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INTRODUCTION

A triangulation is a partition of a geometric domain, such as a point set, polygon,
or polyhedron, into simplices that meet only at shared faces. (For a point set,
the triangulation covers the convex hull.) Triangulations are important for repre-
senting complicated geometry by piecewise simple geometry and for interpolating
numerical fields. The first four sections of this chapter discuss two-dimensional
triangulations: Delaunay triangulation of point sets (Section 29.1); triangulations
of polygons, including constrained Delaunay triangulations (Section 29.2); other
optimal triangulations (Section 29.3); and mesh generation (Section 29.4). The
last three sections treat triangulations of surfaces embedded in R

3 (Section 29.5),
triangulations (composed of tetrahedra) of polyhedra in R

3 (Section 29.6), and
triangulations in arbitrary dimension R

d (Section 29.7).

FIGURE 29.0.1

Triangulations of a point set, a simple polygon, and a polyhedron.

29.1 DELAUNAY TRIANGULATION

The Delaunay triangulation is the most famous and useful triangulation of a point
set. Chapter 27 discusses this construction in conjunction with the Voronoi dia-
gram.

GLOSSARY

Empty circle: No input points strictly inside the circle.

Delaunay triangulation (DT): All triangles have empty circumcircles.

Completion: Adding edges to a polyhedral subdivision to make a triangulation.

Edge flipping: Replacing an edge by a crossing edge; used to compute a DT.
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BASIC FACTS

Let S = {s1, s2, . . . , sn} (for “sites”) be a set of points in the Euclidean plane R
2.

The Delaunay triangulation (DT) is a triangulation of S defined by the empty
circle condition : a triangle sisjsk appears in the DT only if its circumscribing
circle (circumcircle) has no point of S strictly inside it.

The Delaunay subdivision is a subdivision of the convex hull of S into poly-
gons with cocircular vertices and empty circumcircles. The Delaunay subdivision is
the planar dual of the Voronoi diagram, meaning that an edge sisj appears in the
subdivision if and only if the Voronoi cells of si and sj share a boundary edge. If
no four points in S are cocircular, the Delaunay subdivision is a triangulation of S.
If four or more points in S lie on a common empty circle, the Delaunay subdivision
has one or more faces with more than three sides. These can be triangulated to
complete a Delaunay triangulation of S. The triangulations that complete these
faces can be chosen arbitrarily, so the DT is not always unique.

There is a connection between a Delaunay subdivision in R
2 and a convex

polytope in R
3. If we lift S onto the paraboloid with equation z = x2 + y2 by

mapping si = (xi, yi) to (xi, yi, x
2
i + y2i ), then the Delaunay subdivision turns out

to be the projection of the lower convex hull of the lifted points. See Figure 27.1.2.

ALGORITHMS

There are a number of practical planar DT algorithms [For95], including edge flip-
ping, incremental construction, plane sweep, and divide and conquer. The last
three algorithms can be implemented to run in O(n log n) time. We describe only
the edge flipping algorithm, even though its worst-case running time of O(n2) is
not optimal, because it is most relevant to our subsequent discussion.

The edge flipping algorithm starts from any triangulation of S and then locally
optimizes each edge. Let e be an internal edge (not on the boundary of the convex
hull of S) and Qe be the triangulated quadrilateral formed by the two triangles
sharing e. Qe is reversed if the two angles opposite the diagonal sum to more than
180◦, or equivalently, if each triangle’s circumcircle encloses the opposite vertex. If
Qe is reversed, we “flip” it by exchanging e for the other diagonal of Qe.

Compute an initial triangulation of S
Place all internal edges into a queue
while the queue is not empty do

Remove an edge e from the queue
if quadrilateral Qe is reversed then

Flip e; add the four outside edges of Qe to the queue fi od

An initial triangulation can be computed by a plane-sweep algorithm that adds
the points of S by x-coordinate order (breaking ties by y-coordinate), as shown in
Figure 29.1.1. Upon each addition, the algorithm walks around the convex hull of
the already-added points, connecting the new vertex to the vertices it can see.

The following theorem guarantees the success of edge flipping: a triangulation
in which no quadrilateral is reversed must be a DT. This theorem can be proved
with the lifting map: a reversed quadrilateral lifts to a reflex edge, and a surface
without reflex edges must be the lower convex hull.
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FIGURE 29.1.1

A generic step in computing an initial trian-
gulation.
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OPTIMALITY PROPERTIES

Certain measures of quality are improved by flipping a reversed quadrilateral [BE95].
For example, the minimum angle in a triangle of Qe must increase. Hence, a trian-
gulation that maximizes the minimum angle cannot have a reversed quadrilateral,
implying that it is a DT. Among all triangulations of the input points, some DT:

maximizes the minimum angle (moreover, lexicographically maximizes the list
of angles ordered from smallest to largest);
minimizes the maximum radius of the triangles’ circumcircles;
minimizes the maximum radius of the triangles’ smallest enclosing circles;
maximizes the sum of the radii of the triangles’ inscribed circles;
minimizes the “potential energy” (sum of area-weighted squared gradients) of
an interpolated piecewise-linear surface; and
minimizes the surface area of a piecewise-linear surface for elevations scaled
sufficiently small.

Two additional properties of the DT: Delaunay triangles are acyclically ordered
by distance from any fixed reference point. The distance between any pair of
vertices, measured along edges of the DT, is at most a constant (less than 1.998)
times the Euclidean distance between them [Xia13].

WEIGHTED DELAUNAY TRIANGULATIONS

Voronoi diagrams can be defined for various distance measures (Section 27.3), and
some of them induce Delaunay-like triangulations by duality. Here we mention one
generalization that retains most of the rich mathematical structure. Assign each
point si = (xi, yi) in S a real weight wi. The weighted Delaunay triangulation
of S is the projection of the lower convex hull of the points (xi, yi, x

2
i + y2i − wi).

With a small (perhaps negative) weight, a site can fail to appear in the weighted
Delaunay triangulation, because the corresponding point in R

3 lies inside the convex
hull. Hence, in general the weighted Delaunay triangulation is a graph on a subset
of the sites S. In the special case that the weights are all zero (or all equal), the
weighted Delaunay triangulation is the DT.

A regular triangulation is a triangulation in R
2 found as a projection of the

lower surface of a polytope in R
3. Not all triangulations are regular; see Section 16.3

for a counterexample. Every regular triangulation can be expressed as a weighted
Delaunay triangulation, because the wi weights are arbitrary. (The problem of
finding suitable weights can be expressed as a linear program.)
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FIGURE 29.1.2

Power diagram (dashed) and weighted Delau-
nay triangulation. The dashed circle is the
orthogonal circle for triangle sisjsk.
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The planar dual of the weighted Delaunay triangulation is the power dia-
gram , a Voronoi diagram in which the distance from a site si ∈ S to a point in
R

2 is the square of the Euclidean distance minus wi. We can regard the sites in a
power diagram as circles, with the radius of site i being

√
wi. See Figure 29.1.2.

In weighted Delaunay triangulations, the analogue of the empty circle condition is
the orthogonal circle condition : a triangle sisjsk appears in the triangulation
only if the circle that crosses circles i, j, and k at right angles penetrates no other
site’s circle more deeply.

29.2 TRIANGULATIONS OF POLYGONS

We now discuss triangulations of more complicated inputs: polygons and planar
straight-line graphs. We start with the problem of computing any triangulation at
all; then we progress to constrained Delaunay triangulations.

GLOSSARY

Simple polygon: Boundary is a loop made of edges without self-intersections.

Monotone polygon: Intersection with any vertical line is one segment.

Constrained Delaunay triangulation: Allows input edges as well as vertices.
Triangles have empty circumcircles, meaning no visible input vertices.

TRIANGULATIONS OF SIMPLE POLYGONS

Triangulating a simple polygon is both an interesting problem in its own right and
an important preprocessing step in other computations. For example, the following
problems are known to be solvable in linear time once the input polygon P is tri-
angulated: computing link distances from a given source, finding a monotone path
within P connecting two given points, and computing the portion of P illuminated
by a given line segment.
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How much time does it take to triangulate a simple polygon? For practical
purposes, one should use either an O(n log n) deterministic algorithm (such as the
one given below for the more general case of planar straight-line graphs) or a slightly
faster randomized algorithm (such as one with running time O(n log∗ n) described
by Mulmuley [Mul94]).

However, for theoretical purposes, achieving the ultimate running time was for
several years an outstanding open problem. After a sequence of interim results,
Chazelle [Cha91] devised a linear-time algorithm. Chazelle’s algorithm, like previ-
ous algorithms, reduces the problem to that of computing the horizontal visi-
bility map of P—the partition obtained by shooting horizontal rays left and right
from each of the vertices. The “up-phase” of this algorithm recursively merges
coarse visibility maps for halves of the polygon (polygonal chains); the “down-
phase” refines the coarse map into the complete horizontal visibility map.

TRIANGULATIONS OF PLANAR STRAIGHT-LINE GRAPHS

Let G be a planar straight-line graph (PSLG). We describe an O(n logn) algorithm
[PS85] that triangulates G in two stages, called regularization and triangulation.
Regularization adds edges to G so that each vertex, except the first and last, has at
least one edge extending to the left and one extending to the right. Conceptually,
we sweep a vertical line ℓ from left to right across G while maintaining the list of
intervals of ℓ between successive edges of G. For each vertical interval I in ℓ, we
remember a vertex v(I) visible to all points of I: this vertex is either an endpoint
of one of the two edges bounding I or a vertex between these edges, lacking a right
edge. When we hit a vertex u with no left edge, we add the edge {u, v(I)}, where
I is the interval containing u, as shown in Figure 29.2.1(a). After the left-to-right
sweep, we sweep from right to left, adding right edges to vertices lacking them.

Start vertical line ℓ to the left of all vertices in G
for each vertex u of G from left to right do

if u has no left edges and u isn’t the first vertex then

Add edge {u, v(I)} where I is the interval containing u fi

Delete u’s left edges from interval list
Insert u’s right edges with v(I)← u for each new vertical interval I od

if u has no right edges then
Set v(I)← u for the interval I that contains u fi

Repeat the steps above for vertices from right to left

After the regularization stage, each bounded face ofG is amonotone polygon ,
meaning that every vertical line intersects the face in at most one interval. We
consider the vertices u1, u2, . . . , un of a face in left-to-right order, using a stack to
store the not-yet-triangulated vertices (a reflex chain) to the left of the current
vertex ui. If ui is adjacent to ui−1, the topmost vertex on the stack, as shown in
the upper illustration of Figure 29.2.1(b), then we pop vertices off the stack and
add diagonals from these vertices to ui, until the vertices on the stack—ui on top—
again form a reflex chain. If ui is instead adjacent to the leftmost vertex on the
stack, as shown in the lower picture, then we can add a diagonal from each vertex
on the stack, and clear the stack of all vertices except ui and ui−1.
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FIGURE 29.2.1

(a) Sweep-line algorithm for regularization. (b) Stack-based triangulation algorithm.
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CONSTRAINED DELAUNAY TRIANGULATIONS

The constrained Delaunay triangulation [LL86] provides a way to force the edges
of a planar straight-line graph G into the DT. A point p is visible to point q
if line segment pq does not intersect any edge or vertex in G, except maybe at
its endpoints. A triangle abc with vertices from G appears in the constrained
Delaunay triangulation (CDT) if its circumcircle encloses no vertex of G visible
to some point in the interior of abc, and moreover, no edge of G intersects the
interior of abc. If G is a graph with vertices but not edges, then the CDT is the
ordinary, unconstrained Delaunay triangulation. If G is a polygon or polygon with
holes, as in Figure 29.2.2(b), then the CDT retains only the triangles interior to G.

FIGURE 29.2.2

Constrained Delaunay triangulations of (a) a PSLG and (b) a polygon with a hole.
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The edge flipping algorithm works for CDTs, with the modification that edges
of G are never placed on the queue or flipped. There are also O(n logn)-time
algorithms for the CDT [Sei88, Che89], and even O(n)-time algorithms for the case
that G is just a simple polygon [KL93, CW98]. A slightly slower incremental edge
insertion algorithm is usually used in practice [SB15]. See Section 67.2 for pointers
to software for computing the constrained Delaunay triangulation.
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29.3 OPTIMAL TRIANGULATIONS

We have already seen two types of optimal triangulations: the DT and the CDT.
Some applications, however, demand triangulations with properties other than
those optimized by DTs and CDTs. Table 29.3.1 summarizes some results.

GLOSSARY

Edge insertion: Local improvement operation, more general than edge flipping.

Local optimum: A solution that cannot be improved by local moves.

Greedy triangulation: Repeatedly add the shortest non-crossing edge.

Steiner triangulation: Extra vertices, not in the input, are allowed.

TABLE 29.3.1 Optimal triangulation results. (Constrained) Delaunay triangulations

maximize the minimum angle and optimize many other objectives.

PROPERTY INPUTS ALGORITHMS TIME

various properties polygons dynamic programming [Kli80] O(n3)

constrained Delaunay polygons divide and conquer [KL93, CW98] O(n)

minimize total edge length polygons approximation algorithms [Epp94, LK98] O(n logn)

Delaunay point sets various algorithms [For95] O(n logn)

minimize maximum angle point sets fast edge insertion [ETW92] O(n2 logn)

minmax slope terrain point sets edge insertion [BEE+93] O(n3)

minmax edge length point sets MST induces polygons [ET91] O(n2)

greedy edge length point sets dynamic Voronoi diagram [LL92] O(n2)

constrained Delaunay PSLGs various algorithms [Sei88, Che89, SB15] O(n logn)

OPTIMAL TRIANGULATIONS OF SIMPLE POLYGONS

Many problems in finding an optimal triangulation of a simple polygon can be
solved in O(n3) time by a dynamic programming algorithm of Klincsek [Kli80]. For
example, the algorithm solves any problem that assigns a weight to each possible
triangle and/or edge and asks to find the triangulation that minimizes or maximizes
the minimum or maximum weight or the sum of the weights. Examples include the
minimum/maximum angle in the triangulation, the minimum/maximum length of
an edge in the triangulation, and the sum of edge lengths in the triangulation. The
triangulation that minimizes the sum of edge lengths is called the minimum weight

triangulation and is discussed further below.
The running time can be improved for some nonconvex polygons. Let p be the

number of pairs of vertices of the polygon that can “see” each other; that is, the
line segment connecting them is in the polygon. The optimal triangulation can be
found in O(n2 + p3/2) time by first computing a visibility graph [BE95].
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EDGE FLIPPING AND EDGE INSERTION

The edge flipping DT algorithm can be modified to compute other locally opti-
mal triangulations of point sets. For example, if we redefine “reversed” to mean a
quadrilateral triangulated with the diagonal that forms the larger maximum angle,
then edge flipping can be used to minimize the maximum angle. For the min-
max angle criterion, however, edge flipping computes only a local optimum, not
necessarily the true global optimum.

Although edge flipping seems to work well in practice [ETW92], its theoreti-
cal guarantees are very weak: the running time is not known to be polynomially
bounded and the local optimum it finds may be greatly inferior to the true optimum.

A more general local improvement method, called edge insertion [BEE+93,
ETW92] exactly solves certain minmax optimization problems, including minmax
angle and minmax slope of a piecewise-linear interpolating surface.

Assume that the input is a planar straight-line graph G, and we are trying
to minimize the maximum angle. Starting from some initial triangulation of G,
edge insertion repeatedly adds a candidate edge e that subdivides the maximum
angle. (In general, edge insertion always breaks up a worst triangle by adding an
edge incident to its “worst vertex.”) The algorithm then removes the edges that
are crossed by e, forming two polygonal holes alongside e. Holes are retriangulated
by repeatedly removing ears (triangles with two sides on the boundary, as shown
in Figure 29.3.1) with maximum angle smaller than the old worst angle ∠cab. If
retriangulation succeeds, then the overall triangulation improves and edge bc is
eliminated as a future candidate. If retriangulation fails, then the overall triangula-
tion is returned to its state before the insertion of e, and e is eliminated as a future
candidate. Each candidate insertion takes time O(n), giving a total running time
of O(n3).

Compute an initial triangulation with all
(

n
2

)

edge slots unmarked
while ∃ an unmarked edge e cutting the worst vertex of worst triangle abc do

Add e and remove all edges crossed by e
Try to retriangulate the polygonal holes by removing ears better than abc
if retriangulation succeeds then

mark bc
else mark e and undo e’s insertion fi od

FIGURE 29.3.1

The maximum angle ∠cab is subdivided by the insertion
of an edge e, causing the deletion of the dashed edges.
The algorithm retriangulates the two polygonal holes
alongside e by removing sufficiently good ears. (From
[BE95], with permission.)
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Edge insertion can compute the minmax “eccentricity” triangulation or the
minmax slope surface [BEE+93] in time O(n3). By inserting candidate edges in a
certain order, one can improve the running time to O(n2 logn) for minmax angle
[ETW92] and maxmin triangle height.

MINIMUM WEIGHT TRIANGULATIONS

Several natural optimization criteria can be defined using edge lengths [BE95]. The
most famous such criterion—called minimum weight triangulation—asks for a
triangulation of a planar point set minimizing the total edge length. We have
already seen that for simple polygons it can be computed in O(n3) time, but the
dynamic programming algorithm does not apply to point sets. Since the problem
was posed in 1970, the suspicion that it is NP-hard grew but was only confirmed
in 2006, by Mulzer and Rote [MR08]. (It is still not known whether the problem is
in NP, because of technicalities related to computer arithmetic with radicals: it is
not known how to compare sums of Euclidean lengths in polynomial time.)

However, there is an algorithm that is quite fast in practice for most point
sets [DKM97]. This algorithm uses a local criterion to find edges sure to be in
the minimum weight triangulation. These edges break the convex hull of the point
set into regions, such as simple polygons or polygons with one or two disconnected
interior points, that can be triangulated optimally using dynamic programming.

The best polynomial-time approximation algorithm for minimum weight trian-
gulation, by Levcopoulos and Krznaric [LK98], gives a solution within a constant
multiplicative factor of the optimal length. Remy and Steger [RS09] give an ap-
proximation scheme that finds a (1+ ǫ)-approximation for any fixed ǫ > 0, but runs

in quasi-polynomial nO(log8 n) time. Eppstein [Epp94] gives a constant-factor ap-
proximation ratio for minimum weight Steiner triangulation, in which extra vertices
are allowed.

A commonly used heuristic for minimum weight triangulation is greedy trian-
gulation . This algorithm adds edges one at a time, each time choosing the shortest
edge that is not already crossed. The greedy triangulation can be viewed as an opti-
mal triangulation in its own right, because it lexicographically minimizes the sorted
vector of edge lengths. For planar point sets, the greedy triangulation approximates
the minimum weight triangulation by a factor of O(

√
n), and it can be computed

in time O(n2) by dynamic maintenance of a bounded Voronoi diagram [LL92].
Another natural criterion asks for a triangulation minimizing the maximum

edge length. Edelsbrunner and Tan [ET91] show that such a triangulation—like
the DT—must contain the edges of the minimum spanning tree (MST). The MST,
together with the edges of the convex hull, divides the polygon into regions that
are weakly-simple polygons (each interior is a topological disk, but an edge might
appear multiple times on the boundary). This geometric lemma gives the following
O(n2)-time algorithm: compute the MST, then triangulate the resulting weakly-
simple polygons optimally using dynamic programming.
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OPEN PROBLEMS

1. Explain the empirical success and limits of edge flipping for non-Delaunay
optimization criteria—both solution quality and running time.

2. Can the minimum weight triangulation of a convex polygon be computed in
o(n3) time?

3. Find a polynomial-time approximation scheme for the minimum weight tri-
angulation.

4. Show that the minimum weight Steiner triangulation exists; that is, rule out
the possibility that more and more Steiner points decrease the total edge
length forever.

29.4 PLANAR MESH GENERATION

A mesh is a decomposition of a geometric domain into elements, usually triangles
or quadrilaterals in R

2. (For brevity, we ignore a large literature on quadrilateral
mesh generation.) Meshes are used to discretize functions, especially solutions to
partial differential equations. Piecewise linear discretizations are by far the most
popular. Practical mesh generation problems tend to be application-specific: one
desires small elements where a function changes rapidly and larger elements else-
where. However, certain goals apply fairly generally, and computational geometers
have formulated problems incorporating these considerations. Table 29.4.1 summa-
rizes these results; below we discuss some of them in detail.

GLOSSARY

Steiner point: An added vertex that is not an input point.

Conforming mesh: Elements exactly cover the input domain.

Quadtree: A recursive subdivision of a bounding square into smaller squares.

TABLE 29.4.1 Some mesh generation results.

PROPERTY INPUTS ALGORITHMS SIZE

no small or obtuse angles polygons grid [BGR88], quadtree [BEG94] O(1) · optimal

no obtuse angles polygons disk packing [BMR94] O(n)

no small angles most PSLGs Delaunay [Rup95] O(1) · optimal

no obtuse angles PSLGs disk packing & propagation [Bis16] O(n2.5)

no large angles PSLGs propagating horns [Mit93, Tan94, Bis16] O(n2)

no extreme dihedral angles polyhedra octree [MV92] O(1) · optimal

no extreme dihedral angles smooth 3D octree [LS07] no bound
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NO SMALL ANGLES

Sharp triangles can degrade appearance and accuracy, so most mesh generation
methods attempt to avoid small and large angles. (There are exceptions: properly
aligned sharp triangles prove quite useful in simulations of fluid flow.) In finite ele-
ment methods, elements with small angles sometimes cause the associated stiffness
matrices to be badly conditioned, and elements with large angles can lead to large
discretization errors.

Baker et al. [BGR88] give a grid-based algorithm for triangulating a polygon so
the mesh has no obtuse angles and all the new angles—a sharp angle in the input
cannot be erased—measure at least 14◦. Bern et al. [BEG94] use quadtrees instead
of a uniform grid and prove the following size optimality guarantee: the number
of triangles is O(1) times the minimum number in any no-small-angle triangulation
of the input. The minimum number of triangles required depends not just on
the number of input vertices n, but also on the geometry of the input. The simple
example where the input is a long skinny rectangle shows why the number of output
triangles depends upon the geometry.

Ruppert [Rup95], building on work of Chew, devised a Delaunay refinement
algorithm with the same guarantee. The main loop of Ruppert’s algorithm attempts
to add the circumcenter (the center of the circumcircle) of a too-sharp triangle as a
new vertex. If the circumcenter “encroaches” upon a boundary edge, meaning that
it falls within the boundary edge’s diameter circle, then the algorithm subdivides
the boundary edge instead of adding the triangle circumcenter. Ruppert’s algorithm
accepts PSLGs as input, not merely polygons, but it is guaranteed to work only if
the input PSLG has no acute angles. For PSLG inputs with small angles, unlike for
polygon inputs, it is impossible to devise a mesh generation algorithm guaranteed
to create no new small angles.

The size optimality guarantees for Delaunay refinement algorithms follow from
a stronger guarantee: at each mesh vertex v, every adjoining mesh edge has length
within a constant factor of the “local feature size” at v, which is a local measure of
the distance between PSLG features (see also Chapter 35).

NO LARGE ANGLES

A lower bound on each triangle’s smallest angle implies an upper bound on its
largest angle. A weaker restriction is to prohibit large angles (close to 180◦) only.
The strictest bound on large angles that does not also imply a bound on small
angles is to ask for no obtuse angles, that is, all angles are at most 90◦. Surpris-
ingly, it is possible to triangulate any polygon (possibly with holes) with only O(n)
nonobtuse triangles. Figure 29.4.1 illustrates an algorithm of Bern, Mitchell, and
Ruppert [BMR94]: the domain is packed with nonoverlapping disks until each un-
covered region has either 3 or 4 sides; radii to tangencies are added to split the
domain into small polygons; and finally these polygons are triangulated with right
triangles.

The problem is substantially harder for PSLGs than for polygons. There are
PSLGs for which every nonobtuse triangulation has Ω(n2) triangles. An algorithm
of Bishop [Bis16] constructs a nonobtuse triangulation of a PSLG with O(n2.5)
triangles. Closing the gap between the Ω(n2) lower bound and the O(n2.5) upper
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FIGURE 29.4.1

Nonobtuse triangulation steps. (From [BMR94], [BE95], with permission.)

bound is an open problem.
By relaxing the bound on the largest angle from 90◦ to something larger, one

can improve the worst-case complexity of the mesh. Mitchell [Mit93] gives an
algorithm that uses O(n2 logn) triangles to guarantee that all angles measure less
than 157.5◦. The algorithm traces a cone of possible angle-breaking edges, called a
horn, from each vertex (including Steiner points introduced on input edges) with a
larger angle. Horns propagate around the PSLG until meeting an exterior edge or
another horn. By adding some more horn-stopping “traps,” Tan [Tan94] improves
the angle bound to 132◦ and the complexity bound to O(n2). This complexity
bound is tight; there are PSLGs for which a smaller complexity is not possible.
Bishop [Bis16] combines the disk-packing algorithm of Bern et al. with propagation
of Steiner points, yielding an angle bound of 90◦ + ǫ and a complexity bound of
O(n2/ǫ2) for any fixed ǫ > 0.

CONFORMING DELAUNAY TRIANGULATIONS

For some applications, it suffices to have a mesh that is Delaunay and respects the
input edges. A conforming Delaunay triangulation of a PSLG is a triangu-
lation in which extra vertices—Steiner points—are added to the input, until the
Delaunay triangulation of the vertices “conforms” to the input, meaning that each
input edge is a union of Delaunay edges.

It is easy to verify that every nonobtuse triangulation is Delaunay. The nonob-
tuse triangulation algorithms discussed above currently offer the best size complex-
ity of any known conforming Delaunay triangulation algorithms—namely, O(n)
for polygon inputs and O(n2.5) for PSLG inputs. In principle, finding a conform-
ing Delaunay triangulation of a PSLG might be easier than finding a nonobtuse
triangulation, but the Ω(n2) lower bound on triangulation complexity applies to
conforming Delaunay triangulations as well (for worst-case PSLGs).
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OPEN PROBLEMS

1. Does every PSLG have a conforming Delaunay triangulation of size O(n2)?
Or, more strongly, a nonobtuse triangulation of size O(n2)?

2. Can the algorithms for triangulations with no large (or obtuse) angles be
generalized to inputs with curved boundaries?

29.5 SURFACE MESHES

Sitting between two- and three-dimensional triangulations are triangulated surface
meshes, which typically enclose 3D solids. Surface meshes are used heavily in
computer graphics and in applications such as boundary element methods.

RESTRICTED DELAUNAY TRIANGULATIONS

Many ideas in guaranteed-quality mesh generation extend to surface meshes with
the help of the restricted Delaunay triangulation (RDT) of Edelsbrunner and
Shah [ES97], a geometric structure that extends the Delaunay triangulation to
curved surfaces. The RDT is always a subcomplex of the three-dimensional Delau-
nay triangulation. It has proven itself as a mathematically powerful tool for surface
meshing and surface reconstruction.

The RDT is defined by dualizing the restricted Voronoi diagram. The re-
stricted Voronoi diagram of a point set S ⊂ Σ with respect to a surface Σ ⊂ R

3

is a cell complex much like the standard Voronoi diagram, but the restricted Voronoi
cells contain only points on the surface Σ. The restricted Delaunay triangulation of
S with respect to Σ is the subcomplex of S’s 3D Delaunay triangulation containing
every Delaunay face whose Voronoi dual face intersects Σ. Typically, the RDT is a
subset only of the Delaunay triangles and their edges and vertices; the RDT con-
tains no tetrahedra except in “degenerate” circumstances that can be prevented by
infinitesimally perturbing Σ. Another way to characterize the RDT is by observing
that its triangles have empty circumscribing spheres whose centers lie on Σ.

If Σ is a smooth surface and the point set S is sampled sufficiently densely
from Σ, then the RDT is a triangulation of Σ. In particular, it can be shown
that the RDT is homeomorphic to Σ and is a geometrically good approximation
of Σ. (Note that if the point set S is not dense enough, the RDT may be a mess
that fails to approximate Σ or even to be a manifold.) Partly for these reasons,
RDTs have become a standard tool in provably good surface reconstruction and
surface meshing algorithms [CDS12]. A surface meshing algorithm of Boissonnat
and Oudot [BO05] offers guarantees similar to those of Ruppert’s algorithm in the
plane. The algorithm can be extended to generate tetrahedral meshes in a volume
enclosed by a smooth surface [ORY05]. These algorithms have a simple interaction
with the representation of Σ: they require an oracle that, given an arbitrary line
segment, returns a point where the line segment intersects Σ. This oracle can be
implemented efficiently in practice for many different surface representations.
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INTRINSIC DELAUNAY AND SELF-DELAUNAY MESHES

Another way to define a Delaunay-like surface triangulation is to dualize the Voronoi
diagram induced by the intrinsic distance metric in Σ, defined to be the Eu-
clidean length of the shortest path between each pair of points in Σ, where the
paths are restricted to lie on Σ. (This metric is sometimes called the geodesic
distance, but when Σ is not smooth, the intrinsic shortest path is not necessarily
a geodesic.) If we dualize the intrinsic Voronoi diagram of a point set S ⊂ Σ,
we obtain an intrinsic Delaunay triangulation in which each dual triangle is
intrinsic Delaunay, which implies that there is an empty geodesic ball on the
surface Σ whose boundary passes through the triangle’s vertices. The intrinsic De-
launay triangulation is not always a “proper” triangulation—it might include loop
edges or multi-edges.

If Σ is itself a triangulated surface and S is its vertex set, the intrinsic Delaunay
triangulation of S might or might not coincide with the triangles that make up Σ
(even if all of the triangles of Σ are Delaunay in the usual 3D sense). If they do
coincide, so the triangles comprising Σ are all intrinsic Delaunay, we say that Σ is
self-Delaunay.

Bobenko and Springborn [BS07] show that the intrinsic Delaunay triangulation
on a piecewise linear surface Σ in R

3 is unique, and that the corresponding Laplace–
Beltrami operator always has positive weights, even if the intrinsic triangulation is
not proper; this is useful in geometry processing. Dyer, Zhang and Möller [DZM07]
give an algorithm that takes a triangulated surface Σ in R

3 and produces a geo-
metrically similar self-Delaunay mesh, using a combination of flipping and vertex
insertion. A recent preprint by Boissonnat, Dyer and Ghosh [BDG13] describes
an algorithm that takes a smooth k-dimensional manifold Σ in R

d as input and
produces a self-Delaunay surface triangulation, for any integers 0 < k < d.

29.6 THREE-DIMENSIONAL POLYHEDRA

In this section we discuss the triangulation (or tetrahedralization) of 3D polyhe-
dra. A polyhedron P is a flat-sided solid, usually assumed to be connected and to
satisfy the following nondegeneracy condition: around any point on the boundary
of P , a sufficiently small ball contains one connected component of each of the
interior and exterior of P . With this assumption, the numbers of vertices, edges,
and faces (facets) of P are linearly related by Euler’s polyhedron formula (adjusted
for genus if appropriate).

GLOSSARY

Dihedral angle: The angle separating two polyhedral faces meeting at a shared
edge, measured on a plane normal to the shared edge.

Reflex edge: An edge with interior dihedral angle greater than 180◦.

Convex polyhedron: A polyhedron without reflex edges.

General polyhedron: Multiple components, cavities, and handles (higher genus)
are permitted.

Circumsphere: The sphere through the vertices of a tetrahedron.
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BAD EXAMPLES

Three dimensions is not as nice as two. Triangulations of the same input may
contain different numbers of tetrahedra. For example, a triangulation of an n-
vertex convex polyhedron may have as few as n−3 or as many as

(

n−2
2

)

tetrahedra.
Below et al. [BLR00] proved that finding the minimum number of tetrahedra needed
to triangulate (without Steiner points) a convex polyhedron is NP-complete. And
when we move to nonconvex polyhedra, we get an even worse surprise: some cannot
even be triangulated without Steiner points.

FIGURE 29.6.1

A twisted prism cannot be triangulated without Steiner points.

Schönhardt’s polyhedron, shown in Figure 29.6.1, is the simplest example of
a polyhedron that cannot be triangulated. Ruppert and Seidel [RS92] prove that
it is NP-complete to determine whether a polyhedron can be triangulated without
Steiner points, or to test whether k Steiner points suffice.

Chazelle [Cha84] gives an n-vertex polyhedron that requires Ω(n2) Steiner
points. This polyhedron is a box with thin wedges removed from the top and
bottom faces (Figure 29.6.2). The tips of the wedges nearly meet at the hyperbolic
surface z = xy. From a top view, the wedges appear to subdivide the polyhe-
dron into Θ(n2) small squares. We can exhibit Θ(n2) points (one in each square)
such that no two can see each other within the polyhedron, implying that every
subdivision of the polyhedron into convex cells has Ω(n2) cells.

FIGURE 29.6.2

A polyhedron that requires Ω(n2) tetrahedra. (From [BE95],
with permission.)

TRIANGULATIONS OF POLYHEDRA

Any polyhedron can be triangulated with O(n2) tetrahedra, matching the lower
bound. An algorithm called vertical decomposition shoots vertical walls up and
down from each edge of the polyhedron boundary; walls stop when they reach some
other part of the boundary. The tops and bottoms of the resulting “cylinders” are
then triangulated to produce O(n2) triangular prisms, which can each be trian-
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gulated with a single interior Steiner point. A better algorithm first plucks off
“pointed vertices” with unhindered “caps” [CP90]. Such a vertex, together with
its incident faces, forms an empty convex cone. This algorithm uses O(n + r2)
tetrahedra, where r is the number of reflex edges of the original polyhedron.

An alternative algorithm [Cha84] divides the polyhedron into convex solids by
incrementally bisecting each reflex angle with a plane that extends away from the
reflex angle in all directions until it first contacts the polyhedron boundary. This
algorithm produces at most O(nr + r7/3) tetrahedra [HS92].

SPECIAL POLYHEDRA

Any n-vertex convex polyhedron can be triangulated with at most 2n− 7 tetrahe-
dra by “starring” from a vertex. The region between two convex polyhedra (the
convex hull of the union, minus the polyhedra), with a total of n vertices, can
be triangulated without any Steiner points. If Steiner points are allowed, O(n)
tetrahedra suffice. The union of three convex polyhedra can also be tetrahedralized
without Steiner points. The region between a convex polyhedron and a terrain can
be triangulated with O(n logn) tetrahedra, and in fact, some such regions require
Ω(n logn) tetrahedra [CS94].

THREE-DIMENSIONAL MESH GENERATION

Mesh generation for three-dimensional solids is an important practical problem.
Current approaches include advancing front methods, Delaunay refinement, oc-
trees (the 3D generalization of quadtrees), bubble meshing, and mesh improvement
methods, with none of them being clearly dominant. Some Delaunay and octree
methods offer theoretical guarantees. A typical goal is to take a polyhedron input
and generate a mesh of tetrahedra that are nicely shaped by some criterion—loosely
speaking, they are not “skinny”—in which the number of tetrahedra is small.

Unfortunately, current state-of-the-art algorithms cannot guarantee that all the
tetrahedra will have good angles, at least not in theory. (Often it is not difficult
to produce good tetrahedra in practice, but there are no guarantees.) Most appli-
cations of tetrahedral meshes desire tetrahedra that have no dihedral angle close
to 0◦ or 180◦ (which implies no solid angle is close to 0◦ or 360◦). Unfortunately,
known algorithms for meshing polyhedra can guarantee only very weak bounds on
dihedral angles—bounds so weak they are typically not even stated, only proven to
exist. Quite a few such algorithms have been published.

Many other algorithms offer no dihedral angle bounds, but instead guarantee
that no tetrahedron will have a large radius-edge ratio , which is the radius of the
tetrahedron’s circumscribing sphere divided by the length of its shortest edge. This
guarantee rules out most skinny tetrahedron shapes, but slivers may remain. A
sliver is a tetrahedron whose four vertices lie nearly on a common circle (although
the vertices are not exactly coplanar), so that two of its dihedral angles are close
to 180◦ and four are close to 0◦. Although bounds on radius-edge ratios may seem
disappointing compared to bounds on dihedral angles, they lead to algorithms that
are popular in practice because the bounds are tight enough to eliminate most bad
tetrahedra and slivers are easy to eliminate in practice, albeit not in theory.

The earliest example of an algorithm offering weak dihedral angle bounds re-
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mains important as a theoretical exemplar. Mitchell and Vavasis [MV92] give an
octree method that generalizes the quadtree mesh generation algorithm of Bern et
al. [BEG94] to polyhedra. In addition to proving that their algorithm generates
tetrahedra whose dihedral angles are bounded, Mitchell and Vavasis guarantee that
the number of tetrahedra in the mesh is asymptotically “optimal,” in the sense that
it is within a constant factor of the best possible number for any mesh satisfying
the same angle bounds.

Most (but not all) published algorithms that offer bounds on radius-edge ra-
tios use Delaunay triangulations. Shewchuk [She98, CDS12] generalizes Ruppert’s
2D Delaunay refinement algorithm to take a polyhedron (with no dihedral angle
smaller than 90◦) and generate a mesh whose tetrahedra’s radius-edge ratios do
not exceed 2. Variants of this algorithm have been implemented and found to work
well in practice, for instance in Si’s software TetGen [Si15].

Some Delaunay-based algorithms also offer weak dihedral angle bounds. Slivers
can be removed by carefully perturbing the point set, either geometrically [Che97,
ELM+00] or by adding small weights to the points and using a weighted Delaunay
triangulation, a technique called sliver exudation [Ede01, LT01, CDS12]. In all
algorithms for meshing polyhedra that offer dihedral angle bounds, the bounds
are too weak to be reassuring to practitioners, but sliver exudation often performs
substantially better in practice than the theory suggests [EG02]. Guaranteed sliver
elimination with bounds strong enough to be meaningful in practice remains an
important unsolved problem.

There is a special case where it is possible to obtain strong bounds on dihedral
angles: when the input domain is not a polyhedron, but a region bounded by a
smooth surface. By deforming a body-centered cubic lattice or octree, the iso-
surface stuffing algorithm of Labelle and Shewchuk [LS07] generates a mesh of
tetrahedra whose dihedral angles are bounded between 10.7◦ and 164.8◦.

Constrained Delaunay triangulations extend uneasily to R
3, because as Schön-

hardt’s and Chazelle’s polyhedra remind us, not every polyhedron even has a tri-
angulation without Steiner points. Shewchuk [She08] considers adding vertices on
the polyhedron’s edges. Given a polyhedron X , call a tetrahedron t constrained

Delaunay if t ⊆ X , t’s vertices are vertices of X , and t has a circumsphere that
encloses no vertex of X visible from any point in the relative interior of t. A CDT
of X is a triangulation of X whose tetrahedra are all constrained Delaunay. Call
an edge of X strongly Delaunay if there exists a closed ball that contains the edge’s
two vertices but contains no other vertex of X . Shewchuk’s CDT Theorem states
that if every edge of X is strongly Delaunay, then X has a CDT. If a polyhedron
does not have a CDT, one can subdivide its edges with new vertices until it has
one. Shewchuk and Si [SS14] use the CDT Theorem and this notion of constrained
Delaunay triangulation as part of a Delaunay refinement algorithm (implemented
in TetGen) that is particularly effective for polyhedra that have small input angles.

OPEN PROBLEMS

1. Can the region between k convex polytopes, with n vertices in total, be
(Steiner) triangulated with O(n+ k2) tetrahedra?

2. Give an input-sensitive tetrahedralization algorithm for polyhedra, for exam-
ple, one that uses only O(1) times the smallest possible number of tetrahedra.

Preliminary version (July 28, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



780 M. Bern, J. R. Shewchuk, and N. Amenta

3. Give a polynomial bound (or even a simple-to-state bound depending upon
geometry) on the number of Steiner points needed to make all edges of a
polyhedron strongly Delaunay.

4. Give an algorithm for computing tetrahedralizations of point sets or polyhe-
dra, such that each tetrahedron contains its own circumcenter. This condition
guarantees a desirable matrix property for a finite-volume formulation of an
elliptic partial differential equation [Ber02].

29.7 ARBITRARY DIMENSION

We now discuss triangulation algorithms for arbitrary dimension R
d. In our big-O

expressions, we consider the dimension d to be fixed.

GLOSSARY

Polytope: A bounded intersection of halfspaces in R
d.

Face: A subpolytope of any dimension—a vertex, edge, 2D face, 3D face, etc.

Simplex: The convex hull of d+ 1 affinely independent points in R
d.

Circumsphere: The hypersphere through the vertices of a simplex.

Flip: A local operation, sometimes called a geometric bistellar operation, that
exchanges two different triangulations of d+ 2 points in R

d.

TRIANGULATIONS OF POINT SETS

Delaunay triangulations and weighted Delaunay triangulations generalize to R
d.

Every simplex in the DT has a circumsphere (a circumscribing hypersphere) that
encloses no input points. The lifting map generalizes as well, so any convex hull
algorithm in dimension d + 1 can be used to compute d-dimensional DTs. The
incremental insertion algorithm also generalizes to R

d; however, the edge flipping
algorithm does not. Flips themselves do generalize to R

d: a flip in R
d replaces a

triangulation of d + 2 points in convex position with another triangulation of the
same points. For example, 5 points in convex position in R

3 can be triangulated by
two tetrahedra sharing a face or by three tetrahedra sharing an edge. Unfortunately,
the natural generalization of the flip algorithm, which starts from an arbitrary
triangulation in R

3 and performs appropriate flips, can get stuck before reaching
the DT [Joe89]. The most popular algorithm for computing DTs in three or more
dimensions is randomized incremental insertion.

The lifting map can be used to show (from the Upper Bound Theorem for
Polytopes) that an n-vertex DT in R

d contains at most O(n⌈d/2⌉) simplices. For
practical applications such as interpolation, surface reconstruction, and mesh gener-
ation, however, the DT rarely attains its worst-case complexity. The DT of random
points within a volume or on a convex surface in R

3 has linear expected complex-
ity, but on a nonconvex surface can have near-quadratic complexity [Eri03]. DT
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complexity can also be bounded by geometric parameters such as the ratio between
longest and shortest pairwise distances [Eri03].

Most 2D DT optimality properties do not generalize to higher dimensions.
One exception: the DT minimizes the maximum radius of the simplices’ smallest
enclosing spheres. The smallest enclosing sphere of a simplex is always either
the circumscribing sphere of the simplex or the smallest circumscribing sphere of
some face of the simplex.

Of interest in algebraic geometry as well as computational geometry is the flip
graph or triangulation space, which has a vertex for each distinct triangulation
of a point set and an edge for each flip. The flip graph is sometimes defined so that
flips that remove or insert input vertices are permitted; for example, a tetrahedron
in R

3 can be split into four tetrahedra by the insertion of a vertex in its interior. If
the flip graph includes these flips, then the flip graph of the regular triangulations
of a point set has the structure of the skeleton of a high-dimensional polytope called
the secondary polytope [BFS90, GKZ90]. Therefore, the flip graph is connected.

Unfortunately, the flip graph of all triangulations of a point set (including
nonregular triangulations) is not well understood. Santos [San00] showed that for
some point sets in R

5 this flip graph is not connected, even if the points are in
convex position (making it moot whether flips that remove or insert input vertices
are permitted, as every triangulation includes all the input vertices). Moreover, in
R

6 the flip graph may even have an isolated vertex. The question remains open in
R

3 and R
4.

The following is known about Steiner triangulations of point sets in R
d. It is

always possible to add O(n) Steiner points, so that the DT of the augmented point
set has size only O(n). Moreover, there is always a nonobtuse Steiner triangulation
containing at most O(n⌈d/2⌉) simplices, all of which are path simplices: each
includes a path of d pairwise orthogonal edges [BCER95].

TRIANGULATIONS OF POLYTOPES

Triangulations of polytopes in R
d arise in combinatorics and algebra [GKZ90,

Sta80]. Several algorithms are known for triangulating the hypercube, but there
is a gap between the algorithm that produces the least number of simplices and
the best lower bound on the number of simplices [OS03]; see Section 16.7.2. It is
known that the region between two convex polytopes—a nonconvex polytope—can
always be triangulated without Steiner points [GP88]; see Section 16.3.2. Below et
al. [BBLR00] have shown that there can be a significant difference (linear in the
number of vertices) in the minimum numbers of simplices in a triangulation and a
dissection of a convex polytope (of dimension 3 or greater), which is a partition
of a polytope into simplices whose faces may meet only partially (for example, a
triangle bordering two other triangles along one of its sides).

OPEN PROBLEMS

1. Is the flip graph of the triangulations of a point set or polytope in R
3 or R4

always connected?

2. What is the maximum number of triangulations of a set of n points in R
d?
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For bounds on this maximum in R
2, see Sharir and Sheffer [SS11] for an upper

bound and Dumitrescu et al. [DSST13] for a lower bound.

3. Narrow the gap between the upper and lower bounds on the minimum number
of simplices in a triangulation of the d-cube.

29.8 SOURCES AND RELATED MATERIAL

SURVEYS

For more complete descriptions and references, consult the following sources.

[Aur91]: Generalizations of the Voronoi diagram and Delaunay triangulation.

[Ber02]: A survey of mesh generation algorithms.

[CDS12]: A book on Delaunay triangulations and Delaunay refinement algorithms
for mesh generation.

[DRS10]: A book on the combinatorics of triangulations, especially regular trian-
gulations, in arbitrary dimensions.

[Ede01]: A book on geometry and topology relevant to triangular and tetrahedral
mesh generation.

The web is a rich source on mesh generation and triangulation; see Chapter 67.

RELATED CHAPTERS

Chapter 16: Subdivisions and triangulations of polytopes
Chapter 23: Computational topology of graphs on surfaces
Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 30: Polygons
Chapter 35: Curve and surface reconstruction
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