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INTRODUCTION

The Voronoi diagram of a set of sites partitions space into regions, one per site; the
region for a site s consists of all points closer to s than to any other site. The dual of
the Voronoi diagram, the Delaunay triangulation, is the unique triangulation such
that the circumsphere of every simplex contains no sites in its interior. Voronoi dia-
grams and Delaunay triangulations have been rediscovered or applied in many areas
of mathematics and the natural sciences; they are central topics in computational
geometry, with hundreds of papers discussing algorithms and extensions.

Section 27.1 discusses the definition and basic properties in the usual case of
point sites in R

d with the Euclidean metric, while Section 27.2 gives basic algo-
rithms. Some of the many extensions obtained by varying metric, sites, environ-
ment, and constraints are discussed in Section 27.3. Section 27.4 finishes with some
interesting and nonobvious structural properties of Voronoi diagrams and Delaunay
triangulations.

GLOSSARY

Site: A defining object for a Voronoi diagram or Delaunay triangulation. Also
generator, source, Voronoi point.

Voronoi face: The set of points for which a single site is closest (or more
generally a set of sites is closest). Also Voronoi region, Voronoi cell.

Voronoi diagram: The set of all Voronoi faces. Also Thiessen diagram, Wigner-
Seitz diagram, Blum transform, Dirichlet tessellation.

Delaunay triangulation: The unique triangulation of a set of sites such that
the circumsphere of each full-dimensional simplex has no sites in its interior.

27.1 POINT SITES IN THE EUCLIDEAN METRIC

See [Aur91, Ede87, For95] for more details and proofs of material in this section.

GLOSSARY

Sites: Points in a finite set S in R
d.

Voronoi face of a site s: The set of all points of R
d strictly closer to the
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FIGURE 27.1.1

Voronoi diagram and Delaunay triangulation of the same set of sites in two dimensions (a,b) and
three dimensions (c,d).

(c) (d)(a) (b)

site s ∈ S than to any other site in S. The Voronoi face of a site is always a
nonempty, open, convex, full-dimensional subset of Rd.

Voronoi face V (T ) of a subset T: For T a nonempty subset of S, the set of
points of Rd equidistant from all members of T and closer to any member of T
than to any member of S\T .

Voronoi diagram of S: The collection of all nonempty Voronoi faces V (T ), for
T ⊆ S. The Voronoi diagram forms a cell complex partitioningRd. In two dimen-
sions (Figure 27.1.1(a)), the Voronoi face of a site is the interior of a convex, pos-
sibly infinite polygon; its boundary consists of Voronoi edges (1-dimensional
faces) equidistant from two sites and Voronoi vertices (0-dimensional faces)
equidistant from at least three sites. Figure 27.1.1(c) shows a Voronoi diagram
in three dimensions.

Delaunay face D (T ) of a subset T: The Delaunay face D(T ) is defined for
a subset T of S whenever there is a sphere through all the sites of T with all
other sites exterior (equivalently, whenever V (T ) is not empty). Then D(T ) is
the (relative) interior of the convex hull of T . For example, in two dimensions
(Figure 27.1.1(b)), a Delaunay triangle is formed by three sites whose circum-
circle is empty and a Delaunay edge connects two sites that have an empty
circumcircle (in fact, infinitely many empty circumcircles).

Delaunay triangulation of S: The collection of all Delaunay faces. The De-
launay triangulation forms a cell complex partitioning the convex hull of S.

There is an obvious one-one correspondence between the Voronoi diagram and the
Delaunay triangulation; it maps the Voronoi face V (T ) to the Delaunay face D(T ).
This correspondence has the property that the sum of the dimensions of V (T ) and
D(T ) is always d. Thus, in two dimensions, V (T ) is a Voronoi vertex iff D(T ) is
an open polygonal region; V (T ) is an edge iff D(T ) is; V (T ) is an open polygonal
region iff D(T ) is a vertex, i.e., a site. In fact, the 1–1 correspondence is a duality
between cell complexes, reversing face ordering: for subsets T, T ′ ⊆ S, V (T ′) is a
face of V (T ) iff D(T ) is a face of D(T ′).

The set of sites S ⊂ R
d is in general position (or is nondegenerate) if no

d+2 points lie on a common d-sphere and no k+2 points lie on a common k-flat, for
k < d. If S is in general position, then the Delaunay triangulation of S is a simplicial
complex, and every vertex of the Voronoi diagram is incident to d+ 1 edges in the
Delaunay triangulation. If S is not in general position, then Delaunay faces need
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not be simplices; for example, the four cocircular sites in Figure 27.1.1(b) form a
Delaunay quadrilateral. A completion of a Delaunay triangulation is obtained by
splitting nonsimplicial faces into simplices without adding new vertices.

RELATION TO CONVEXITY

There is an intimate connection between Delaunay triangulations in R
d and convex

hulls in R
d+1, and between Voronoi diagrams in R

d and halfspace intersections in
R

d+1. To see the connections, consider the special case of d = 2. Identify R
2

with the plane spanned by the first two coordinate axes of R3, and call the third
coordinate direction the vertical direction.

The lifting map λ : R
2 → R

3 is defined by λ(x1, x2) = (x1, x2, x
2
1 + x2

2);
Λ = λ(R2) is a paraboloid of revolution about the vertical axis. See Figure 27.1.2(a).
Let H be the convex hull of the lifted sites λ(S).

The Delaunay triangulation of S is exactly the orthogonal projection into R
2 of

the lower faces ofH (a face is lower if it has a supporting plane with inward normal
having positive vertical coordinate). To see this informally, suppose that triangle
λ(s)λ(t)λ(u) is a lower facet of H , and that plane P passes through λ(s)λ(t)λ(u).
The intersection of P with Λ is an ellipse that projects orthogonally to a circle
in R

2 (Figure 27.1.2(a)). Since all other lifted sites are above the plane, all other
unlifted sites are outside the circle, and stu is a Delaunay triangle. The opposite
direction, that a Delaunay triangle is a lower facet, is similar.

For Voronoi diagrams, assign to each site s = (s1, s2) the plane

Ps = {(x1, x2, x3) : x3 = −2x1s1 + s21 − 2x2s2 + s22}.
Let I be the intersection of the lower halfspaces of the planes Ps. The Voronoi
diagram is exactly the orthogonal projection into R

2 of the upper faces of I. To

FIGURE 27.1.2

(a) The intersection of a plane with Λ is an ellipse that projects to a circle; (b) on any vertical
line, the surfaces {Ds} appear in the same order as the planes {Ps}.
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see this informally, consider the surfaces

Ds = {(x1, x2, x3) : x3 = ((x1 − s1)
2 + (x2 − s2)

2}
(see Figure 27.1.2). Viewed as a function from R

2 into R, Ds gives the squared
distance to site s. Furthermore, Ps andDs differ only by the quadratic term x2

1+x2
2,

which is independent of s. Hence a point x ∈ R
2 is in the Voronoi cell of site t iff

on the vertical line through x, Dt is lowest among all surfaces {Ds}. This happens
exactly if, on the same line, Pt is lowest among all planes {Ps}, i.e., x is in the
projection of the upper face of I formed by Pt.

COMBINATORIAL COMPLEXITY

In dimension 2, a Voronoi diagram of n ≥ 3 sites has at most 2n− 5 vertices and
3n − 6 edges (and the Delaunay triangulation has at most as many triangles and
edges, respectively).

In dimension d ≥ 3 the Voronoi diagram and Delaunay triangulation can have
Θ(n⌈d/2⌉) faces. Exact bounds can be given using results from convex polytope
theory (Chapter 15). For n sites in d dimensions, the maximum number of Voronoi
k-dimensional faces, k < d, is fn−k(Cd+1(n)) − δ0k, where Cd+1(n) is the d+1-
dimensional cyclic polytope, fn−k gives the number of n−k dimensional faces (see
Section 17.3 and Theorem 17.3.4), and δ0k = 1 if k = 0 and 0 otherwise.

For a simple lower bound example in dimension 3, choose n/2 distinct point
sites on each of two noncoplanar line segments l and l′. Then there is an empty
sphere through each quadruple of sites (a, a′, b, b′) with a, a′ adjacent on l and b, b′

adjacent on l′. Since there are Ω(n2) such quadruples, there are as many Delaunay
tetrahedra (and Voronoi vertices).

If point sites are chosen uniformly at random from inside a sphere, then the
expected number of faces is linear in the number of sites. In dimension 2, the ex-
pected number of Delaunay triangles is 2n; in dimension 3, the expected number
of Delaunay tetrahedra is ∼ 6.77n; in dimension 4, the expected number of De-
launay 4-simplices is ∼ 31.78n [Dwy91]. Similar bounds probably hold for other
distributions, but proofs are lacking.

Subquadratic bounds on the complexity of the Delaunay triangulation of point
sites in R

3 can be obtained in a few cases. The spread (of points) of a set of
points is the ratio between largest and smallest interpoint distances. A point set in
R

3 of size n with spread ∆ can have at most O(∆3) Delaunay tetrahedra, for all
∆ = O(

√
n) [Eri05]. Thus if the point set is dense, i.e., has spread O(n1/3), there

are only O(n) tetrahedra. Points chosen on a surface can also have subquadratic
complexity. For example, if the surface is sufficiently continuous and satisfies mild
genericity conditions, then any (ǫ, κ)-sample of n points on the surface has com-
plexity O(n log n) [ABL03]. A set of points is an (ǫ, κ)-sample if for any point in
the set, there is at least one and at most κ other points in the set within geodesic
distance ǫ measured on the surface.

27.2 BASIC ALGORITHMS

Table 27.2.1 lists basic algorithms that compute the Delaunay triangulation of
n point sites in R

d using the Euclidean metric. Using the connection with con-
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vexity, any (d+1)-dimensional convex hull algorithm can be used to compute a
d-dimensional Delaunay triangulation; in fact the divide-and-conquer, incremental,
and gift-wrapping algorithms are specialized convex hull algorithms. Running times
are given both for worst-case inputs, and for inputs chosen uniformly at random in-
side a sphere, with expectation taken over input distribution. The Voronoi diagram
can be obtained in linear time from the Delaunay triangulation, using the one-one
correspondence between their faces. See [Aur91, Ede87, For95, AK00, AKL13] for
more references. Chapter 67 lists available implementations of Voronoi diagram
algorithms.

TABLE 27.2.1 Delaunay Triangulation algorithms in the Euclidean metric

for point sites.

ALGORITHM DIM WORST CASE UNIFORM

Flipping 2 O(n2)

Plane sweep 2 O(n logn)

Divide-and-conquer 2 O(n logn) O(n)

Randomized incremental 2 O(n logn)

Randomized incremental ≥ 3 O(n⌈d/2⌉) O(n logn)

Gift-wrapping ≥ 2 O(n⌈d/2⌉+1) O(n)

THE RANDOMIZED INCREMENTAL ALGORITHM

The incremental algorithm adds sites one by one, updating the Delaunay triangu-
lation after each addition. The update consists of discovering all Delaunay faces
whose circumspheres contain the new site. These faces are deleted and the empty
region is partitioned into new faces, each of which has the new site as a vertex.
See Figure 27.2.1. An efficient algorithm requires a good data structure for finding
the faces to be deleted. Then the running time is determined by the total num-
ber of face updates, which depends upon site insertion order. The bounds given
in Table 27.2.1 are the expected running time of an algorithm that makes a ran-
dom choice of insertion order, with each insertion permutation equally likely; the
bounds for the worst-case insertion order are about a factor of n worse. For uniform
data there is a double expectation, over both insertion order and input distribu-
tion. With additional algorithmic complexity, it is possible to obtain deterministic
algorithms with the same worst-case running times [Cha93].

THE PLANE SWEEP ALGORITHM

The plane sweep algorithm computes a planar Delaunay triangulation using a hor-
izontal line that sweeps upward across the plane. The algorithm discovers a Delau-
nay triangle when the sweepline passes through the topmost point of its circumcir-
cle; in Figure 27.2.2, the Delaunay triangles shown have already been discovered.
A sweepline data structure stores an ordered list of sites; the entry for site s cor-
responds to an interval Is on the sweepline where each maximal empty circle with
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FIGURE 27.2.1

The addition of site s deletes four triangles and adds six (shown
dashed).

s

topmost point in Is touches site s. The sweepline moves in discrete steps only when
the ordered list changes. This happens when a new site is encountered or when a
new Delaunay triangle is discovered (at the topmost point of the circumcircle of
three sites that are consecutive on the sweepline list). A priority queue is needed to
determine the next sweepline move. The running time of the algorithm is O(n logn)
since the sweepline moves O(n) times—once per site and once per triangle—and
it costs time O(log n) per move to maintain the priority queue and sweepline data
structure.

FIGURE 27.2.2

The sweepline list is x, s, t, u, v, w, x. The next Delaunay triangle is tuv.

s

t

u

v

w

x

I s I t Iu I v IwI x I x

OTHER ALGORITHMS

The planar divide-and-conquer algorithm uses a splitting line to partition the point
set into two equal halves, recursively computes the Delaunay triangulation of each
half, and then merges the two subtriangulations in linear time. If the sites form the
vertices of a convex polygon, then the Voronoi diagram can be computed in linear
time [AGSS89]. In any dimension, the gift-wrapping algorithm is a specialization
of the convex-hull gift-wrapping algorithm (Chapter 26) to Delaunay triangula-
tions. There is an approximately output-sensitive algorithm, with running time
O(f logn log∆) where f is the number of output simplices, n is the number of
points and ∆ is the spread of the point set [MS14].

Graphics hardware, in particular Z-buffers, allow efficient practical computa-
tion of fixed-resolution approximate Voronoi diagrams for quite general sites and
distance functions [HCK+99].
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27.3 EXTENSIONS

GLOSSARY

Order-k Voronoi diagram: The order-k Voronoi diagram partitions Rd on the
basis of the first k closest sites (without distinguishing order among them).

Farthest site Voronoi diagram: The farthest site Voronoi diagram partitions
R

d on the basis of the farthest site, or equivalently, the closest n−1 of n sites.

Constrained Delaunay triangulation: Constrained Delaunay triangulations
are defined relative to a set of constraint facets that restrict visibility. The
constrained Delaunay triangulation of a set of sites has the property that for
every simplex, the interior of the simplex circumsphere contains no site visible
from the interior of the simplex.

Conforming Delaunay triangulation: Fix a set of noncrossing constraint
facets E and a set of point sites S. A conforming Delaunay triangulation is the
Delaunay triangulation of a set of sites S′ ⊇ S so that every facet in E is the
union of Delaunay faces of S′.

Power or Laguerre diagram: A Voronoi diagram for sites si with weights wi

where the distance from a point x is measured along a tangent to the sphere of
radius

√
wi centered on si.

HIGHER-ORDER VORONOI DIAGRAMS

The order-k Voronoi diagram can be obtained as an appropriate projection of the
k-level of an arrangement of hyperplanes (see [Ede87, For93] and Section 28.2 of this
Handbook); it can also be obtained as the orthogonal projection of an intersection
polytope [AS92]. In dimension 2, the order-k Voronoi diagram has O(k(n − k))
faces. In dimensions d ≥ 3, the sum of the number of faces of the order-j diagrams,
j ≤ k, is O(n⌈d/2⌉k⌊d/2⌋+1) [CS89]; finding good bounds for fixed k remains an open
problem. See Table 27.3.1 for running time bounds.

TABLE 27.3.1 Algorithms for order-k Voronoi diagrams of point

sites in the Euclidean metric.

PROBLEM DIM TIME

Farthest site 2 O(n logn)

Farthest site ≥ 3 O(n⌈d/2⌉)

Order-k 2 O(k(n− k) logn+ n log3 n)

Order-j, 1 ≤ j ≤ k ≥ 3 O(n⌈d/2⌉k⌊d/2⌋+1)
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CONSTRAINED DELAUNAY TRIANGULATIONS

Let S be a set of n point sites in R
2 and E a set of noncrossing constraint edges

with endpoints in S. A point p ∈ R
2 is visible from a site s if the open segment

ps does not intersect any edge of E. The constrained Delaunay triangulation
(of S with respect to E) is a triangulation of S extending the edges in E so that
the circumcircle of every triangle contains no site that is visible from the interior
of the triangle. In R

2 the constrained Delaunay triangulation always exists; it is as
close as possible to the true Delaunay triangulation, subject to the constraint that
the edges in E must be used. See also Section 28.2.

The bounded distance from a site to a point is Euclidean distance if the
point is visible, and infinite otherwise; the bounded Voronoi diagram of S using
E is defined using bounded distance. The bounded Voronoi diagram is dual to a
subgraph of the constrained Delaunay triangulation.

Both the constrained Delaunay triangulation and the bounded Voronoi diagram
can be computed in time O(n log n) using either divide-and-conquer or the sweepline
paradigm. If the sites and constraint edges are the vertices and edges of a simple
polygon, respectively, then the constrained Delaunay triangulation can be computed
in linear time [KL96].

The constrained Delaunay triangulation can be generalized to dimension d > 2.
Let S be a set of point sites in R

d and E a set of d−1-dimensional closed simplicial
constraint facets with vertices in S that are noncrossing (the intersection of two
constraint simplices is either empty or a face of both). A constrained Delaunay
triangulation (of S with respect to E) is a triangulation such that constraint
facets are triangulation facets and such that, for every d-simplex, the interior of the
circumsphere of the simplex contains no site visible from the interior of the simplex.
In dimension d > 2, a constrained Delaunay triangulation does not always exist;
for example, the Schönhardt polyhedron in dimension 3 cannot be triangulated
without extra Steiner points (see Section 29.5). Shewchuk [She08] gives a sufficient
condition for the existence of constrained Delaunay triangulations: the constraint
simplices must be ridge-protected, that is, each j-face of a constraint simplex, j ≤
d−2, must have a closed circumsphere not containing any sites. He also gives two
algorithms that construct the constrained Delaunay triangulation when it exists,
one a sweep algorithm [She00] and the second a flipping algorithm [She03].

CONFORMING DELAUNAY TRIANGULATIONS

Let S be a set of point sites in R
d and E a set of noncrossing j-dimensional con-

straint simplices, j < d. A conforming Delaunay triangulation of E is the
Delaunay triangulation of a set of sites S′ ⊇ S so that every simplex in E is the
union of faces of Delaunay simplices of S′. In R

2, Edelsbrunner and Tan [ET93]
give an algorithm for conforming Delaunay triangulations, where the cardinality of
S′ is O(n3), n the cardinality of S. See [CP06] for an approach in R

3.

OTHER DISTANCE MEASURES

Table 27.3.2 lists Voronoi diagram algorithms where “distance” is altered. The
distance from a site si to a point x can be a function of the Euclidean distance
e(si, x) and a site-specific real weight wi.
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TABLE 27.3.2 Algorithms for point sites in R
2, other distance measures.

PROBLEM DISTANCE TO x TIME

Additive weights wi + e(si, x) O(n logn)

Multiplicative weights wie(si, x) O(n2)

Laguerre or power
√

e(si, x)2 − wi O(n logn)

Lp ||si − x||p O(n logn)

Skew e(si, x) + κ ∆y(si, x) O(n logn)

Convex distance function O(n logn)

Abstract axiomatic O(n logn)

Simple polygon geodesic O(n log2 n)

Crystal growth wi · SP (si, x) O(n3 + nS logS)

Anisotropic local metric tensor O(n2+ǫ)

The seemingly peculiar power distance [Aur87] is the distance from x to the
sphere of radius

√
wi about si along a line tangent to the sphere. Many of the

basic Voronoi diagram algorithms extend immediately to the power distance, even
in higher dimension.

A (polygonal) convex distance function [CD85] is defined by a convex
polygon C with the origin in its interior. The distance from x to y is the real r ≥ 0
so that the boundary of rC + x contains y. Polygonal convex distance functions
generalize the L1 and L∞ metrics (C is a diamond or square, respectively); a
polygonal convex distance function is a metric exactly if C is symmetric about the
origin.

The (skew) distance [AAC+99] between two points is the Euclidean distance
plus a constant times the difference in y-coordinate. It can be viewed as a measure
of the difficulty of motion on a plane that has been rotated in three dimensions
about the x-axis.

An abstract Voronoi diagram [KMM93] is defined by the “bisectors” between
pairs of sites, which must satisfy special properties.

The geodesic distance inside an environment of polygonal obstacles is the
length of the shortest path that avoids obstacle interiors. Some progress using the
geodesic metric appears in [HS99].

The crystal growth Voronoi diagram [SD91] models crystal growth where
each crystal has a different growth rate. The distance from a site si to a point x
in the Voronoi face of si is wi ·SP (si, x), where wi is a weight and SP (si, x) is the
shortest path distance lying entirely within the Voronoi face of si. The parameter
S in the running time measures the time to approximate bisectors numerically.

An anisotropic Voronoi diagram [LS03] requires a metric tensor at each site to
specify how distance is measured from that site. The anisotropic Voronoi diagram
generalizes the multiplicatively weighted diagram; both have the property that the
region of a site may be disconnected or not simply-connected.

The Bregman divergence from a point p to a point q is defined relative to
a convex function F and roughly measures how F (q) differs from the first-order
Taylor approximation obtained from F at p. The Bregman divergence generalizes
various functions from statistics and machine learning, e.g., the Kullback-Leibler
and Itakura-Saito divergences. Boissonnat et al. [BNN10] define various versions
and give algorithms for the Voronoi diagram and Delaunay triangulation defined
using Bregman divergence.
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OTHER SITES

Many classes of sites besides points have been used to define Voronoi diagram and
Voronoi-diagram-like objects. For example, the Voronoi diagram of a set of disjoint
circles in the plane is just an additively-weighted point-site Voronoi diagram.

The Voronoi diagram of a set of n line segment sites in R
2 can be computed

in time O(n logn) using the sweepline method or the divide-and-conquer method.
The well-known medial axis of a polygon or polygonal region can be obtained
from the Voronoi diagram of its constituent line segments. The medial axis of
a simple polygon can be found in linear time, using the linear-time triangulation
algorithm [AGSS89].

Aichholzer et al. [AAA+10] describe a randomized algorithm that handles seg-
ments and circular arcs; more general free-form curves can be handled by approxi-
mation using polygonal and curved arcs. The algorithm uses an unusual divide-and-
conquer paradigm and runs in expected time O(n log n) under some assumptions.

The straight skeleton of a simple polygon [AAAG95] is structurally similar to
the medial axis, though it is not strictly a Voronoi diagram. It is defined as the
trace of the vertices of the polygon, as the polygon is shrunk by translating each
edge inward at a constant rate. Unlike the medial axis, it has only polygonal edges.
Several algorithms achieve time and space bounds of roughly O(nr), r the number
of reflex vertices; a subquadratic worst-case bound is known [EE99]. Some progress
on extension to three-dimensional polyhedra is available [BEGV08].

The worst-case combinatorial and algorithmic complexity of Voronoi diagrams
of general sites in three dimensions is not well understood [KS03, KS04]. For
many sites and metrics in R

3, roughly cubic upper bounds on the combinatorial
complexity of the Voronoi diagram can be obtained using the general theory of lower
envelopes of trivariate functions (see Chapter 28 on arrangements). Known lower
bounds are roughly quadratic, and upper bounds are conjectured to be quadratic.

A specific long-standing open problem is to give tight bounds on the combi-
natorial complexity of the Voronoi diagram of a set of n lines in R

3 using the Eu-
clidean metric. Roughly quadratic upper bounds are known if the lines have only
a constant number of orientations [KS03]. The boundary of the union of infinite
cylinders of fixed radius is also known to have roughly quadratic complexity [AS00];
this boundary can be viewed as the level set of the line Voronoi diagram at fixed
distance. Everett et al. [EGL+09, ELLD09] give a complete combinatorial analysis
of all possible Voronoi diagrams of three lines; Hemmer et al. [HSH10] describe a
nearly-cubic exact-arithmetic algorithm that computes the Voronoi diagram of an
arbitrary set of lines in R

3.
Dwyer [Dwy97] shows that the expected complexity of the Euclidean Voronoi

diagram of n k-flats in R
d is θ(nd/(d−k)), as long as d ≥ 3 and 0 ≤ k < d. The flats

are assumed to be drawn independently from the uniform distribution on k-flats
intersecting the unit ball. Thus the expected complexity of the Voronoi diagram of
a set of n uniformly random lines in R

3 is O(n3/2).
Voronoi diagrams in R

3 can be defined by convex distance functions, as in
the plane. If the distance function is determined by a convex polytope with a
constant number of facets, then the Voronoi diagram of a set of disjoint polyhedra
has combinatorial complexity roughly quadratic in the total number of vertices of
all polytopes [KS04].
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KINETIC VORONOI DIAGRAMS

Consider a set of n moving point sites in R
d, where the position of each site is

a continuous function of a real parameter t, representing time. In general the
Voronoi diagram of the points will vary continuously with t, without any change
to its combinatorial structure; however at certain discrete values ti, i = 1, . . . , the
combinatorial structure will change. A kinetic Voronoi diagram algorithm
determines times that the structure changes and at each change updates a data
structure representation of the Voronoi diagram. See a survey in [DC08] and also
Chapter 53.

Rubin [Rub15] recently showed a nearly-quadratic upper bound on the number
of combinatorial changes to a planar Delaunay triangulation, provided that the
points are each moving at unit speed along a straight line.

OTHER SURFACES

The Delaunay triangulation of a set of points on the surface of a sphere Sd has
the same combinatorial structure as the convex hull of the set of points, viewed as
sitting in R

d+1. On a closed Riemannian manifold, the Delaunay triangulation of
a set of sites exists and has properties similar to the Euclidean case, as long as the
set of sites is sufficiently dense [LL00, GM01].

MOTION PLANNING

The motion planning problem is to find a collision-free path for a robot in an
environment filled with obstacles. The Voronoi diagram of the obstacles is quite
useful, since it gives a lower-dimensional skeleton of maximal clearance from the
obstacles. In many cases the shape of the robot can be used to define an appropriate
metric for the Voronoi diagram. See Section 50.2 for more on the use of Voronoi
diagrams in motion planning.

SURFACE RECONSTRUCTION

The surface reconstruction problem is to construct an approximation to a two-
dimensional surface embedded in R

3, given a set of points sampled from the surface.
A whole class of surface reconstruction methods are based on the computation of
Voronoi diagrams [AB99, Dey07] (see Chapters 35 on surface reconstruction).

DELAUNAY REFINEMENT

Delaunay refinement builds a mesh of “fat” triangles, i.e., with no small or large
angles, by maintaining a Delaunay triangulation while judiciously adding new sites.
The original ideas come from Chew [Che89], who showed that skinny triangles can
be eliminated by repeatedly adding as new site the circumcenter of any skinny tri-
angle, and Ruppert [Rup95], who with an additional update rule gave an algorithm
that produces meshes that have the minimum possible number of triangles, up to
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a constant factor. See [CDS13] for the now-extensive theory including extensions
to higher dimensions.

IMPLEMENTATIONS

There are a number of available high-quality implementations of algorithms that
compute Delaunay triangulations and Voronoi diagrams of point sites in the Eu-
clidean metric. These can be obtained from the web and from the algorithms
libraries CGAL and LEDA (see Chapters 67 and 68 on implementations). It is
typically challenging to implement algorithms for sites other than points or metrics
other than the Euclidean metric, largely because of issues of numerical robustness.
See [Bur96, Hel01, SIII00] for approaches for line segment sites in the plane.

27.4 IMPORTANT PROPERTIES

ROUNDNESS

The Delaunay triangulation is “round,” that is, skinny simplices are avoided. This
can be formalized in two dimensions by Lawson’s classic result: over all possible
triangulations, the Delaunay triangulation maximizes the minimum angle of any
triangle. No generalization using angles is known in higher dimension. However,
define the enclosing radius of a simplex as the minimum radius of an enclosing
sphere. In any dimension and over all possible triangulations of a point set, the
Delaunay triangulation minimizes the maximum enclosing radius of any simplex
[Raj94]. Also see Section 29.4 on mesh generation.

OPTIMALITY

Fix a set S of sites in R
d. For a triangulation T of S with simplices t1, . . . , tn, define

vi = sum of squared vertex norms of ti

ci = squared norm of barycenter of ti

ai = volume of ti

si = sum of squared edge lengths of ti

ri = circumradius of ti.

Over all triangulations T of S, the Delaunay triangulation attains the unique min-
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imum of the following functions, where κ is any positive real [Mus97]:

V (T ) =
∑

i

viai

C(T ) =
∑

i

ciai

H(T ) =
∑

i

si/ai d = 2 only

R(T, κ) =
∑

i

rκi d = 2 only.

VISIBILITY DEPTH ORDERING

Choose a viewpoint v and a family of disjoint convex objects in R
d. Object A is in

front of object B from v if there is a ray starting at v that intersects A and then
B in that order. Though an arbitrary family can have cycles in the “in front of”
relation, the relation is acyclic for the faces of the Delaunay triangulation, for any
viewpoint and any dimension [Ede90].

An application comes from computer graphics. The painter’s algorithm
renders 3D objects in back to front order, with later objects simply overpainting
the image space occupied by earlier objects. A valid rendering order always exists
if the “in front of” relation is acyclic, as is the case if the objects are Delaunay
tetrahedra, or a subset of a set of Delaunay tetrahedra.

SUBGRAPH RELATIONSHIPS

The edges of a Delaunay triangulation form a graph DT whose vertices are the
sites. In any dimension, the following subgraph relations hold:

NNG ⊆ EMST ⊆ RNG ⊆ GG ⊆ DT

where EMST is the Euclidean minimum spanning tree, RNG is the relative neigh-
borhood graph, GG is the Gabriel graph, and NNG is the nearest neighbor graph
with edges viewed as undirected; the containment NNG ⊆ EMST requires that the
sites be in general position. See Section 32.1 on proximity graphs.

DILATION

A geometrically embedded graph G has dilation c if for any two vertices, the
shortest path distance along the edges of G is at most c times the Euclidean dis-
tance between the vertices. In R

2, the Delaunay triangulation has dilation at most
∼ 1.998 [Xia13] and examples exist with dilation at least ∼ 1.5932. With an
equilateral-triangle convex distance function, the dilation is at most 2.
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INTERPOLATION

Suppose each point site si ∈ S ⊂ R
d has an associated function value fi. For p ∈ R

d

define λi(p) as the proportion of the area of si’s Voronoi cell that would be removed
if p were added as a site. Then the natural neighbor interpolant f(p) =

∑
λi(p)fi

is C0, and C1 except at sites. This construction can be generalized to give a Ck

interpolant for any fixed k [HS02].
Alternatively, for a triangulation of S in R

2, consider the piecewise linear surface
defined by linear interpolation over each triangle. Over all possible triangulations,
the Delaunay triangulation minimizes the roughness of the resulting surface, where
roughness is the square of the L2 norm of the gradient of the surface, integrated
over the triangulation [Rip90].

27.5 SOURCES AND RELATED MATERIAL

FURTHER READING

[Aur91, For95, AK00]: Survey papers that cover many aspects of Delaunay trian-
gulations and Voronoi diagrams.

[AKL13, OBSC00]: General reference books on Voronoi diagrams and Delaunay
triangulations; the latter has an extensive discussion of applications.

[Ede87, PS85, BKOS97]: Basic references for geometric algorithms.

[CDS13]: Extensive discussion of Delaunay mesh generation.

www.voronoi.com, www.ics.uci.edu/~eppstein/gina/voronoi.html: Web sites
devoted to Voronoi diagrams.
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Chapter 26: Convex hull computations
Chapter 28: Arrangements
Chapter 29: Triangulations and mesh generation
Chapter 32: Proximity algorithms
Chapter 36: Computational convexity
Chapter 50: Algorithmic motion planning
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and M. Rabl. Divide-and-conquer for Voronoi diagrams revisited. Comput. Geom.,

43:688–699, 2010.

[AAAG95] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A novel type of skeleton
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