
26 CONVEX HULL COMPUTATIONS

Raimund Seidel

INTRODUCTION

The “convex hull problem” is a catch-all phrase for computing various descriptions
of a polytope that is either specified as the convex hull of a finite point set in Rd

or as the intersection of a finite number of halfspaces. We first define the various
problems and discuss their mutual relationships (Section 26.1). We discuss the
very special case of the irredundancy problem in Section 26.2. We consider general
dimension d in Section 26.3 and describe the most common general algorithmic
approaches along with the best run-time bounds achieved so far. In Section 26.4 we
consider separately the case of small dimensions d = 2, 3, 4, 5. Finally, Section 26.5
addresses various issues related to the convex hull problem.

26.1 DESCRIBING CONVEX POLYTOPES AND POLYHEDRA

“Computing the convex hull” is a phrase whose meaning varies with the context.
Consequently there has been confusion regarding the applicability and efficiency of
various “convex hull algorithms.” We therefore first discuss the different versions
of the “convex hull problem” along with versions of the “halfspace intersection
problem” and how they are related via polarity.

CONVEX HULLS

The generic convex hull problem can be stated as follows: Given a finite set S ⊂ Rd,
compute a description of P = convS, the polytope formed by the convex hull of S.

A convex polytope P can be described in many ways. In our context the most
important descriptions are those listed below.

GLOSSARY

(See Chapter 15 for basic concepts and results of polytope theory.)

Vertex description: The set of all vertices of P (specified by their coordinates).

Facet description: The set of all facets of P (specified by their defining linear
inequalities).

Double description: The set of vertices of P , the set of facets of P , and the
incidence relation between the vertices and the facets (specified by an incidence
matrix).

Lattice description: The face lattice of P (specified by its Hasse diagram (cf.

687

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

688 R. Seidel

below), with vertex and facet nodes augmented by coordinates and defining linear
inequalities, respectively).

Boundary description: A triangulation of the boundary of P (specified by a
simplicial complex, with vertices and maximal simplices augmented by coordi-
nates and defining normalized linear inequalities, respectively).

Hasse diagram: A directed graph of an order relation that joins nodes a to b
iff a ≤ b and there are no elements between a and b in the sense that if a ≤ c ≤ b
then either c = a or c = b. For the face lattice, the order relation is containment.

The five descriptions above assume that P is full-dimensional. If it is not, then
a specification of the smallest affine subspace containing P has to be added to all
but the vertex description.

These five descriptions make explicit to varying degrees the geometric informa-
tion carried by polytope P and the combinatorial information of its facial struc-
ture. The vertex description and the facet description each carry only rudimentary
geometric information about P . We therefore call them purely geometric de-
scriptions. The other three descriptions we call combinatorial since they also
carry more or less complete combinatorial information about the face structure of
P . As a matter of fact, these three descriptions are equivalent in the sense that one
can be computed from the other by purely combinatorial means, i.e., without the
use of arithmetic operations on real numbers.

Which description is to be computed depends on the application at hand. It is
important to keep in mind, however, that these descriptions can differ drastically
in terms of their sizes (see Section 26.3).

INTERSECTION OF HALFSPACES

Closely related to the convex hull problem is the halfspace intersection problem:
Given a finite set H of halfspaces in Rd, compute a description of the polyhedron
Q =

⋂
H.

Convex polyhedra are more general objects than convex polytopes in that they
need not be bounded. Consequently their descriptions are slightly more compli-
cated. Every polyhedron Q admits a “factorization” Q = L+ C +R, where L is a
linear subspace orthogonal to C and R, the set C is a convex cone, and R is a convex
polytope. The “vertex description” of Q then consists of a minimal set of vectors
spanning L, the set of extreme rays of C, and the set of vertices of R. Our other
four description methods for convex polytopes have to be adjusted accordingly in
order to apply to polyhedra. Also, the triangulations appearing in the boundary
description need to allow for unbounded simplices (this concept makes sense if one
views a k-simplex as an intersection of k + 1 halfspaces).

Because polyhedra are more general than polytopes, all statements about the
size differences among the various descriptions of the latter apply also to the former.

POLARITY

The relationship between computing convex hulls and computing the intersection
of halfspaces arises because of polarity (Section 15.1.2). Let S be a finite set in
Rd and let HS be the set of halfspaces {hp | p ∈ S}, with hp = {x | 〈x, p〉 ≤ 1}. Let

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 689

P = convS and let Q =
⋂
HS . Polarity yields a 1-1 correspondence between the

k-faces of Q and the (d−k)-faces of P that admit supporting hyperplanes having
P and the origin strictly on the same side. In particular, if the origin is contained
in the relative interior of P , then the face lattices of P and Q are anti-isomorphic.

It is thus easy to reduce a convex hull problem to a halfspace intersection
problem: First translate S by −

∑
p∈S p/|S| to insure that the origin is contained

in the relative interior of P , and compute Q =
⋂
HS for the resulting HS . The

polytope Q is then the polar P∆ of P , and, assuming that P is full-dimensional, we
have straightforward correspondences between the vertex description of Q and the
facet description of P , between the facet description of Q and the vertex description
of P , between the double descriptions of Q and of P (reverse the roles of vertices and
facets), and between the lattice descriptions of Q and P (reverse the order of the
lattice). Note that there is no correspondence between the boundary descriptions.
If P has dimension l < d then Q = Q′ ×L, where polytope Q′ has dimension l and
L is a linear subspace of dimension d− l. The indicated correspondences then hold
between P and Q′.

Reducing a halfspace intersection problem to a convex hull problem is more
difficult. Polarity assumes all halfspaces to be describable as {x | 〈a, x〉 ≤ 1}, which
means they must strictly contain the origin. In general not all halfspaces in a set H
will be of such a form. In order to achieve this form the origin must be translated
to a point r that is contained in the interior of Q =

⋂
H. Determining such a point

r requires solving a linear program. Moreover, such an r does not exist if Q is
empty, in which case the halfspace intersection problem has a trivial solution, or if
Q is not full-dimensional, in which case one has to perform some sort of dimension
reduction.

In general, halfspace intersection appears to be a slightly more general and
versatile problem, especially in a homogenized formulation, which very elegantly
avoids various special cases (see, e.g., [MRTT53]). Nevertheless, we will concentrate
exclusively on the convex hull problem. The stated results can be translated mutatis
mutandis to the halfspace intersection problem. In many cases the algorithms can be
“dualized” to apply directly to the halfspace intersection problem, or the algorithms
were originally stated for the halfspace intersection problem and were “dualized”
to the convex hull problem.

26.2 THE IRREDUNDANCY PROBLEM

GLOSSARY

Irredundancy problem: Given a set S of n points in Rd, compute the vertex
description of P = convS.

λ(n,d): The time to solve a linear programming problem in d variables with n
constraints. O(n) for fixed d (see Chapter 49).

This problem seeks to compute all points in S that are irredundant, in the
sense that they cannot be represented as a convex combination of the remaining
points in S. The equivalent polar formulation requires computation of the facet
description of Q =

⋂
H, given a set H of n halfspaces in Rd. We will follow the

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

690 R. Seidel

primal formulation.
The flavor of this version of the convex hull problem is very different from

the other versions. Testing whether a point p ∈ S is irredundant amounts to
solving a linear programming problem in d variables with n − 1 constraints. The
straightforward method of successively testing points for irredundancy results in an
algorithm with running time O(nλ(n−1, d)), which for fixed dimension d is O(n2).

Clarkson [Cla94] and independently Ottmann et al. [OSS95] have ingeniously
improved this method so that every linear program involves only at most V con-
straints, where V is the number of vertices of P , i.e., the output size. The resulting
running time is O(nλ(V, d)), which for fixed d is O(nV).

In each of these two methods the n linear programs that occur are closely
related to each other. This can be exploited, at least theoretically, by using data
structures for so-called linear programming queries [Mat93, Cha96a, Ram00]. This
was first done by Matoušek for the naive method [Mat93], and then by Chan for the
improved method [Cha96], resulting for fixed d > 3 in an asymptotic time bound
of

O(n logd+2 V + (nV)1−1/(bd/2c+1) logO(1) n) .

Finally, note that for the small-dimensional case d = 2, 3 there are even algo-
rithms with running time O(n log V) (see Chapter 42), which can be shown to be
asymptotically worst-case optimal [KS86].

26.3 COMPUTING COMBINATORIAL DESCRIPTIONS

GLOSSARY

Facet enumeration problem: Compute the facet description of P = convS,
given S.

Vertex enumeration problem: Compute the vertex description of Q =
⋂
H,

given H.

The facet and vertex enumeration problems are classical and were already con-
sidered as early as 1824 by Fourier (see [Sch86, pp. 209–225] for a survey). Inter-
estingly, no efficient algorithm is known that solves these enumeration problems
without also computing, besides the desired purely geometric description, some
combinatorial description of the polyhedron involved. Consequently we now con-
centrate on computing combinatorial descriptions.

THE SIZES OF COMBINATORIAL DESCRIPTIONS

It is important to understand how the three combinatorial descriptions differ in
terms of their sizes. Let S be a set of n points in Rd and let P = convS. Assume
that P is a d-polytope and that it has m facets. As a consequence of McMullen’s
Upper Bound Theorem (Chapter 15) and of polarity, the following inequalities hold
between n and m and are tight:

n ≤ µ(d,m) and m ≤ µ(d, n) ,

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 691

where

µ(d, x) = fd−1(Cd(x)) =

(
x− dd/2e
bd/2c

)
+

(
x− 1− d(d− 1)/2e
b(d− 1)/2c

)
,

which is Θ(xbd/2c) for fixed d.
For the sake of definiteness let us define the sizes of the various descriptions as

follows. For the double description of P it is the number of vertex-facet incidences,
for the lattice description it is the total number of faces (of all dimensions) of P , and
for the boundary description it is the number of (d−1)-simplices in the boundary
triangulation.

Note that for the double and the lattice descriptions the sizes are completely
determined by P , whereas the size of a boundary description depends on the bound-
ary triangulation that is actually used. The sizes of those triangulations for a given
P can vary quite drastically, even if, as we assume from now on, all vertices of the
triangulation must be from S.

These size measures are only crude approximations of the space required to
store such descriptions in memory (in particular, in case of the lattice description the
edges of the Hasse diagram are completely ignored). However, these approximations
suffice to convey the possible similarities and differences between the sizes of the
different descriptions.

For such a comparison between the description sizes of P = convS consider
Table 26.3.1, whose columns deal with three cases. The first column lists worst-
case upper bounds in terms of n and d. The second column lists upper bounds in
terms of m and d under the assumption that S is in nondegenerate position, i.e.,
no d + 1 points in S lie in a common hyperplane, which means that P must be
simplicial. Note that in this case there is a unique boundary description. Finally,
the third column lists asymptotic bounds (d fixed) for products of cyclic polytopes
CCd(n), a certain class of highly degenerate polytopes described in [ABS97]. (See
Section 15.1.4 for a discussion of cyclic polytopes.) In this third table column,
δ = b

√
d/2c.

TABLE 26.3.1 Polytope description sizes.

DESCRIPTION WORST CASE NONDEGENERATE DEGENERATE CLASS CCd(n)

Double d · µ(d, n) d ·m Θ(n ·m1−1/δ)

Lattice 2d · µ(d, n) 2d ·m Θ((n+m)δ)

Boundary µ(d, n) m Ω((n+m)δ)

The bounds in the table are based on the fact that all description sizes are
maximized when P is a cyclic polytope, that each facet of a simplicial d-polytope
contains 2d faces, and that the Upper Bound Theorem also applies to simplicial
spheres. The lower bound on the size of the boundary description of CCd(n) applies
no matter which triangulation of the boundary is actually used.

The implication of this table is that in the worst case and also in the nondegen-
erate case all three combinatorial descriptions of P have approximately the same
size. If d is considered constant, then the sizes are Θ(nbd/2c) in the worst case,
where n is the number of points in S (i.e., n is the input size), and the description

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

692 R. Seidel

sizes are Θ(m) in the nondegenerate case, where m is the number of facets of P
(in a way the output size). The third column of the table, however, shows that in
the general case the double description of a polytope P may be substantially more
compact than the lattice description or the boundary description.

MAIN RESULTS AND OPEN PROBLEMS

The main positive results are that in the sense of asymptotic worst case complexity
the convex hull problem has been solved completely, and that in the case of nonde-
generate input, each of the three combinatorial descriptions can be found in time
polynomial in the size of the input and the size of the output. In the case of gen-
eral input this has only been shown for the lattice and for a boundary description,
whereas it is unknown whether this is also possible for the double description.

In the following let P = convS be a d-polytope, and |S| = n.

THEOREM 26.3.1 Chazelle [Cha93]

If the dimension d is considered constant, then given S, each of the three combina-
torial descriptions of P = convS can be computed in time O(n log n+nbd/2c) using
space O(nbd/2c). This is asymptotically worst-case optimal.

THEOREM 26.3.2 Avis-Fukuda [AF92]

Given S, a boundary description of P = convS can be computed in time O(dnM)
using space O(dn), where M is the size of the boundary description produced.

If S is nondegenerate, then each of the three combinatorial descriptions of P can
be computed in time O(dO(1)nM), where M is the size of the respective description.

THEOREM 26.3.3 Swart [Swa85] and Chand-Kapur [CK70]

Given S, the lattice description of P = convS can be computed in time and space
polynomial in d, n, and the size of the output.

OPEN PROBLEM 26.3.4

Is there an algorithm that, given S, computes the double description of P = convS
in time polynomial in d, n, and the size of the double description?

The algorithm in Chazelle’s theorem appears to be of theoretical interest only.
The algorithm of Avis-Fukuda is quite practical, the algorithms of Swart and of
Chand and Kapur are less so because of the potentially large space requirements.
(See Chapters 67 and 68 for descriptions of available code.) The running times of
the last two algorithms admit some theoretical improvements, as will be discussed
in the following sections.

Almost all algorithms that have been published for solving the different ver-
sions of the convex hull problem and the halfspace intersection problem appear to
be variations of three general methods: incremental, graph traversal, and divide-
and-conquer. We discuss the incremental and the graph traversal methods in the
next two subsections. Divide-and-conquer has proven useful only for very small
dimension, and we will discuss it in that context in Section 26.4. Methods that fall
outside this threefold classification are discussed in Subsection 26.3.3.

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 693

26.3.1 THE INCREMENTAL METHOD

The incremental method puts the points in S in some order p1, . . . , pn and then
successively computes a description of Pi = convSi from the description of Pi−1

and pi, where Si = {p1, . . . , pi}.
Before discussing details it should be noted that no matter how the incremen-

tal method is implemented, it has a serious shortcoming in that the intermediate
polytopes Pi may have many more facets than the final Pn = P (see, e.g., [ABS97]).
Thus the description sizes of the intermediate polytopes may be much larger than
the size of the description of the final result, and hence this method cannot have
running time that depends reasonably on the output size.

This is not necessarily just the result of an unfortunate choice of the insertion
order, since Bremner [Bre99] has shown that if S is the vertex set of the aforemen-

tioned product of cyclic polytopes CCd(n), then Pn−1 has Ω(mb
√

d/2c−1) facets no
matter which insertion order is used, where m is the number of facets of Pn = P .

We first present a selection of algorithms implementing the incremental method
and list their asymptotic worst-case or expected running times for fixed d (Ta-
ble 26.3.2). All these algorithms compute boundary descriptions, except for [Sei81]
(see also [Ede87, Section 8.4]), which can also be made to compute a lattice de-
scription, and [MRTT53], which computes a double description.

TABLE 26.3.2 Sample of incremental algorithms.

ALGORITHM TIME BOUND TYPE

Kallay [PS85, Section 3.4.2] nbd/2c+1 worst-case

Seidel [Sei81] n logn+ ndd/2e worst-case

Chazelle [Cha93] n logn+ nbd/2c worst-case

Clarkson-Shor [CS89] n logn+ nbd/2c expected

Clarkson et al. [CMS93] n logn+ nbd/2c expected

Motzkin et al. [MRTT53] n3bd/2c+1 worst-case

We now concentrate on how Pi−1 and Pi differ. For the sake of simplicity we will
first assume that S is nondegenerate and hence all involved polytopes are simplicial.
Moreover we will ignore how the insertion method starts and assume that Pi−1 and
Pi are full-dimensional. We say that a facet of Pi−1 is visible (from pi) if its
supporting hyperplane separates Pi−1 and pi. Otherwise the facet is obscured .

The facet set of Pi consists of “old facets,” namely all obscured facets of Pi−1,
and “new facets,” namely facets of the form conv(R ∪ {pi}), where R is a “horizon”
ridge of Pi−1, i.e., R is contained in a visible and in an obscured facet of Pi−1.

Updating Pi−1 to Pi thus requires solving three subproblems: finding (and
deleting) all visible facets of Pi−1; finding all horizon ridges; forming all new facets.
The various incremental algorithms only differ in how they solve those subproblems,
and they differ in the type of insertion order used.

Visible facets. The simplest way of finding the visible facets is simply to check
each facet of Pi−1. This is done in Kallay’s “beneath-beyond” method [PS85,
Section 3.4.2] and in the “double description method” of Motzkin et al. [MRTT53].

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

694 R. Seidel

Since Pi may have Θ(ibd/2c) facets, such an approach automatically leads to a
suboptimal overall running time of Ω(nbd/2c+1) in the worst case.

Another way is to maintain “conflict lists” between facets and not yet inserted
points. In the worst case this is no better than the previous method. However, if
the insertion order is a random permutation of the points in S, then in expectation
this method works in O(nbd/2c) time [CS89].

The last method requires the maintenance of a facet graph, whose nodes
are the facets and whose arcs connect facets if they share a common ridge. The
visible facets form a connected subgraph of this facet graph. Thus they can be
determined by graph search, such as depth-first search. This takes time propor-
tional to the number of visible facets, which means that in the amortized sense
this takes no time since all those visible facets will be deleted. This graph search
requires that one starting visible facet be known. Such an initial visible facet can
be determined relatively efficiently by a special choice of the insertion order, as in
[Sei81], by maintaining “canonical visible facets,” as in [CS89] and [CMS93], or by
linear programming, as in [Sei91].

Horizon ridges. Determining the horizon ridges is trivial if the facet graph is
used, since those ridges correspond to arcs connecting visible and obscured facets.
Otherwise one has to use data structuring techniques to determine which of the
ridges incident to the visible facets are incident to exactly one visible facet.

New facets. After the horizon ridges are determined, the new facets are easily
constructed in time proportional to their number. Keeping this number small is one
of the main difficulties of making the insertion method efficient. In the worst case
there may be as many as µ(d− 1, i− 1) = Θ(ib(d−1)/2c) such new facets. For even
d this is Θ(ibd/2c−1), which is the main reason why it was relatively easy to obtain
an asymptotically worst-case optimal running time of O(nbd/2c) for even d [Sei81].
For general d, using a random insertion order [CS89, CMS93, Sei91] appears to
be the only known way to keep this number low, at least in terms of expectation.
Chazelle’s celebrated deterministic algorithm [Cha93] applies derandomization and
thus in effect “simulates” random insertion order so that the number of new facets
is not only small in the expected sense but also in the worst case.

Finally, if a facet graph is used, then the arcs corresponding to the ridges
between the new facets need to be generated, which can be done via data structuring
techniques, as in [Sei91], or by graph traversal techniques, as in [CS89, CMS93].
We should mention that if we remove the nondegeneracy assumption this problem
of determining the new ridges seems to become very difficult.

Degenerate input. So far we have assumed that the input set S be nonde-
generate. If this is not the case, then this can be simulated using perturbation
techniques [Sei96]. This way the algorithms produce a boundary description from
which a lattice description or a double description could be computed in O(nbd/2c)
worst-case time.

The algorithm of Seidel [Sei81] (see also [Ede87, Section 8.4]) also works with
degenerate input and then produces a lattice description. Most interesting, though,
in the case of degeneracy is the so-called double description algorithm of Motzkin
et al. [MRTT53].

THE DOUBLE DESCRIPTION METHOD

Although it is one of the oldest published incremental algorithms, this method has

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 695

received little attention in the computational geometry community. This method
maintains only the double descriptions of the polytopes Pi. It makes no assumptions
about nondegeneracy. In fact, despite its poor worst-case complexity, empirically
this method works well for degenerate inputs, where all other methods seem to fail,
running out of time or space.

The algorithm determines the visible facets by simply checking all facets of Pi−1.
The interesting point is how it determines the horizon ridges, from which the new
facets are then constructed. In contrast to the other methods it does not maintain
ridges, since, as we already mentioned, determining the new ridges created during
an insertion is difficult. The double description method simply considers each pair
of visible and obscured facets of Pi−1 and checks whether their intersection A forms
a horizon ridge. This is achieved by testing whether the vertex set in A is contained
in some other facet of Pi−1. If it is, then A is not a ridge and hence not a horizon
ridge.

A straightforward implementation of this idea will require Θ(i3bd/2c) time in
the worst case to discover all horizon ridges of Pi−1, resulting in a high worst-
case overall running time. Although a number of heuristics have been proposed
to speed up this process (see [Zie94, p. 48]), experiments show that this method
is unbearably slow in the nondegenerate case when compared to other algorithms.
However, in the case of degenerate input it still appears to be the method of choice
with the new primal-dual approach (Section 26.3.3) as a possible contender.

Finally, we should mention that convex hull algorithms based on so-called
Fourier-Motzkin elimination are nothing but incremental algorithms dressed up
in an algebraic formulation.

26.3.2 THE GRAPH TRAVERSAL METHOD

This method attempts to traverse the facet graph of polytope P = convS in an
organized fashion. The basic step is: given a facet F of P and a ridge R contained
in F , find the other facet F ′ of P that also contains R. Geometrically this amounts
to determining the point p ∈ S such that the hyperplane spanned by R and p
maximizes the angle to F . In analogy to a 3D physical realization this operation is
therefore known as a “gift-wrapping step,” and these algorithms are known as gift-
wrapping algorithms. In the polar context of intersecting halfspaces, this step
corresponds to moving along an edge from one vertex to another and is equivalent
to a pivoting step of the simplex algorithm for linear programming. Thus these
algorithms are also known as pivoting algorithms.

The basic outline of the graph traversal method is as follows: Find some initial
facet of P = convS and the ridges that it contains. As long as there is an open
ridge R, i.e., one for which only one containing facet F is known, perform a gift-
wrapping step to discover the other facet F ′ containing R and determine the ridges
that F ′ contains.

This general method faces three problems:

(a) How does one maintain the set of open ridges?

(b) How can the ridges of the new facet F ′ be quickly discovered?

(c) How can an individual gift-wrapping step be performed quickly?

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

696 R. Seidel

THE NONDEGENERATE CASE

Let us again first assume that the input set S is in nondegenerate position. This
trivializes problem (b) since every facet is a (d−1)-simplex and each of the d subsets
with d− 1 of its d vertices will span a ridge.

The most straightforward way to deal with problem (a) is to use some sort of
dictionary data structure to store the set of open ridges. The most straightforward
way to deal with (c) is to scan through all the points in S to find the best candi-
date, leading to work proportional to n per discovered facet. This straightforward
method has been proposed many times (see [Sch86, p. 224] and [Chv83, p. 282] for
references) and has running time O(d2nM) using O(d(M + n)) space, where M is
the number of facets of P .

The gift-wrapping steps can be performed faster if a special data structure (for
the dual of ray-shooting queries) is used. This was developed by Chan [Cha96],
who achieved for fixed d > 3 an asymptotic time bound of

O(n logM + (nM)1−1/(bd/2c+1) logO(1) n) .

Avis and Fukuda [AF92] proposed an ingenious way to deal with problem (a)
so that no storage space is needed. They pointed out that there is a way of defining
a canonical spanning tree T of the facet graph of polytope P so that the arcs of T
can be recognized locally. Gift-wrapping steps are then performed only over ridges
corresponding to arcs of T . Doing this in the form of a depth-first search traversal
of T avoids the use of any extra storage space. Facets can be output as soon as
they are discovered. Their algorithm is eminently practical and has a running time
of O(dnM) using only O(dn) space.

In theory the gift-wrapping step improvement of Chan also could be applied to
the algorithm of Avis and Fukuda. However, this appears to be of little practical
relevance.

A completely different way of simultaneously addressing problems (a) and (c)
was suggested by Seidel [Sei86a]. He proposed to try to discover the facets in an
order corresponding to a straight-line shelling of P . In many cases gift-wrapping
steps over several currently open ridges would yield the same new facet F ′. However,
in that case the entire vertex set of F ′ is known already and the expensive scan
to solve problem (c) is not necessary. The facets of P for which this trick is not
applicable can be discovered in advance by linear programming. This “shelling
algorithm” has running time O(nλ(n− 1, d− 1) + d3M log n), where λ(n− 1, d− 1)
is again the time necessary to solve a linear program with n − 1 constraints in
d − 1 variables. From the way a shelling proceeds, one can prove that the space
requirement for storing the open ridges is somewhat lower than in an ordinary
gift-wrapping algorithm.

The linear programs that need to be solved are similar to the ones in the
irredundancy problem of Section 26.2. Again, improvements can be achieved by
applying linear programming queries ([Mat93]), and the nλ(n− 1, d− 1) factor can

be improved to n2−2/(bd/2c+1) logO(1) n).

THE GENERAL CASE

There are two ways to approach the general case where P is not simplicial. The
first is again to apply perturbations in order to simulate nondegeneracy of S. This
way all previously mentioned algorithms still apply, however they now compute a
boundary description of P . The parameter M is now the size of the triangulation

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 697

that happens to be constructed. Moreover, the perturbed computations slow down
the running times by a polynomial factor in d.

The second way to deal with the general case is to generalize the algorithms
so that they compute the lattice description of P . The main obstacle that must
be overcome in the degenerate case is problem (b), the discovery of the ridges of a
new facet F ′. The obvious way to address this problem is to view the construction
of F ′ as a recursive subproblem one dimension down. Some care must be taken
however that in the many recursions small-dimensional faces are not reconstructed
too often. This method was proposed by Chand and Kapur [CK70] and their
algorithm was later improved and analyzed by Swart [Swa85] who showed a running
time of O(d2nK1 + d3K2 logK0), where Ki is the number of directed (i+1)-vertex
paths in the Hasse diagram of the face lattice of P .

Rote [Rot92] generalized the algorithm of Avis and Fukuda to produce the
lattice description using little storage space. Its running time is O(dKd+1n) and it
appears to be not as relevant in practice as the original algorithm.

Finally, Seidel [Sei86b] generalized his shelling algorithm to produce the lattice
description in time O(nλ(n− 1, d− 1) +K2(d2 + logK0)). Because of the recursive
nature of straight-line shellings, this generalization avoids reconstruction of small-
dimensional faces. Again the improvement via linear programming queries applies.

26.3.3 OTHER METHODS

THE BRUTE-FORCE APPROACH

Let S be a set of n points in Rd and let P = convS. Assume w.l.o.g. that the origin
is contained in the interior of P (otherwise apply a translation) and assume that S
is irredundant in the sense that every point in S is a vertex of P (otherwise apply
the results of Section 26.2).

A set T ⊂ S spans a face of P iff there is a halfspace that has T on its boundary
and S \ T in its interior. Algebraically this can be tested by determining

yT = max{y ∈ R|∃x ∈ Rd : ∀p ∈ T : 〈x, p〉 = 1 and ∀p ∈ S \ T : 〈x, p〉+ y ≤ 1} ,
which can be computed via linear programming, and checking that yT > 0.

This characterization immediately yields a straightforward algorithm with run-
ning time O(2nλ(n, d)) for generating all faces and also the lattice description
of P : Simply test each subset of S whether it spans a face of P . This brute-
force approach can be substantially improved by applying backtrack-search tech-
niques ([Bal61],[FLM97]). Fukuda et al. [FLM97] even achieve a running time of
O(nK0λ(n, d)) this way, using just O(dn) space. Unfortunately this backtrack-
search approach does not seem to yield an efficient method to compute the double
description of P .

THE PRIMAL-DUAL METHOD

Let S be a set of n points in Rd, let P = convS, and let F be the set of facets of
P . Determining F from S is difficult if P is degenerate in the sense that it is not
simplicial, i.e., its facets are not all simplices. However, in this case determining
S from F may not be so difficult. The primal-dual method [BFM98] of Bremner,
Fukuda, and Marzetta tries to exploit this possibility, despite the fact that F is
unknown and S is the input.

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

698 R. Seidel

The basic idea of their algorithm is as follows: For a facet F ∈ F , let HF

be the halfspace that has F on its boundary and contains P , and for G ⊂ F let
HG = {HG|G ∈ G}. Assume some G ⊂ F is known already. Enumerate the vertices
of the polyhedron PG =

⋂
HG ⊃ P . If all the vertices found are points in S and

if PG is bounded, then it must be the case that PG = P and G = F and all facets
of P have been found, and we are done. If this is not the case (and this can be
determined after at most n+1 vertices of PG have been enumerated), then it is easy
to find a point v ∈ PG \ P (either a vertex not in S or a point on an extreme ray
of PG). But now clearly G 6= F . Moreover it is easy to find a facet G ∈ F \ G (or
rather the halfspace HG) that separates v from P . This amounts to performing the
initial facet finding step of the gift-wrapping algorithm and can be done (without
linear programming!) in O(d2n) time. Now add G to G and repeat.

The method suggests that the complexity of computing the facet description
of a polytope P from its vertex description is related to the complexity of com-
puting the vertex description from the facet description. It is difficult to make
this theoretical statement precise without introducing assumptions about the in-
termediate polyhedra PG . However, on the practical side, the authors of [BFM98]
present experimental evidence showing that the primal-dual method outperforms
other algorithms in certain “degenerate” cases.

26.4 THE CASE OF SMALL DIMENSION

Convex hull computations in very small dimension are special. We have strong
geometric intuitions about 2D and 3D space (and via Schlegel diagrams even about
4-polytopes). Moreover the situation is simpler in the case d = 2, 3 since our five
polytope descriptions cannot differ much in terms of their sizes (they are all within
a constant factor of each other), which means there is little need for keeping an
exact distinction. Algorithmically, small dimensions are special in that besides the
incremental and the graph traversal method, divide-and-conquer methods have also
been brought to fruition.

THE 2-DIMENSIONAL CASE

The planar convex hull problem has drawn considerable attention and many dif-
ferent algorithmic paradigms have been tried (see textbooks such as [PS85] or
[O’R98]). The graph traversal method was rediscovered and is known in the planar
case as the Jarvis march with running time O(nM), and the incremental method
was rediscovered and is known in a rather different guise as the Graham scan with
running time O(n log n) (as usual n and M are the sizes of the input and output,
respectively). It was easy and natural to apply the divide-and-conquer paradigm
to obtain further O(n log n) time algorithms. By giving this paradigm the extra
twist of “marriage-before-conquest” it was possible even to obtain an O(n logM)
algorithm, which was also shown to be worst-case optimal in the algebraic compu-
tation tree model of computation [KS86]. This algorithm required the use of 2D
linear programming. Much later Chan, Snoeyink, and Yap [CSY97] showed how to
avoid this and substantially simplified the algorithm in way that allowed its gen-
eralization to higher dimensions. Later, Chan [Cha96] showed quite surprisingly

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 699

that by using simple data structures and the method of guessing the output size by
repeated squaring, the Jarvis march algorithm can be sped up to also run in time
O(n logM).

THE 3-DIMENSIONAL CASE

In 3 dimensions the output size M is O(n) in the worst case. However, the straight-
forward implementations of the standard incremental and the graph traversal meth-
ods only yield algorithms with worst-case running time O(n2). In this context the
use of the divide-and-conquer paradigm was decisive in obtaining O(n log n) run-
ning time, which was achieved by Preparata and Hong (see [PS85, Section 3.4.4];
for a more detailed account, [Ede87, Section 8.5]). This running time was later
matched in the expected sense by the randomized incremental algorithm of Clark-
son and Shor [CS89], who also gave another randomized algorithm with expected
performance O(n logM).

The question whether this optimal output-size sensitive bound could also be
achieved deterministically was open for a long time. Edelsbrunner and Shi [ES91]
first generalized the “marriage-before-conquest” method of [KS86] but achieved
only a running time of O(n log2M). Eventually Chazelle and Matoušek [CM95]
succeeded in derandomizing the randomized algorithm of Clarkson and Shor and
obtained, at least theoretically, this optimal O(n logM) time bound. Later, Chan
[Cha96] showed that there is a relatively simple algorithm for achieving this bound,
again by the method of speeding up the gift-wrapping method using data structures
and guessing the output size by repeated squaring.

THE CASE d = 4,5

In this case the sizes of the combinatorial descriptions may be as large as Θ(n2).
All the methods and bounds mentioned in Section 26.3 apply. In addition there
are methods for computing a boundary description based on sophisticated divide-
and-conquer and some additional pruning mechanisms. Worst-case time bounds
of O((n + M) logd−2M) were achieved by Chan, Snoeyink, and Yap [CSY97] for
d = 4, and by Amato and Ramos [AR96] for d = 4, 5. The latter paper also states
that their bound applies to computing the lattice description in the case d = 4.

26.5 RELATED TOPICS

There has been some work on determining the intrinsic computational complexity
of versions of the convex hull problem. The strongest results at this point are:

1. For fixed d ≥ 2 the time necessary to determine whether exactly V of n
points in Rd are extreme is Ω(n log V) in the algebraic computation tree model
[KS86]. This is asymptotically best possible for d = 2.

2. For fixed d ≥ 2 the time necessary to determine whether the convex hull of n
points in Rd has exactly M facets is Ω(ndd/2e−1 +n log n) in a specialized but
realistic model of computation [Eri99]. This is asymptotically best possible
for odd d > 1.

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

700 R. Seidel

The expected sizes of convex hulls of point sets drawn according to some sta-
tistical distribution are typically much smaller than the worst-case sizes. Con-
structing such convex hulls has been explicitly studied by several authors (see,
e.g.,[DT81, Dwy91, BGJR91]). One should also mention in this context the ran-
domized incremental algorithm [CS89]. With input set S ⊂ Rd its expected running
time for constructing a boundary description is

O

 ∑
d+1<r≤n

dfr(S)/r +
∑

d+1≤r<n

d2nfr(S)/r2

 ,

where fr(S) is the expected size of the boundary description of the convex hull of
a random subset of S of size r. For many distributions fr is sufficiently sublinear
so that this randomized incremental algorithm has O(n) expected running time.

The problem of maintaining convex hulls under insertions and deletions of
points has been addressed also. In higher dimensions randomized incremental algo-
rithms have been adapted by several authors to process updates [Mul94, Sch91,
CMS93]. However, the analyses are all based on some probabilistic model of
which updates actually occur. More satisfactory solutions have only been ob-
tained in the planar case. Solutions with O(log n) update time were obtained for
the insertions-only case (see [PS85, Section 3.3.6]) and also for the deletions-only
case [HS92]. For the general dynamic case O(log2 n) update times were achieved
early on [OL81, Gow80], and only very recently they were improved to O(log n) in
[Cha01, BJ02].

For some time there was hope that additional input information might help
compute convex hulls. Although this is true in the planar case, where having points
presorted or having them given along a nonintersecting polygonal line [Mel87] leads
to linear-time algorithms, it has been shown [Sei85] that for dimension d ≥ 3 such
additional information does not help. Having a 3D set S presorted or even knowing
a nonself-intersecting polyhedral surface whose vertex set is S does not in general
make it easier to find the convex hull of S.

There have been some attempts to generalize the convex hull construction prob-
lem so that the input S does not consist of points but of more general objects such
as algebraically described regions in the plane [BK91, NY98], balls in Rd [BCD+96],
ellipsoids in R3 [Wol02], or sets of polyhedra [FLL01].

Finally, parallel algorithms for the convex hull problem have been developed;
see Chapter 46.

26.6 SOURCES AND RELATED MATERIALS

FURTHER READING

[Zie94]: A modern account of polytope theory.

[MR80]: A survey of vertex enumeration methods from the dual standpoint.

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 701

RELATED CHAPTERS

Chapter 15: Basic properties of convex polytopes
Chapter 17: Face numbers of polytopes and complexes
Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 49: Linear programming

REFERENCES

[ABS97] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms? Comput.

Geom., 7:265–301, 1997.

[AF92] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration

of arrangements and polyhedra. Discrete Comput. Geom., 8:295–313, 1992.

[AR96] N.M. Amato and E.A. Ramos. On computing Voronoi diagrams by divide-prune-and-

conquer. In Proc. 12th Sympos. Comput. Geom., pages 166–175, ACM Press, 1996.

[BK91] C.L. Bajaj and M.-S. Kim. Convex hulls of objects bounded by algebraic curves.

Algorithmica, 6:533–553, 1991.

[Bal61] M.L. Balinski. An algorithm for finding all vertices of convex polyhedral sets. SIAM

J. Appl. Math., 9:72–81, 1961.

[BCD+96] J.-D. Boissonnat, A. Cérézo, O. Devillers, J. Duquesne, and M. Yvinec. An algorithm

for constructing the convex hull of a set of spheres in dimension d. Comput. Geom.,

6:123–130, 1996.

[BGJR91] K.H. Borgwardt, N. Gaffke, M. Jünger, and G. Reinelt. Computing the convex hull

in the Euclidean plane in linear expected time. In P. Gritzmann and B. Sturmfels,

editors, Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift,

vol. 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 91–107, AMS,

Providence, 1991.

[Bre99] D. Bremner. Incremental convex hull algorithms are not output sensitive. Discrete

Comput. Geom., 21:57–68, 1999.

[BFM98] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and facet

enumeration. Discrete Comput. Geom., 20:333–357, 1998.

[BJ02] G.S. Brodal and R. Jacob. Dynamic planar convex hull. Proc. 43rd IEEE Sympos.

Found. Comput. Sci., pages 617–626, 2002.

[Cha93] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete

Comput. Geom., 10:377–409, 1993.

[Cha96] T.M. Chan. Output-sensitive results on convex hulls, extreme points, and related

problems. Discrete Comput. Geom., 16:369–387, 1996.

[Cha96a] T.M. Chan. Fixed-dimensional linear programming queries made easy. In Proc. 12th

Sympos. Comput. Geom., pages 284–290, ACM Press, 1996.

[Cha01] T.M. Chan. Dynamic planar convex hull operations in near-logarithmic time. J. ACM,

48:1–12, 2001.

[Chv83] V. Chvátal. Linear Programming. W.H. Freeman, New York, 1983.

[CK70] D.R. Chand and S.S. Kapur. An algorithm for convex polytopes. J. ACM, 17:78–86,

1970.

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

702 R. Seidel

[Cla94] K.L. Clarkson. More output-sensitive geometric algorithms. In Proc. 35th IEEE

Sympos. Found. Comput. Sci., pages 695–702, 1994.

[CM95] B. Chazelle and J. Matoušek. Derandomizing an output-sensitive convex hull algorithm

in three dimensions. Comput. Geom., 5:27–32, 1995.

[CMS93] K.L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental

constructions. Comput. Geom., 3:185–212, 1993.

[CS89] K.L. Clarkson and P.W. Shor. Applications of random sampling in computational

geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

[CSY97] T.M. Chan, J. Snoeyink, and C.K. Yap. Primal dividing and dual pruning: Output-

sensitive construction of four-dimensional polytopes and three-dimensional Voronoi

diagrams. Discrete Comput. Geom., 18:433–454, 1997.

[DT81] L. Devroye and G.T. Toussaint. A note on linear expected time algorithms for finding

convex hulls. Computing, 26:361–366, 1981.

[Dwy91] R.A. Dwyer. Rex A. Dwyer Convex hulls of samples from spherically symmetric

distributions. Discrete Appl. Math., 31:113–132, 1991.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry, vol. 10 of EATCS Monogr.

Theoret. Comput. Sci. Springer-Verlag, Heidelberg, 1987.

[ES91] H. Edelsbrunner and W. Shi. An O(n log2 h) time algorithm for the three-dimensional

convex hull problem. SIAM J. Comput., 20:259–277, 1991.

[Eri99] J. Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM J.

Comput., 28:1198–1214, 1999.

[FLL01] K. Fukuda, T.M. Liebling, and C. Lütolf. Extended convex hull. Comput. Geom.,

20:13–23, 2001.

[FLM97] K. Fukuda, T.M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing

all vertices and all faces of a convex polyhedron. Comput. Geom., 8:1–12, 1997.

[Gow80] I.G. Gowda. Dynamic problems in computational geometry. M.Sc. thesis, Dept. Com-

put. Sci., Univ. British Columbia, Vancouver, 1980.

[HS92] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm.

BIT, 32:249–267, 1992.

[KS86] D.G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM

J. Comput., 15:287–299, 1986.

[Mat93] J. Matoušek. Linear optimization queries. J. Algorithms, 14:432–448, 1993.

[Mel87] A. Melkman. On-line construction of the convex hull of a simple polyline. Inform.

Process. Lett., 25:11–12, 1987.

[MR80] T.H. Mattheiss and D. Rubin. A survey and comparison of methods for finding all

vertices of convex polyhedral sets. Math. Oper. Res., 5:167–185, 1980.

[MRTT53] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The double description

method. In H.W. Kuhn and A.W. Tucker, editors, Contributions to the Theory of

Games II, vol. 8 of Ann. Math. Stud., pages 51–73. Princeton University Press, 1953.

[Mul94] K. Mulmuley. Computational Geometry: An Introduction through Randomized Algo-

rithms. Prentice Hall, Englewood Cliffs, 1994.

[NY98] F. Nielsen and M. Yvinec. Output-sensitive convex hull algorithms of planar convex

objects. Comput. Geom. 8:39-66, 1998.

[OL81] M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J.

Comput. Syst. Sci., 23:166–204, 1981.

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 26: Convex hull computations 703

[O’R98] J. O’Rourke. Computational Geometry in C, second edition. Cambridge University

Press, 1998.

[OSS95] T.A. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating extreme points

in higher dimensions. In Proc. 12th Sympos. Theoret. Aspects Comp. Sci., vol. 900 of

LNCS, pages 562–570, Springer, Berlin, 1995.

[PS85] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Spring-

er-Verlag, New York, 1985.

[Ram00] E.A. Ramos. Linear optimization queries revisited. In Proc. 16th Sympos. Comput.

Geom., pages 176–181, ACM Press, 2000.

[Rot92] G. Rote. Degenerate convex hulls in high dimensions without extra storage. In Proc.

8th Sympos. Comput. Geom., pages 26–32, ACM Press, 1992.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience, New

York, 1986.

[Sch91] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proc.

32nd IEEE Sympos. Found. Comput. Sci., pages 197–206, 1991.

[Sei81] R. Seidel. A convex hull algorithm optimal for point sets in even dimensions. M.Sc.

thesis, Dept. Comput. Sci., Univ. British Columbia, Vancouver, 1981.

[Sei85] R. Seidel. A method for proving lower bounds for certain geometric problems. In G.T.

Toussaint, editor, Computational Geometry, pages 319–334, North-Holland, Amster-

dam, 1985.

[Sei86a] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face.

In Proc. 18th Sympos. Theory Comput., pages 404–413, ACM press, 1986.

[Sei86b] R. Seidel. Output-size sensitive algorithms for constructive problems in computational

geometry. Ph.D. thesis, Dept. Comput. Sci., Cornell Univ., Ithaca, 1986.

[Sei91] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete

Comput. Geom., 6:423–434, 1991.

[Sei96] R. Seidel. The meaning and nature of perturbations in geometric computing. Discrete

Comput. Geom., 19:1–17, 1996.

[Swa85] G.F. Swart. Finding the convex hull facet by facet. J. Algorithms, 6:17–48, 1985.

[Wol02] N. Wolpert. An exact and efficient approach for computing a cell in an arrangement

of quadrics. Ph.D. thesis, FR Informatik, Univ. des Saarlandes, Saarbrücken, 2002.

[Zie94] G.M. Ziegler. Lectures on Polytopes, vol. 152 of Graduate Texts in Math. Springer-

Verlag, New York, 1994.

Preliminary version (July 17, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

