nested,
nor need any of the tilings of the regions be extendable!) The proof for n = 2
in [GS87] extends to E

n with minor changes.

3. The Normality Lemma (for E
n). In a normal tiling, the ratio of the number

of tiles that meet the boundary of a spherical patch to the number of tiles in
the patch tends to zero as the radius of the patch tends to infinity. In fact, a
stronger statement can be made: For s ∈ S let t(r, s) be the number of tiles in
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the spherical patch P (r, s). Then, in a normal tiling, for every x > 0,

lim
r→∞

t(r + x, s)− t(r, s)

t(r, s)
= 0.

The proof for n = 2 in [GS87] extends to E
n with minor changes.

4. Euler’s Theorem for tilings of E
2. Let T be a normal tiling of E2, and

let t(r, s), e(r, s), and v(r, s) be the numbers of tiles, edges, and vertices, re-
spectively, in the circular patch P (r, s). Then if one of the limits e(T ) =
limr→∞ e(r, s)/t(r, s) or v(T ) = limr→∞ v(r, s)/t(r, s) exists, so does the other,
and v(T ) − e(T ) + 1 = 0. Like Euler’s Theorem for Planar Maps, on which
the proof of this theorem is based, this result can be extended in various ways
[GS87].

5. Voronoi and Delaunay Duals. Every Voronoi tiling has a Delaunay dual
and conversely (see Figure 3.1.2) [Vor09].

OPEN PROBLEM

1. Is there an algorithm to decide whether any set of at most four bodies admits
a tiling in E

n? The question can also be asked for other spaces. The tiling
problem for the hyperbolic plane was shown to be undecidable independently
by Kari and Morgenstern [Kar07, Mar08].

3.2 TILINGS BY ONE TILE

To say that a body tiles E
n usually means that there is a tiling all of whose tiles

are congruent copies of this body. The artist M.C. Escher has demonstrated how
intricate such tiles can be even when n = 2. But in higher dimensions the simplest
tiles—for example, cubes—can produce surprises, as the counterexample to Keller’s
conjecture attests (see below).

GLOSSARY

Monohedral tiling: A tiling with a single prototile.

r-morphic tile: A prototile that admits exactly r distinct (non-superposable)
monohedral tilings. Figure 3.2.1 shows a 3-morphic tile and its three tilings, and
Figure 3.2.2 shows a 1-morphic tile and its tiling.

k-rep tile: A body for which k copies can be assembled into a larger, similar
body. (Or, equivalently, a body that can be partitioned into k congruent bodies,
each similar to the original.) More formally, a k-rep tile is a compact set A1 in
S with nonempty interior such that there are sets A2, . . . , Ak congruent to A1

that satisfy
IntAi ∩ IntAj = ∅

for all i 6= j and A1 ∪ .... ∪Ak = g(A1), where g is a similarity mapping.
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FIGURE 3.2.1

A trimorphic tile.

Transitive action: A group G is said to act transitively on a nonempty set
{A1, A2, . . .} if the set is an orbit for G. (That is, for every pair Ai, Aj of
elements of the set, there is a gij ∈ G such that gijAi = Aj .)

Isohedral (tiling): A tiling whose symmetry group acts transitively on its tiles.

Anisohedral tile: A prototile that admits monohedral tilings but no isohedral
tilings. In Figure 3.2.2, the prototile admits a unique nonisohedral tiling; the
black tiles are each surrounded differently, from which it follows that no isometry
can map one to the other (while mapping the tiling to itself). This tiling is
periodic, however; see Section 3.3.

FIGURE 3.2.2

An anisohedral tile. This tile was the fif-
teenth type of pentagon found to tile the plane
[MMVD17].

Corona (of a tile P in a tiling T ): Define C0(P ) = P . Then Ck(P ), the k th
corona of P , is the set of all tiles Q ∈ T for which there exists a path of tiles
P = P0, P1, . . . , Pm = Q with m ≤ k in which Pi ∩ Pi+1 6= ∅, i = 0, 1, . . . ,m− 1.

Lattice: The group of integral linear combinations of n linearly independent vec-
tors in S. A point orbit of a lattice, often called a point lattice, is a particular
case of a regular system of points (see Chapter 64).

Translation tiling: A monohedral tiling of S in which every tile is a translate
of a fixed prototile. See Figure 3.2.3.

Lattice tiling: A monohedral tiling on whose tiles a lattice of translation vec-
tors acts transitively. Figure 3.2.3 is not a lattice tiling since it is invariant by
multiples of just one vector.
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FIGURE 3.2.3

This translation non-lattice tiling is nonperiodic but not aperi-
odic.

n-parallelotope: A convex n-polytope that tiles En by translation.

Belt (of an n-parallelotope): A maximal subset of parallel (n−2)-faces of a
parallelotope in E

n. The number of (n−2)-faces in a belt is its length.

Center of symmetry (for a set A in E
n): A point a ∈ A such that A is invari-

ant under the mapping x 7→ 2a− x; the mapping is called a central inversion
and an object that has a center of symmetry is said to be centrosymmetric.

Stereohedron: A convex polytope that is the prototile of an isohedral tiling. A
Voronoi cell of a regular system of points is a stereohedron.

Linear expansive map: A linear transformation all of whose eigenvalues have
modulus greater than one.

MAIN RESULTS

1. The Local Theorem. Let T be a monohedral tiling of S, and for P ∈ T , let
Si(P ) be the subgroup of the symmetry group of P that leaves invariant Ci(P ),
the i th corona of P . T is isohedral if and only if there exists an integer k > 0 for
which the following two conditions hold: (a) for all P ∈ T , Sk−1(P ) = Sk(P )
and (b) for every pair of tiles P, P ′ in T , there exists an isometry γ such that
γ(P ) = P ′ and γ(Ck(P )) = Ck(P ′). In particular, if P is asymmetric, then T
is isohedral if and only if condition (b) holds for k = 1 [DS98].

2. A convex polytope is a parallelotope if and only if it is centrosymmetric, its
faces are centrosymmetric, and its belts have lengths four or six. First proved
by Venkov, this theorem was rediscovered independently by McMullen [Ven54,
McM80]. There are two combinatorial types of parallelotopes in E

2 and five in
E
3.

3. The number |F | of faces of a convex parallelotope in E
n satisfies Minkowski’s

inequality, 2n ≤ |F | ≤ 2(2n − 1). Both upper and lower bounds are realized in
every dimension [Min97].

4. The number of faces of an n-dimensional stereohedron in E
n is bounded. In

fact, if a is the number of translation classes of the stereohedron in an isohedral
tiling, then the number of faces is at most the Delaunay bound 2n(1 + a) − 2
[Del61].

5. Anisohedral tiles exist in E
n for every n ≥ 2 [GS80]. (The first example, given

for n = 3 by Reinhardt [Rei28], was the solution to part of Hilbert’s 18th
problem.) H. Heesch gave the first example for n = 2 [Hee35] and R. Kershner
the first convex examples [Ker68].

6. Every n-parallelotope admits a lattice tiling. However, for n ≥ 3, there are
nonconvex tiles that tile by translation but do not admit lattice tilings [SS94].

Preliminary version (August 11, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 3: Tilings 73

7. A lattice tiling of En by unit cubes must have a pair of cubes sharing a whole
face [Min07, Haj42]. However, a famous conjecture of Keller, which stated that
for every n, any tiling of En by congruent cubes must contain at least one pair
of cubes sharing a whole face, is false: for n ≥ 8, there are translation tilings
by unit cubes in which no two cubes share a whole face [LS92].

8. Every linear expansive map that transforms the lattice Z
n of integer vectors

into itself defines a family of k-rep tiles; these tiles, which usually have fractal
boundaries, admit lattice tilings [Ban91].

OPEN PROBLEMS

1. Which convex n-polytopes in E
n are prototiles for monohedral tilings of En?

This is unsolved for all n ≥ 2 (see [GS87, Sch78b, MMVD17] for the case
n = 2). In July 2017, M. Rao announced that the list of 15 convex pentagon
types that tile is complete; the proof had not been verified at the time of
writing [Rao17]. The most recent addition to the list is shown in Figure 3.2.2.
For higher dimensions, little is known; it is not even known which tetrahedra
tile E

3 [GS80, Sen81].

2. Voronoi’s conjecture: Every convex parallelotope in E
n is affinely equivalent

to the Voronoi cell of a lattice in E
n. The conjecture has been proved for n ≤ 4,

for the case when the parallelotope is a zonotope, and for certain other special
cases [Erd99, Mag15].

FIGURE 3.2.4

A 3-corona tile. (It cannot be surrounded by a fourth
corona.) 4-corona and 5-corona tiles also exist.

3. Heesch’s Problem. Is there an integer kn, depending only on the dimension
n of the space S, such that if a body A can be completely surrounded kn times
by tiles congruent to A, then A is a prototile for a monohedral tiling of S?
(A is completely surrounded once if A, together with congruent copies that
have nonempty intersection with A, tile a patch containing A in its interior.)
When S = E

2, k2 > 5. The body shown in Figure 3.2.4 can be completely
surrounded three times but not four. William Rex Marshall and, independently,
Casey Mann, found 4-corona tiles, and Mann 5-corona tiles [Man04]. Michael
DeWeese has found hexagons with generalized matching rules having Heesch
numbers 1 through 9 and 11 [MT16]. This problem is unsolved for all n ≥ 2.
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4. Keller’s conjecture is true for n ≤ 6 and false for n ≥ 8 (see Result 7 above).
The case n = 7 is still open.

5. Find a good upper bound for the number of faces of an n-dimensional stereohe-
dron. Delaunay’s bound, stated above, is evidently much too high; for example,
it gives 390 as the bound in E

3, while the maximal known number of faces of
a three-dimensional stereohedron (found by P. Engel [Eng81]) is 38.

6. For monohedral (face-to-face) tilings by convex polytopes there is an integer kn,
depending only on the dimension n of S, that is an upper bound for the constant
k in the Local Theorem [DS98]. Find the value of this kn. For the Euclidean
plane E

2 it is known that k2 = 1 (convexity of the tiles is not necessary)
[SD98], but for the hyperbolic plane, k2 ≥ 2 [Mak92]. For E3, it is known that
2 ≤ k3 ≤ 5.

3.3 PERIODIC TILINGS

Periodic tilings have been studied intensely, in part because their applications range
from ornamental design to crystallography, and in part because many techniques
(algebraic, geometric, and combinatorial) are available for studying them.

GLOSSARY

Periodic tiling of E
n: A tiling, not necessarily monohedral, whose symmetry

group contains an n-dimensional lattice. This definition can be adapted to in-
clude “subperiodic” tilings (those whose symmetry groups contain 1 ≤ k < n
linearly independent vectors) and tilings of other spaces (for example, cylinders).
Tilings in Figures 3.2.1, 3.2.2, 3.3.1, and 3.3.3 are periodic.

Fundamental domain (generating region) for a periodic tiling: In the
general case of a group acting on a space, a fundamental domain is a subset of
the space containing exactly one point from each orbit. It generally requires that
the subset be connected and have some restrictions on its boundary. In the case
of tilings a fundamental domain can be a (usually connected) minimal subset of
the set of tiles that generates the whole tiling under the symmetry group. For
example, a fundamental domain may be a tile (Figure 3.2.1), a subset of a single
tile (Figure 3.3.1), or a subset of tiles (three shaded tiles in Figure 3.2.2).

Lattice unit (or translation unit) for a periodic tiling: A (usually con-
nected) minimal region of the tiling that generates the whole tiling under the
translation subgroup of the symmetry group. A lattice unit can be a single tile
or contain several tiles. Figure 3.3.1 has a 3-tile lattice unit; Figure 3.2.2 has a
12-tile lattice unit (outlined).

Orbifold (of a tiling of S): An orbifold is a generalization of a manifold to
allow singularities. They are usually formed by folding up a space by a dis-
crete symmetry group, and they are therefore a powerful tool to study periodic
patterns. For the plane this is described in [CBGS08].

k-isohedral (tiling): A tiling whose tiles belong to k transitivity classes under
the action of its symmetry group. Isohedral means 1-isohedral (Figures 3.3.1
and 3.3.3). The tiling in Figure 3.2.2 is 3-isohedral.
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Equitransitive (tiling by polytopes): A tiling in which each combinatorial class
of tiles forms a single transitivity class under the action of the symmetry group
of the tiling.

k-isogonal (tiling): A tiling whose vertices belong to k transitivity classes under
the action of its symmetry group. Isogonal means 1-isogonal.

k-uniform (tiling of a 2-dimensional surface): A k-isogonal tiling by regular
polygons.

Uniform (tiling for n > 2): An isogonal tiling with congruent edges and uni-
form faces.

Flag of a tiling (of S): An ordered (n+1)-tuple (X0, X1, ..., Xn), with Xn a
tile and Xk a k-face for 0 ≤ k ≤ n− 1, in which Xi−1 ⊂ Xi for i = 1, . . . , n.

Regular tiling (of S): A tiling T whose symmetry group is transitive on the flags
of T . (For n > 2, these are also called regular honeycombs.) See Figure 3.3.3.

k-colored tiling: A tiling in which each tile has a single color, and k different
colors are used. Unlike the case of map colorings, in a colored tiling adjacent
tiles may have the same color.

Perfectly k-colored tiling: A k-colored tiling for which each element of the
symmetry group G of the uncolored tiling effects a permutation of the colors.
The ordered pair (G,Π), where Π is the corresponding permutation group, is
called a k-color symmetry group.

CLASSIFICATION OF PERIODIC TILINGS

There is a variety of notations for classifying the different “types” of tilings and
tiles. Far from being merely names by which to distinguish types, these notations
tell us the investigators’ point of view and the questions they ask. Notation may
tell us the global symmetries of the tiling, or how each tile is surrounded, or the
topology of its orbifold. Notation makes possible the computer implementation of
investigations of combinatorial questions about tilings.

Periodic tilings are classified by symmetry groups and, sometimes, by their
skeletons (of vertices, edges, ..., (n−1)-faces). The groups are known as crystal-
lographic groups; up to isomorphism, there are 17 in E

2, 219 in E
3, and 4894 in

E
4. For E2 and E

3, the most common notation for the groups has been that of the
International Union of Crystallography (IUCr) [Hah83]. This is cross-referenced
to earlier notations in [Sch78a]. Recently developed notations include Delaney-
Dress symbols [Dre87] and orbifold notation for n = 2 [Con92, CH02] and for
n = 3 [CDHT01, CBGS08].

GLOSSARY

International symbol (for periodic tilings of E
2 and E

3): Encodes lattice
type and particular symmetries of the tiling. In Figure 3.3.1, the lattice unit
diagram at the right encodes the symmetries of the tiling and the IUCr symbol
p31m indicates that the highest-order rotation symmetry in the tiling is 3-fold,
that there is no mirror normal to the edge of the lattice unit, and that there is
a mirror at 60◦ to the edge of the lattice unit. These symbols are augmented to
denote symmetry groups of perfectly 2-colored tilings.
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FIGURE 3.3.1

An isohedral tiling with standard IUCr
lattice unit in dotted outline; a half-leaf
is a fundamental domain. The classi-
fication symbols are for the symmetry
group of the tiling.

p31m

International Symbol

3*3

Orbifold Symbol

Delaney-Dress symbol (for tilings of Euclidean, hyperbolic, or spherical
space of any dimension): Associates an edge-colored and vertex-labeled
graph derived from a chamber system (a formal barycentric subdivision) of
the tiling. In Figure 3.3.2, the nodes of the graph represent distinct triangles
A,B,C,D in the chamber system, and colored edges (dashed, thick, or thin)
indicate their adjacency relations. Numbers on the nodes of the graph show the
degree of the tile that contains that triangle and the degree of the vertex of the
tiling that is also a vertex of that triangle.

FIGURE 3.3.2

A chamber system of the tiling in Fig-
ure 3.3.1 determines the graph that is
its Delaney-Dress symbol.

D D

A

D

C B

A

B B

A
4;6

B

C C

A

C

DA

B
4;3

C
4;3

D
4;6

Chamber System

Delaney-Dress Symbol

Orbifold notation (for symmetry groups of tilings of 2-dimensional sur-
faces of constant curvature): Encodes properties of the orbifold induced
by the symmetry group of a periodic tiling of the Euclidean plane or hyperbolic
plane, or a finite tiling of the surface of a sphere; introduced by Conway and
Thurston. In Figure 3.3.1, the first 3 in the orbifold symbol 3*3 for the symme-
try group of the tiling indicates there is a 3-fold rotation center (gyration point)
that becomes a cone point in the orbifold, while *3 indicates that the boundary
of the orbifold is a mirror with a corner where three mirrors intersect.

See Table 3.3.1 for the IUCr and orbifold notations for E2.

Isohedral tilings of E2 fall into 11 combinatorial classes, typified by the Laves
nets (Figure 3.3.3). The Laves net for the tiling in Figure 3.3.1 is [3.6.3.6]; this
gives the vertex degree sequence for each tile. In an isohedral tiling, every tile
is surrounded in the same way. Grünbaum and Shephard provide an incidence
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TABLE 3.3.1 IUCr and orbifold notations for the 17 symmetry groups of periodic tilings of E2.

IUCr ORBIFOLD IUCr ORBIFOLD

p1 o or o1 p3 333

pg ×× or 1×× p31m 3*3

cm *× or 1*× p3m1 *333

pm ** or 1** p4 442

p2 2222 p4g 4*2

pgg 22× p4m *442

pmg 22* p6 632

cmm 2*22 p6m *632

pmm *2222

FIGURE 3.3.3

The 11 Laves nets. The three regular tilings of E
2 are at the top of the illustration.
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symbol for each isohedral type by labeling and orienting the edges of each tile
[GS79]. Figure 3.3.4 gives the incidence symbol for the tiling in Figure 3.3.1. The
tile symbol a+a−b+b− records the cycle of edges of a tile and their orientations
with respect to the (arrowed) first edge (+ indicates the same, − indicates opposite
orientation). The adjacency symbol b−a− records for each different letter edge of a
single tile, beginning with the first, the edge it abuts in the adjacent tile and their
relative orientations (now − indicates same, + opposite).

FIGURE 3.3.4

Labeling and orienting the edges of
the isohedral tiling in Figure 3.3.1
determines its Grünbaum-Shephard in-
cidence symbol.

a b

b

[a+a-b+b-;b-a-]

b

b a

aa

Grünbaum-Shephard 

Incidence Symbol

These symbols can be augmented to adjacency symbols to denote k-color sym-
metry groups. Earlier, Heesch devised signatures for the 28 types of tiles that could
be fundamental domains of isohedral tilings without reflection symmetry [HK63];
this signature system was extended in [BW94].

MAIN RESULTS

1. If a finite prototile set of polygons admits an edge-to-edge tiling of the plane
that has translational symmetry, then the prototile set also admits a periodic
tiling [GS87].

2. The number of symmetry groups of periodic tilings in E
n is finite (this is a

famous theorem of Bieberbach [Bie10] that partially solved Hilbert’s 18th prob-
lem: see also Chapter 64); the number of symmetry groups of corresponding
tilings in hyperbolic n-space, for n = 2 and n = 3, is infinite.

3. Using their classification by incidence symbols, Grünbaum and Shephard proved
there are 81 classes of isohedral tilings of E2, 93 classes if the tiles are marked
(that is, they have decorative markings to break the symmetry of the tile shape)
[GS77]. There is an infinite number of classes of isohedral tilings of En, n > 2.

4. Every k-isohedral tiling of the Euclidean plane, hyperbolic plane, or sphere can
be obtained from a (k−1)-isohedral tiling by a process of splitting (splitting
an asymmetric prototile) and gluing (amalgamating two or more equivalent
asymmetric tiles adjacent in the tiling into one new tile) [Hus93]; there are 1270
classes of normal 2-isohedral tilings and 48,231 classes of normal 3-isohedral
tilings of E2.

5. Classifying isogonal tilings in a manner analogous to isohedral ones, Grünbaum
and Shephard have shown [GS78] that there are 91 classes of normal isogonal
tilings of E2 (93 classes if the tiles are marked).
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6. For every k, the number of k-uniform tilings of E
2 is finite. There are 11

uniform tilings of E2 (also called Archimedean, or semiregular), of which 3
are regular. The Laves nets in Figure 3.3.3 are duals of these 11 uniform tilings
[GS87]. There are 28 uniform tilings of E3 [Grü94] and 20 2-uniform tilings
of E2 [Krö69]; see also [GS87]. In the hyperbolic plane, uniform tilings with
vertex valence 3 and 4 have been classified [GS79].

7. There are finitely many regular tilings of En (three for n = 2, one for n = 3,
three for n = 4, and one for each n > 4) [Cox63]. There are infinitely many
normal regular tilings of the hyperbolic plane, four of hyperbolic 3-space, five
of hyperbolic 4-space, and none of hyperbolic n-space if n > 4 [Sch83, Cox54].

8. If two orbifold symbols for a tiling of the Euclidean or hyperbolic plane are
the same except for the numerical values of their digits, which may differ by a
permutation of the natural numbers, then the number of k-isohedral tilings for
each of these orbifold types is the same [BH96].

9. There is a one-to-one correspondence between perfect k-colorings of a tiling
whose symmetry group G acts on it freely and transitively, and the subgroups
of index k of G. See [Sen79].

OPEN PROBLEMS

1. Conjecture: Every convex pentagon that tiles E2 admits a k-isohedral tiling for
some k ≤ 3. Michaël Rao announced a proof of this conjecture in July 2017
depending on an exhaustive computer search; the proof had not been verified
at the time of writing [Rao17].

2. Enumerate the uniform tilings of En for n > 3.

3. Delaney-Dress symbols and orbifold notations have made progress possible on
the classification of k-isohedral tilings in all three 2-dimensional spaces of con-
stant curvature; extend this work to higher-dimensional spaces.

3.4 NONPERIODIC TILINGS

Nonperiodic tilings are found everywhere in nature, from cracked glazes to biological
tissues to crystals. In a remarkable number of cases, such tilings exhibit strong
regularities. For example, many nonperiodic tilings repeat on increasingly larger
scales. An even larger class of tilings are those called repetitive, in which every
bounded configuration appearing anywhere in the tiling is repeated infinitely many
times throughout it.

Aperiodic prototype sets are particularly interesting. They were first intro-
duced to prove the Undecidability Theorem (Section 3.1). Later, after Penrose
found pairs of aperiodic prototiles (see Figure 3.4.1), they became popular in recre-
ational mathematical circles.

The deep mathematical properties of Penrose tilings were first studied by Pen-
rose, Conway, de Bruijn, and others. After the discovery of quasicrystals in 1984,
aperiodic tilings became the focus of intense research. We present only the basic
ideas of this rapidly developing subject here.
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FIGURE 3.4.1

Patches of Penrose tilings of the plane. On the left the tiling by kites and darts, but note that these
two unmarked tiles can tile the plane periodically. This is fixed on the right, where the matching
rules that ensure nonperiodicity are enforced by the shapes of the edges. As a result the two shapes
from the right-hand tiling constitute an aperiodic prototile set.

GLOSSARY

Nonperiodic tiling: A tiling with no translation symmetry.

Aperiodic tiling: A nonperiodic tiling that does not contain arbitrarily large
periodic patches.

Aperiodic prototile set: A prototile set that admits only aperiodic tilings; see
Figure 3.4.1.

Relatively dense configuration: A configuration C of tiles in a tiling for which
there exists a radius rC such that every ball of radius rC in the tiling contains a
copy of C.

Repetitive: A tiling in which every bounded configuration of tiles is relatively
dense in the tiling.

Local isomorphism class: A family of tilings such that every bounded config-
uration of tiles that appears in any of them appears in all of the others. (For
example, the uncountably many Penrose tilings with the same prototile set form
a single local isomorphism class.)

Matching rules: A list of rules for fitting together the prototiles of a given
prototile set.

Mutually locally derivable tilings: Two tilings are mutually locally derivable
if the tiles in either tiling can, through a process of decomposition into smaller
tiles, or regrouping with adjacent tiles, or a combination of both processes, form
the tiles of the other (see Figure 3.4.2).

The first set of aperiodic prototiles numbered 20,426. After Penrose found his
set of two, the question naturally arose, does there exist an “einstein,” that is, a

Preliminary version (August 11, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 3: Tilings 81

FIGURE 3.4.2

The Penrose tilings by kites and darts and by rhombs are mutually locally derivable.

single tile that tiles only nonperiodically? Interesting progress was made by Socolar
and Taylor [ST11], who found an einstein with several connected components. Rao’s
announcement of the classification of convex monohedral tiles (Section 3.2) implies
that einsteins cannot be convex.

The next two sections discuss the best-known families of nonperiodic tilings.

3.4.1 SUBSTITUTION TILINGS

GLOSSARY

Substitution tiling: A tiling whose tiles can be composed into larger tiles, called
level-one tiles, whose level-one tiles can be composed into level-two tiles, and
so on ad infinitum. In some cases it is necessary to partition the original tiles
before composition.

Self-similar tiling: A substitution tiling for which the larger tiles are copies of
the prototiles (all enlarged by a constant expansion factor λ). k-rep tiles are the
special case when there is just one prototile (Figure 3.1.1).

Unique composition property A substitution tiling has the unique composition
property if j-level tiles can be composed into (j+1)-level tiles in only one way
(j = 0, 1, . . .).

Inflation rule (for a substitution tiling): The equations T ′

i = mi1T1 ∪ . . . ∪
mikTk, i = 1, ..., k, that describe the numbers mij of each prototile Tj in the
next higher level prototile T ′

i . These equations define a linear map whose matrix
has i, j entry mij .

Pisot number: A Pisot number is a real algebraic integer greater than 1 such
that all its Galois conjugates are less than 1 in absolute value. A Pisot number
is called a unit if its inverse is also an algebraic integer.
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MAIN RESULTS

1. Tilings with the unique composition property are nonperiodic (the proof given
in [GS87] for n = 2 extends immediately to all n). Conversely, nonperiodic
self-similar tilings have the unique composition property [Sol98].

2. Mutual local derivability is an equivalence relation on the set of all tilings. The
existence or nonexistence of hierarchical structure and matching rules is a class
property [KSB93].

3. The prototile set of every substitution tiling can be equipped with matching
rules that force the hierarchical structure [GS98].

3.4.2 PROJECTED TILINGS

The essence of the “cut-and-project” method for constructing tilings is visible in
the simplest example. Let L be the integer lattice in E

2 and T the tiling of E2 by
squares whose vertices are the points of L. Let V be the dual Voronoi tiling—in
this example, the Voronoi tiles are squares centered at the points of L. Let E
be any line in E

2 of slope α, where 0 < α < π/2, and let F be a “face” of V of
dimension k, k ∈ {0, 1, 2}. If E ∩F 6= ∅, project the corresponding 2− k face of T .
(Thus, if E cuts a face of V of dimension 2, project the point x ∈ L at its center
onto E; if E cuts the edge of V joining two faces with centers x, y, project the edge
of T with endpoints x and y.) This gives a tiling of E by line segments which are
projections of a “staircase” whose runs and rises are consecutive edges of T . The
tiling is nonperiodic if and only if α is irrational. Note that the construction does
not guarantee that the tiling possesses substitution or matching rules, though for
certain choices of L and α it may.

FIGURE 3.4.3

A lattice L with its Voronoi tiling. We
connect successive lattice points whose
cells are cut by the line E to create
a “staircase.” Projecting the staircase
onto the line, we get a tiling by line
segments of two lengths (the projections
of the horizontal and vertical line seg-
ments, respectively).

E

GLOSSARY

Canonical projection method for tilings: Let L be a lattice in E
n, V its

Voronoi tiling, and T the dual Delaunay tiling. Let E be a translate of a
subset of En of dimensions m < n, and let F be a “face” of V of dimension k,
k ∈ {0, . . . , n}. If E ∩ F 6= ∅, project the corresponding n− k face of T onto E.
Thus, if E cuts a face of V , project the point x ∈ L at its center onto E, and so
forth.

Cut-and-project method for tilings: A more general projection method of
which the canonical is a special case (see below).
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MAIN RESULTS

• A canonically projected tiling is nonperiodic if and only if |E ∩ L| ≤ 1.

• The canonical projection method is equivalent to the following: Let L be a
lattice in E

n with Voronoi tiling V , and let D be the dual Delaunay tiling.
Let E be a translate of a k-dimensional subspace and E⊥ its the orthogonal
complement, and V⊥ be the projection of V onto E⊥. The elements of V that
are projected onto E are those for which the dual element projects into V⊥,
V⊥ is the window of the projection.

• The canonical projection method is a special case of the more general cut-
and-project method [BG13], in which the window and possibly E are modified
in any of several possible ways (e.g., the window may be larger, smaller,
discontinuous, fractal).

• In [Har04], Harriss determined which canonically projected tilings admit a
substitution rule, and gives a method for constructing any substitution rule
that generates the tiling.

FIGURE 3.4.4

An Ammann-Beenker tiling; the relative frequencies of the two marked vertex stars are the (relative)
areas of the marked regions in the octagon.

Some of the best known projected nonperiodic tilings are listed in Table 3.4.1
(see [Sen96]). In all these cases, the lattice L is the standard integer lattice and the
window Ω is a projection of a hypercube (the Voronoi cell of L). The subspace E is
translated so that it does not intersect any faces of V of dimension less than n− k
(thus only a subset of the faces of the Delaunay tiling D of dimensions 0, 1, . . . , k
will be projected). All of these tilings are substitution tilings.
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TABLE 3.4.1 Canonically projected nonperiodic tilings.

TILING FAMILY L E

Fibonacci tiling I2 line with slope 1/τ (τ = (1 +
√
5)/2)

Ammann-Beenker tiling I4 plane stable under 8-fold rotation

Danzer’s Tetrahedra tiling D6 plane stable under 5-fold rotation

Danzer 3D tiling I6 3-space stable under icosahedral rotation group

The relative frequencies of the vertex configurations of a canonically projected
tiling are determined by the window: they are the ratios of volumes of the inter-
sections of the projected faces of V (0) [Sen96]).

OPEN PROBLEMS

The Pisot conjecture states that, for any 1 − d substitution with a unit Pisot
scaling factor, there is a window that makes it a projection tiling. This difficult
conjecture can be formulated in many ways [AH14, KLS15]. The Rauzy fractals
(see Figure 3.4.5) show how complex the windows can get (especially the right-hand
window).

FIGURE 3.4.5

Rauzy fractals, named for their discoverer [Rau82], give the projection windows for three-letter
substitution rules, in this case (a → ab, b → ac, c → a), (a → bc, b → c, c → a), (a → ab, b →

c, c → a). The windows can become very complicated, as seen on the right. This gives a sense of
the complexity of the Pisot conjecture, as it states that these shapes will always be the closure of
their interior.
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3.5 OTHER TILINGS, OTHER METHODS

There is a vast literature on tilings (or dissections) of bounded regions (such as rect-
angles and boxes, spheres, polygons, and polytopes). This and much of the recre-
ational literature focuses on tilings whose prototiles are of a particular type, such as
rectangles, clusters of n-cubes (polyominoes—see Chapter 14—and polycubes) or
n-simplices (polyiamonds in E

2), or tilings by recognizable animate figures. In the
search for new ways to produce tiles and tilings, both mathematicians (such as P.A.
MacMahon [Mac21]) and amateurs (such as M.C. Escher [Sch90]) have contributed
to the subject. Recently the search for new shapes that tile a given bounded re-
gion S has produced knotted tiles, toroidal tiles, and twisted tiles. Kuperberg and
Adams have shown that for any given knot K, there is a monohedral tiling of E3 (or
of hyperbolic 3-space, or of spherical 3-space) whose prototile is a solid torus that is
knotted as K. Also, Adams has shown that, given any polyhedral submanifold M
with one boundary component in E

n, a monohedral tiling of En can be constructed
whose prototile has the same topological type as M [Ada95].

Other directions of research seek to broaden the definition of prototile set: in
new contexts, the tiles in a tiling may be homothetic or topological (rather than
congruent) images of tiles in a prototile set. A tiling of En by polytopes in which
every tile is combinatorially isomorphic to a fixed convex n-polytope (the combi-
natorial prototile) is said to be monotypic. It has been shown that in E

2, there
exist monotypic face-to-face tilings by convex n-gons for all n ≥ 3; in E

3, every con-
vex 3-polytope is the combinatorial prototile of a monotypic tiling [Sch84a]. Many
(but not all) classes of convex 3-polytopes admit monotypic face-to-face tilings
[DGS83, Sch84b].

Dynamical systems theory is perhaps the most powerful tool used to study
tilings today, but it takes us beyond the scope of this chapter and we do not discuss
it here. For more on this and further references see [BG13, KLS15, Sad08].

3.6 SOURCES AND RELATED MATERIALS

SURVEYS

The following surveys are useful, in addition to the references below.

[GS87]: The definitive, comprehensive treatise on tilings of E2, state of the art as
of the mid-1980’s. All subsequent work (in any dimension) has taken this as its
starting point for terminology, notation, and basic results. The Main Results of
our Section 3.1 can be found here.

[BG13]: A survey of the rapidly growing field of aperiodic order, of which tilings
are a major part.

The Bielefeld Tilings Encyclopedia, http://tilings.math.uni-bielefeld.de/ gives de-
tails of all substitution tilings found in the literature.

[PF02]: A useful general reference for substitutions.
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[Moo97]: The proceedings of the NATO Advanced Study Institute on the Mathe-
matics of Aperiodic Order, held in Waterloo, Canada in August 1995.

[Sch93]: A survey of tiling theory especially useful for its accounts of monotypic
and other kinds of tilings more general than those discussed in this chapter.

[Sen96]: Chapters 5–8 form an introduction to the theory of aperiodic tilings.

[SS94]: This book is especially useful for its account of tilings in E
n by clusters of

cubes.

RELATED CHAPTERS

Chapter 14: Polyominoes
Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 64: Crystals, periodic and aperiodic

REFERENCES

[Ada95] C. Adams. Tilings of space by knotted tiles. Math. Intelligencer, 17:41–51, 1995.

[AH14] P. Arnoux and E. Harriss. What is . . . a Rauzy Fractal? Notices Amer. Math. Soc.,

61:768–770, 2014.

[Ban91] C. Bandt. Self-similar sets 5. Integer matrices and fractal tilings of Rn. Proc. Amer.

Math. Soc., 112:549–562, 1991.

[Ber66] R. Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc., 66:1–

72, 1966.

[BG13] M. Baake and U. Grimm. Aperiodic Order: a Mathematical Invitation. Cambridge

University Press, 2013.

[BH96] L. Balke and D.H. Huson. Two-dimensional groups, orbifolds and tilings. Geom. Ded-

icata, 60:89–106, 1996.

[Bie10] L. Bieberbach. Über die Bewegungsgruppen der euklidischen Räume (Erste Abh.).
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