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INTRODUCTION

Modern data often come as point clouds embedded in high-dimensional Euclidean
spaces, or possibly more general metric spaces. They are usually not distributed
uniformly, but lie around some highly nonlinear geometric structures with nontriv-
ial topology. Topological data analysis (TDA) is an emerging field whose goal is
to provide mathematical and algorithmic tools to understand the topological and
geometric structure of data. This chapter provides a short introduction to this new
field through a few selected topics. The focus is deliberately put on the mathe-
matical foundations rather than specific applications, with a particular attention
to stability results asserting the relevance of the topological information inferred
from data.

The chapter is organized in four sections. Section 25.1 is dedicated to distance-
based approaches that establish the link between TDA and curve and surface re-
construction in computational geometry. Section 25.2 considers homology inference
problems and introduces the idea of interleaving of spaces and filtrations, a funda-
mental notion in TDA. Section 25.3 is dedicated to the use of persistent homology
and its stability properties to design robust topological estimators in TDA. Sec-
tion 25.4 briefly presents a few other settings and applications of TDA, including
dimensionality reduction, visualization and simplification of data.

25.1 GEOMETRIC INFERENCE AND RECONSTRUCTION

Topologically correct reconstruction of geometric shapes from point clouds is a
classical problem in computational geometry. The case of smooth curve and surface
reconstruction in R3 has been widely studied over the last two decades and has given
rise to a wide range of efficient tools and results that are specific to dimensions 2
and 3; see Chapter 35. Geometric structures underlying data often appear to be
of higher dimension and much more complex than smooth manifolds. This section
presents a set of techniques based on the study of distance-like functions leading to
general reconstruction and geometric inference results in any dimension.

GLOSSARY

Homotopy equivalence: Given two topological spaces X and Y , two maps
f0, f1 : X → Y are homotopic if there exists a continuous map H : [0, 1]×X → Y
such that for all x ∈ X, H(0, x) = f0(x) and H(1, x) = f1(x). The two spaces X
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664 F. Chazal

and Y are said to be homotopy equivalent, or to have the same homotopy type if
there exist two continuous maps f : X → Y and g : Y → X such that g ◦ f is
homotopic to the identity map in X and f ◦ g is homotopic to the identity map
in Y .

Isotopy: Given X,Y ⊆ Rd, an (ambient) isotopy between X and Y is a con-
tinuous map F : Rd × [0, 1] → Rd such that F (., 0) is the identity map on Rd,
F (X, 1) = Y and for any t ∈ [0, 1], F (., t) is an homeomorphism of Rd.

Probability measure: A probability measure µ on Rd is a function mapping every
(Borel) subset B of Rd to a nonnegative number µ(B) such that whenever (Bi)i∈I
is a countable family of disjoint (Borel) subsets, then µ(∪i∈IBi) =

∑
i∈I µ(Bi),

and µ(Rd) = 1. The support of µ is the smallest closed set S such that µ(Rd\S) =
0. Probability measures are similarly defined on metric spaces.

Hausdorff distance: Given a compact subset K ⊂ Rd, the distance function
fromK, dK : Rd → [0,+∞), is defined by dK(x) = infy∈K d(x, y). The Hausdorff
distance between two compact subsets K,K ′ ⊂ Rd is defined by dH(K,K ′) =
‖dK − dK′‖∞ = supx∈Rd |dK(x)− dK′(x)|.

DISTANCE-BASED APPROACHES AND GEOMETRIC INFERENCE

The general problem of geometric inference can be stated in the following way:
given an approximation P (e.g., a point cloud) of a geometric object K in Rd, is it
possible to reliably and efficiently estimate the topological and geometric properties
of K? Obviously, it needs to be instantiated in precise frameworks by defining the
class of geometric objects that are considered and the notion of distance between
these objects. The idea of distance-based inference is to associate to each object a
real-valued function defined on Rd such that the sublevel sets of this function carry
some geometric information about the object. Then, proving geometric inference
results boils down to the study of the stability of the sublevel sets of these functions
under perturbations of the objects.

Distance to compact sets and distance-like functions. A natural and clas-
sical example is to consider the set of compact subsets of Rd, which includes both
continuous shapes and point clouds. The space of compact sets is endowed with
the Hausdorff distance and to each compact set K ⊂ Rd is associated its distance
function dK : Rd → [0,+∞) defined by dK(x) = infy∈K d(x, y). The properties of
the r-offsets Kr = d−1K ([0, r]) of K (i.e., the union of the balls of radius r cen-
tered on K) can then be used to compare and relate the topology of the offsets of
compact sets that are close to each other with respect to the Hausdorff distance.
When the compact K is a smooth submanifold, this leads to basic methods for the
estimation of the homology and homotopy type of K from an approximate point
cloud P , under mild sampling conditions [NSW08, CL08]. This approach extends
to a larger class of nonsmooth compact sets K and leads to stronger results on the
inference of the isotopy type of the offsets of K [CCSL09a]. It also leads to results
on the estimation of other geometric and differential quantities such as normals
[CCSL09b], curvatures [CCSLT09] or boundary measures [CCSM10] from shapes
sampled with a moderate amount of noise (with respect to Hausdorff distance).

These results mainly rely on the stability of the map associating to a compact
set K its distance function dK (i.e., ‖dK−dK′‖∞ = dH(K,K ′) for any compact sets
K,K ′ ⊂ Rd) and on the 1-semiconcavity of the squared distance function d2K (i.e.,
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Chapter 25: High-dimensional topological data analysis 665

the convexity of the map x→ ‖x‖2 − d2K(x)) motivating the following definition.

Definition: A nonnegative function ϕ : Rd → R+ is distance-like if it is proper
(the pre-image of any compact in R is a compact in Rd) and x → ‖x‖2 − ϕ2(x) is
convex.

The 1-semiconcavity property of a distance-like function ϕ allows us to define its
gradient vector field ∇ϕ : Rd → Rd. Although not continuous, this gradient vector
field can be integrated [Pet06] into a continuous flow that is used to compare the
geometry of the sublevel sets of two close distance functions. In particular, the
topology of the sublevel sets of a distance-like function ϕ can only change at levels
corresponding to critical points, i.e., points x such that ‖∇xϕ‖ = 0:

LEMMA 25.1.1 Isotopy Lemma [Gro93, Proposition 1.8]

Let ϕ be a distance-like function and r1 < r2 be two positive numbers such that ϕ
has no critical point in the subset ϕ−1([r1, r2]). Then all the sublevel sets ϕ−1([0, r])
are isotopic for r ∈ [r1, r2].

This result suggests the following definitions.

Definition: Let ϕ be a distance-like function. We denote by ϕr = ϕ−1([0, r]) the
r sublevel set of ϕ.

• A point x ∈ Rd is called α-critical if ‖∇xϕ‖ ≤ α.

• The weak feature size of ϕ at r is the minimum r′ > 0 such that ϕ doesn’t
have any critical value between r and r + r′. We denote it by wfsϕ(r). For
any 0 < α < 1, the α-reach of ϕ is the maximum r such that ϕ−1((0, r]) does
not contain any α-critical point.

Note that the isotopy lemma implies that all the sublevel sets of ϕ between r and
r+wfsϕ(r) have the same topology. Comparing two close distance-like functions, if
ϕ and ψ are two distance-like functions, such that ‖ϕ− ψ∞‖ ≤ ε and wfsϕ(r) > 2ε,
wfsψ(r) > 2ε, then for every 0 < η ≤ 2ε, ϕr+η and ψr+η have the same homotopy
type. An improvement of this result leads to the following reconstruction theorem
from [CCSM11].

THEOREM 25.1.2 Reconstruction Theorem

Let ϕ,ψ be two distance-like functions such that ‖ϕ−ψ‖∞ < ε, with reachα(ϕ) ≥ R
for some positive ε and α. Then, for every r ∈ [4ε/α2, R−3ε] and every η ∈ (0, R),
the sublevel sets ψr and ϕη are homotopy equivalent when

ε ≤ R

5 + 4/α2
.

Under similar but slightly more technical conditions the Reconstruction theo-
rem can be extended to prove that the sublevel sets are indeed homeomorphic and
even isotopic, and that their normals and curvatures can be compared [CCSL09b,
CCSLT09].

As an example, distance functions from compact sets are obviously distance-like
and the above reconstruction result gives the following result.

THEOREM 25.1.3 Let K ⊂ Rd be a compact set and let α ∈ (0, 1] be
such that rα = reachα(dK) > 0. If P ⊂ Rd such that dH(K,P ) ≤ κα with
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κ < α2/(5α2 + 12), then the offsets Kr and P r
′

are homotopy equivalent when

0 < r < rα and
4dH(P,K)

α2
≤ r′ ≤ rα − 3dH(P,K).

In particular, if K is a smooth submanifold of Rd, then r1 > 0 and P r
′

is
homotopy equivalent to K.

It is interesting to notice that indeed, distance-like functions are closely related
to distance functions from compact sets: any distance-like function ϕ : Rd → R+ is
the restriction to a hyperplane of the distance function from a compact set in Rd+1

[CCSM11, Prop.3.1].

DTM AND KERNEL DISTANCES: THE MEASURE POINT OF VIEW

The major drawback of the geometric inference framework derived from the Haus-
dorff distance and distances between compact sets is its instability in the presence
of outliers in the approximate data (i.e., points that are not close to the under-
lying geometric object). One way to circumvent this problem is to consider the
approximate data as an empirical measure (i.e., a weighted sum of Dirac measures
centered on the data points) rather than a point cloud, and to consider the prob-
ability measures on Rd instead of the compact subsets of Rd as the new class of
geometric objects.

As the distance between a point x ∈ Rd and a compact set K is defined as
the radius of the smallest ball centered at x and containing a point of K, a basic
and natural idea to associate a distance-like function to a probability measure is
to mimic this definition in the following way: given a probability measure µ and a
parameter 0 ≤ l < 1, define the function δµ,l : Rd → R+ by

δµ,l : x ∈ Rd 7→ inf{r > 0 : µ(B̄(x, r)) > l}

where B̄(x, r) is the closed Euclidean ball of radius r with center x. Unfortunately,
the map µ → δµ,l turns out to be, in general, not continuous for standard metrics
on the space of probability measures. This continuity issue is fixed by averaging
over the parameter l.

Definition: Let µ be a probability measure on Rd, and m ∈ (0, 1] be a positive
parameter. The function defined by

d2µ,m : Rd → R+, x 7→
1

m

∫ m

0

δµ,l(x)2dl

is called the distance-to-measure (DTM) function to µ with parameter m.

From a practical point of view, if P ⊂ Rd is a finite point cloud and µ =
1
|P |
∑
x∈P δx is the uniform measure on P , then for any x the function l → δµ,l(x)

is constant on the intervals (k/|P |, (k + 1)/|P |) and equal to the distance between
x and its kth nearest neighbor in P . As an immediate consequence for m = k/|P |,

d2µ,m(x) =
1

k

k∑
i=1

‖x−X(i)(x)‖2
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where X(i)(x) is the ith nearest neighbor of x in P . In other words, d2µ,m(x) is just
the average of the squared distances from x to its first k nearest neighbors.

Distance-to-measure functions turn out to be distance-like; see Theorem 25.1.4
for distance-to-measures below. The application of Theorem 25.1.2 of the previous
section to DTM functions require stability properties relying on a well-chosen metric
on the space of measures. For this reason, the space of probability measures is
equipped with a so-called Wasserstein distance Wp (p ≥ 1) whose definition relies
on the notion of a transport plan between measures, which is strongly related to
the theory of optimal transport [Vil03].

A transport plan between two probability measures µ and ν on Rd is a proba-
bility measure π on Rd ×Rd such that for every A,B ⊆ Rd π(A×Rd) = µ(A) and
π(Rd × B) = ν(B). Intuitively π(A × B) corresponds to the amount of mass of µ
contained in A that will be transported to B by the transport plan. Given p ≥ 1,
the p-cost of such a transport plan π is given by

Cp(π) =

(∫
Rd×Rd

‖x− y‖p dπ(x, y)

)1/p

.

This cost is finite when the measures µ and ν both have finite p-moments, i.e.,∫
Rd ‖x‖p dµ(x) < +∞ and

∫
Rd ‖x‖p dν(x) < +∞. The set of probability measures

on Rd with finite p-moment includes all probability measures with compact support,
such as, e.g., empirical measures. The Wasserstein distance of order p between two
probability measures µ and ν on Rd with finite p-moment is the minimum p-cost
Cp(π) of a transport plan π between µ and ν. It is denoted by Wp(µ, ν).

For geometric inference, the interest in Wasserstein distance comes from its
weak sensibility to the presence of a small number of outliers. For example, consider
a reference point cloud P with N points, and define a noisy version P ′ by replacing n
points in P by points o1, . . . , on such that dP (oi) ≥ R for some R > 0. Considering
the cost of the transport plan between P ′ and P that moves the outliers back to their
original position, and keeps the other points fixed, we get Wp(µP , µP ′) ≤ n

N (R +
diam(P )) while the Hausdorff distance between P and P ′ is at least R. Hence, if
the number of outliers is small, i.e., n � N , the Wasserstein distance between µP
and µP ′ remains small. Moreover, if the N points of P are independently drawn
from a common measure µ, then µP converges almost surely to µ in the Wasserstein
metric Wp (see [BGV07] for precise statements).

THEOREM 25.1.4 Stability of distance-to-measures [CCSM11]

For any probability measure µ in Rd and m ∈ (0, 1) the function dµ,m is distance-
like. Moreover, if ν is another probability measure on Rd and m > 0, then

‖dµ,m − dν,m‖∞ ≤
1√
m

W2(µ, ν).

This theorem allows us to apply the reconstruction theorem (Theorem 25.1.2)
to recover topological and geometric information of compact shapes from noisy data
containing outliers [CCSM11, Cor. 4.11].

More recently, a new family of distance-like functions associated to probability
measures, called kernel distances, has been introduced in [PWZ15] that are closely
related to classical kernel-based density estimators. They offer similar, but com-
plementary, properties as the DTM functions and come with stability properties
ensuring the same topological guarantees for topological and geometric inference.
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Probabilistic and statistical considerations. The distance-based approach is
well-suited to explore reconstruction and geometric inference from a statistical per-
spective, in particular when data are assumed to be randomly sampled. The prob-
lem of approximation of smooth manifolds with respect to the Hausdorff distance
from random samples under different models of noise has been studied in [GPP+12a,
GPP+12b]. The statistical analysis of DTM and kernel distances remains largely
unexplored despite a few recent preliminary results [CMM15, CFL+14]; see also
the open problems below.

Some open problems. Here are a few general problems related to the distance-
based approach that remain open or partly open.

1. The computation of the DTM at a given point only require us to compute
nearest neighbors but the efficient global computation of the DTM, e.g., to
obtain its sublevel sets or its persistent homology, turns out to have prohibitive
complexity as it is closely related to the computation of higher-order Voronoi
diagrams. The difficulty of efficiently approximating the DTM function is
still rather badly understood despite a few results in this direction [BCOS16,
GMM13, Mér13]; see also Chapter 27.

2. The dependence of DTM functions on the parameter m raises the problem of
the choice of this parameter. The same problem also occurs with the kernel
distances that depend on a bandwidth parameter. Very little is known about
the dependency of DTM on m (the situation is slightly better for the kernel
distances) and data-driven methods to choose these parameters still need to be
developed. Preliminary results in this direction have recently been obtained
in [CMM15, CFL+14].

RECONSTRUCTION IN HIGH DIMENSION

Although the above-mentioned approaches provide general frameworks for geomet-
ric inference in any dimension, they do not directly lead to efficient reconstruction
algorithms. Here, a reconstruction algorithm is meant to be an algorithm that:

• takes as input a finite set of points P sampled from an unknown shape K,

• outputs a triangulation or a simplicial complex that approximates K, and

• provides a topologically correct reconstruction (i.e., homeomorphic or iso-
topic to K) when certain sampling conditions quantifying the quality of the
approximation of K by P are satisfied.

Efficient algorithms with such guarantees are possible if we restrict ourselves to
specific classes of shapes to reconstruct.

• Low-dimensional smooth manifolds in high dimension: except for the
case of curve and surface reconstruction in R2 and R3; see Chapter 35. The
attempts to develop effective reconstruction algorithms for smooth manifolds
in arbitrary dimension remain quite limited. Extending smooth manifold re-
construction algorithms in R3 to Rd, d > 3, raises several major difficulties.
In particular, important topological properties of restricted Delaunay trian-
gulations used for curve and surface reconstruction no longer hold in higher
dimensions, preventing direct generalization of the existing low-dimensional
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Chapter 25: High-dimensional topological data analysis 669

algorithms. Moreover, classical data structures involved in reconstruction al-
gorithms, such as the Delaunay triangulation, are global and their complexity
depends exponentially on the ambient dimension, which make them almost
intractable in dimensions larger than 3. However, a few attempts have been
made to overcome these issues. In [BGO09], using the so-called witness com-
plex [SC04], the authors design a reconstruction algorithm whose complexity
scales up with the intrinsic dimension of the submanifold. More recently, a
new data structure, the tangential Delaunay complex, has been introduced and
used to design effective reconstruction algorithms for smooth low-dimensional
submanifolds of Rd [BG13].

• Filamentary structures and stratified spaces: 1-dimensional filamen-
tary structures appear in many domains (road networks, network of blood
vessels, astronomy, etc.) and can be modeled as 1-dimensional stratified
sets, or (geometric) graphs. Various methods, motivated and driven by spe-
cific applications, have been developed to reconstruct such structures from
point cloud data. From a general perspective, the (relatively) simple struc-
ture of graphs allows to propose new approaches to design metric graph
reconstruction algorithms with various topological guarantees, e.g., home-
omorphy or homotopy type and closeness in the Gromov-Hausdorff metric
[GSBW11, ACC+12, CHS15]. Despite a few attempts [BCSE+07, BWM12],
reconstruction of stratified sets of higher dimension turns out to be a much
more difficult problem that remains largely open.

25.2 HOMOLOGY INFERENCE

The results on geometric inference from the previous section provide a general
theoretical framework to “reconstruct” unknown shapes from approximate data.
However, it is not always desirable to fully reconstruct a geometric object to infer
some relevant topological properties from data. This is illustrated in this section by
two examples. First, we consider a weaker version of the reconstruction paradigm
where the goal is to infer topological invariants, more precisely homology and Betti
numbers. Second, we consider coverage problems in sensor networks that can be an-
swered using homology computations. Both examples rely on the idea that relevant
topological information cannot always be directly inferred from the data at a given
scale, but by considering how topological features relate to each other across differ-
ent scales. This fundamental idea raises the notion of interleaving between spaces
and filtrations and leads to persistence-based methods in TDA that are considered
in the next section.

GLOSSARY

Abstract simplicial complex: Given a set X, an abstract simplicial complex C
with vertex set X is a set of finite subsets of X, the simplices, such that the
elements of X belong to C and if σ ∈ C and τ ⊂ σ, then τ ∈ C.

Homology: Intuitively, homology (with coefficient in a field) associates to any
topological space X, a family of vector spaces, the so-called homology groups
Hk(X), k = 0, 1, . . ., each of them encoding k-dimensional topological features
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of X. A fundamental property of homology is that any continuous function
f : X → Y induces a linear map f∗ : Hk(X) → Hk(Y ) between homology
groups that encodes the way the topological features of X are mapped to the
topological features of Y by f . This linear map is an isomorphism when f is
a homeomorphism or a homotopy equivalence (homology is thus a homotopy
invariant). See [Hat01] or Chapter 22 for a formal definition.

Betti numbers: The kth Betti number of X, denoted βk(X), is the rank of Hk(X)
and represents the number of “independent” k-dimensional features of X: for
example, β0(X) is the number of connected components of M, β1(X) the number
of independent cycles or tunnels, β2(X) the number of cavities, etc.

Čech complex: Given P , a subset of a metric space X and r > 0, the Čech
complex Čech(P, r) built on top of P , with parameter r is the abstract simplicial
complex defined as follows: (i) the vertices of Čech(P, r) are the points of P and
(ii) σ = [p0, . . . , pk] ∈ Čech(P, r) if and only if the intersection of balls of radius
r and centered at the pi’s have nonempty intersection.

Vietoris-Rips complex: Given a metric space (X, dX) and r ≥ 0, the Vietoris-
Rips complex Rips(X, r) is the (abstract) simplicial complex defined by i) the
vertices of Rips(X, r) are the points of X and, ii) σ = [x0, . . . , xk] ∈ Rips(X, r)
if and only if dX(xi, xj) ≤ r for any i, j ∈ {0, . . . , k}.

ČECH COMPLEX, VIETORIS-RIPS COMPLEX, AND HOMOLOGY
INFERENCE

An important advantage of simplicial complexes is that they are not only combi-
natorial objects but they can also be seen as topological spaces. Let C be a finite
simplicial complex with vertex set X = {x1, . . . , xn}. Identifying each xi with the
point ei of Rn all of whose coordinates are 0 except the ith which is equal to 1,
one can identify each simplex σ = [xi0 , ·xik ] ∈ C with the convex hull of the points
ei0 , ·eik . The union of these sets inherits a topology as a subset of Rn and is called
the geometric realization of C in Rn. In the following, the topology or the homotopy
type of a simplicial complex refers to the ones of its geometric realization.

Thanks to this double nature, simplicial complexes play a fundamental role to
bridge the gap between continuous shapes and their discrete representations. In
particular, the classical nerve theorem [Hat01][Corollary 4G3] is fundamental in
TDA to relate continuous representation of shapes to discrete description of their
topology through simplicial complexes.

Definition: Let X be a topological space and let U = {Ui}i∈I be an open cover
of X, i.e., a family of open subsets such that X = ∪i∈IUi. The nerve of U , denoted
N(U), is the (abstract) simplicial complex defined by the following:

(i) the vertices of N(U) are the Ui’s, and

(ii) σ = [Ui0 , . . . , Uik ] ∈ N(U) if and only if
⋂k
j=0 Uij 6= ∅.

THEOREM 25.2.1 Nerve Theorem

Let U = {Ui}i∈I be an open cover of a paracompact topological space X. If any
nonempty intersection of finitely many sets in U is contractible, then X and N(U)
are homotopy equivalent. In particular, their homology groups are isomorphic.

An immediate consequence of the Nerve Theorem is that under the assumption
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of Theorem 25.1.2, the computation of the homology of a smooth submanifold
K ⊂ Rd approximated by a finite point cloud P boils down to the computation
of the homology of the Čech complex Čech(P, r) for some well-chosen radius r.
However, this direct approach suffers from several drawbacks: first, computing the
nerve of a union of balls requires the extensive use of an awkward predicate testing
the nonemptiness of the intersection of finite sets of balls; second, the suitable
choice of the radius r relies on the knowledge of the reach of K and of the Hausdorff
distance between K and P that are usually not available. Moreover, the assumption
that the underlying shape K is a smooth manifold is often too restrictive in practical
applications. To overcome this latter restriction, [CL07, CSEH07] consider the
linear map Hk(P ε)→ Hk(P 3ε) induced by the inclusion P ε ↪→ P 3ε of small offsets
of P and prove that its rank is equal to the kth Betti number ofKδ when dH(K,P ) <
ε < wfs(K)/4 and 0 < δ < wfs(K), where wfs(K) = wfsdk(0) is the infimum of
the positive critical values of dK . The idea of using nested pairs of offsets to
infer the homology of compact sets was initially introduced in [Rob99] for the
study of attractors in dynamical systems. Beyond homology, the inclusion P ε ↪→
P 3ε also induces group morphisms between the homotopy groups of theses offsets
whose images are isomorphic to the homotopy groups of Kδ [CL07]. Homotopy
inference and the use of homotopy information in TDA raise deep theoretical and
algorithmic problems and remains rather unexplored despite a few attempts such
as, e.g., [BM13].

The homotopy equivalences between P ε, P 3ε and Čech(P ε), Čech(P 3ε), respec-
tively, given by the nerve theorem can be chosen in such a way that they commute
with the inclusion P ε ↪→ P 3ε, leading to an algorithm for homology inference based
upon the Čech complex. To overcome the difficulty raised by the computation of
the Čech complex, [CO08] proposes to replace it by the Vietoris-Rips complex.
Using the elementary interleaving relation

Čech(P, r/2) ⊆ Rips(P, r/2) ⊂ Čech(P, r),

one easily obtains that, for any integer k = 0, 1 . . ., the rank of the linear map
Hk(Rips(P, ε)) → Hk(Rips(P, 4ε)) is equal to that of Hk(Kδ) when 2dH(P,K) <
ε < (wfs(K) − dH(P,K))/4 and 0 < δ < wfs(K). A similar result also holds for
witness complexes built on top of the input data P . To overcome the problem
of the choice of the Vietoris-Rips parameter ε, a greedy algorithm is proposed in
[CO08] that maintains a nested sequence of Vietoris-Rips complexes and eventually
computes the Betti numbers of the offsets Kδ for various relevant scales δ. When
K is an m-dimensional smooth submanifold of Rd this algorithm recovers the Betti
numbers of K in times at most c(m)n5 where n = |P | and c(m) is a constant
depending exponentially on m and linearly on d. Precise information about the
complexity of the existing homology inference algorithms is available in [Oud15,
Chapter 4].

From a statistical perspective, when K is a smooth submanifold and P is a
random sample, the estimation of the homology has been considered in [NSW08,
NSW11] while [BRS+12] provides minimax rates of convergence.

COVERAGE PROBLEMS IN SENSOR NETWORKS

Given that sensors located at a set of nodes P = {p1, . . . , pn} ⊂ Rd spread out
in a bounded region D ⊂ Rd, assume that each sensor can sense its environment
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within a disc of fixed covering radius rc > 0. Basic coverage problems in sensor
networks address the question of the full coverage of D by the sensing areas covered
by the sensor. When the exact position of the nodes is not known but only the
graph connecting sensors within distance less than some communication radius
rc > 0 from each other, Vietoris-Rips complexes appear as a natural tool to infer
topological information about the covered domain. Following this idea, [SG07a,
SG07b] propose to use the homology of nested pairs of such simplicial complexes to
certify that the domain D is covered by the union of the covering discs in various
settings.

More precisely, assume that each node can detect and communicate with other
nodes via a strong signal within radius rs > 0 and via a weak signal within a radius
rs > 0, respectively, such that rc ≥ rs/

√
2 and rw ≥ rs

√
10. Assume moreover that

the nodes can detect the presence of the boundary ∂D within a fence detection
radius rf and denote by F ⊂ P the set of nodes that are at distance at most rf
from ∂D. Regarding the domain D, assume that D\(∂D)rf+rs/

√
2 is connected and

the injectivity radius of the hypersurface d−1∂D(rf ) is larger than rs. Then [SG07a]
introduces the following criterion involving the relative homology of the pairs of
Vietoris-Rips complexes built on top of F and P .

THEOREM 25.2.2 Coverage criterion

If the morphism between relative homology groups

i? : Hd(Rips(P, F, rs))→ Hd(Rips(P, F, rw))

induced by the inclusion of the pairs of complexes

i : (Rips(P, rs),Rips(F, rs)) ↪→ (Rips(P, rw),Rips(F, rw))

is nonzero, then D \ (∂D)rf+rs/
√
2 is contained in the union of the balls of radius

rc centered at the points of P .

This result has given rise to a large literature on topological methods in sensor
networks. In particular, regarding the robustness of this criterion, its stability under
perturbations of the networks is studied in [HK14]. Similar ideas, combined with
zigzag persistent homology, have also been used to address other problems such as,
e.g., the detection of evasion paths in mobile sensor networks [AC15].

25.3 PERSISTENCE-BASED INFERENCE

Beyond homology, persistent homology (see Chapter 22) plays a central role in
topological data analysis. It is usually used in two different ways. It may be
applied to functions defined on data in order to estimate topological features of
these functions (number and relevance of local extrema, homology of sublevel sets,
etc.). Persistent homology may also be applied to geometric filtrations built on top
of the data in order to infer topological information about the global structure of
data. These two ways give rise to two main persistence-based pipelines that are
presented in the next two sections and illustrated in Figure 25.3.1. The resulting
persistence diagrams are then used to reveal and characterize topological features
for further data analysis tasks (classification, clustering, learning, etc.). From a
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theoretical perspective, the stability properties of persistent homology allow us to
establish the stability and thus the relevance of these features.

∞

0

0

Metric data set
Filtered simplicial

complex

Signature: persistence
diagram

Build geometric filtered
complex on top of data

Compute persistent
homology of the

complex.

X topological space / data

f : X → R

R

Sublevel sets filtration

Compute persistent
homology of sublevel

sets filtration.

X

FIGURE 25.3.1
The classical pipelines for persistence in TDA.

GLOSSARY

Filtered simplicial complex: Given a simplicial complex C and a finite or in-
finite subset A ⊂ R, a filtration of C is a family (Cα)α∈A of subcomplexes of C
such that for any α ≤ α′, Cα ⊆ Cα′ and C = ∪α∈ACα.

Sublevel set filtration: Given a topological space X and a function f : X →
R, the sublevel set filtration of f is the nested family of sublevel sets of f :
(f−1((−∞, α]))α∈R.

Metric space: A metric space is a pair (X, dX) where X is a set and dX : X ×
X → R+ is a nonnegative map such that for any x, y, z ∈ X, dX(x, y) = dX(y, x),
dX(x, y) = 0 if and only if x = y and dX(x, z) ≤ dX(x, y) + dX(y, z).

Gromov-Hausdorff distance: The Gromov-Hausdorff distance extends the no-
tion of Hausdorff distance between compact subsets of the same metric spaces
to general spaces. More precisely, given two compact metric spaces (X, dX) and
(Y, dY ) and a third metric space (Z, dZ), a map ϕ : X → Z (resp., ψ : Y → Z) is
an isometric embedding if for any x, x′ ∈ X, dZ(ϕ(x), ϕ(x′)) = dX(x, x′) (resp.,
any y, y′ ∈ Y , dZ(ψ(y), ψ(y′)) = dY (y, y′)). The Gromov-Hausdorff distance
dGH(X,Y ) between X and Y is defined as the infimum of the Hausdorff dis-
tances dH(ϕ(X), ψ(Y )) where the infimum is taken over all the metric spaces
(Z, dZ) and all the isometric embeddings ϕ : X → Z and ψ : Y → Z.

Persistent homology: Persistent homology provides a framework and efficient
algorithms to encode the evolution of the homology of families of nested topo-
logical spaces (filtrations) indexed by a set of real numbers, such as the sublevel
sets filtration of a function, a filtered complex, etc. These indices may often be
seen as scales, as for example in the case of the Vietoris-Rips filtration where
the index is the radius of the balls used to build the complex. Given a filtration
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(Fα)α∈A, its homology changes as α increases: new connected components can
appear, existing connected components can merge, cycles and cavities can appear
or be filled, etc. Persistent homology tracks these changes, identifies features and
associates, with each of them, an interval or lifetime from αbirth to αdeath. For
instance, a connected component is a feature that is born at the smallest α such
that the component is present in Fα, and dies when it merges with an older con-
nected component. Intuitively, the longer a feature persists, the more relevant it
is. The set of intervals representing the lifetime of the identified features is called
the barcode of the filtration. As an interval can also be represented as a point in
the plane with coordinates (αbirth, αdeath), the set of points (with multiplicity)
representing the intervals is called the persistence diagram of the filtration. See
Chapter 22 for formal definitions.

Bottleneck distance: Given two persistence diagrams, D and D′, the bottleneck
distance dB(D,D′) is defined as the infimum of δ ≥ 0 for which there exists
a matching between the diagrams, such that two points can only be matched
if their distance is less than δ and all points at distance more than δ from the
diagonal must be matched. See Chapter 22, for more details.

PERSISTENCE OF SUBLEVEL SET FILTRATIONS

Persistent homology of sublevel set filtration of functions may be used from two
different perspectives in TDA.

Collections of complex objects. When data are collections in which each el-
ement is already a “complex” geometric object such as, e.g., an image or shape,
functions defined on each data element may be used to highlight some of their fea-
tures. The persistence diagrams of the sublevel set filtrations of such functions can
be used for comparison and classification of the data elements. The bottleneck dis-
tance between the diagrams is then used as a measure of dissimilarity between the
elements. The idea of using persistence of functions defined on images and shapes
was first introduced in the setting of size theory where it was used for shape analysis
[VUFF93]; see also [FL99] for a survey. These ideas are not restricted to images
and shapes and can also be applied to other “geometric” data such as, for exam-
ple, textures or hand gesture data [LOC14, RHBK15]. In practical applications
the main difficulty of this approach is in the design of functions whose persistent
homology provides sufficiently informative and discriminative features for further
classification or learning tasks.

Scalar field analysis. Another problem arising in TDA is the estimation of the
persistent homology of a function defined on a possibly unknown manifold, from
a finite approximation. As an example, assume that we are given a collection of
sensors spread out in some region and that these sensors measure some physical
quantity, such as temperature or humidity. Assuming that the nodes do not know
their geographic location but that they can detect which other nodes lie in their
vicinity, the problem is then to recover global topological information about the
physical quantity through the estimation of its persistence diagrams. Another ex-
ample is the estimation of the persistence diagrams of a probability density function
f defined on some domain from a finite set of points sampled according to f . The
persistence diagram of f may be used to provide information about the modes
(peaks) of f and their shape and prominence. More formally, the problem can
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be stated in the following way: given an unknown metric space X and a function
f : X → R whose values are known only at a finite set of sample points P ⊂ X,
can we reliably estimate the persistence diagrams of the sublevel set filtration of f?

When X is a compact Riemannian manifold and f is a Lipschitz function,
[CGOS11] provide an algorithm computing a persistence diagram whose bottleneck
distance to the diagram of f is upper bounded by a function depending on the
Lipschitz constant of f and on dH(P,X) when this latter quantity is smaller than
some geometric quantity, namely the so-called convexity radius of the manifold
X. Applied to the case where f is a density estimate, this result has led to new
clustering algorithms on the Riemannian manifold where persistence is used to
identify and characterize relevant clusters [CGOS13]. Applied to curvature-like
functions on surfaces, it has also been used for shape segmentation [SOCG10].
As already noted in Section 25.1, the dependence of the quality of the estimated
persistence diagrams on the Hausdorff distance dH(P,X) makes this approach very
sensitive to data corrupted by outliers. Some recent attempts have been made to
overcome this issue [BCD+15] but the existing results apply in only very restrictive
settings and the problem remains largely open.

PERSISTENCE-BASED SIGNATURES

Relevant multiscale topological signatures of data can be defined using the persis-
tent homology of filtered simplicial complexes built on top of the data. Formally,
given a metric space (Y, dY ), the data, approximate a (possibly unknown) metric
space (X, dX). The idea is to build a filtered simplicial complex on top of Y whose
homotopy type, homology, or persistent homology is related to the one of X. Con-
sidering the Vietoris-Rips filtration Rips(X), it was proven in [Hau95] that if X is
a closed Riemannian manifold, then for any sufficiently small α > 0, Rips(X,α)
is homotopy equivalent to X. This result was later generalized to prove that if
(Y, dY ) is close enough to (X, dX) with respect to the Gromov-Hausdorff distance,
then there exists α > 0 such that Rips(Y, α) is homotopy equivalent to X [Lat01].
Quantitative variants of this result were obtained in [ALS13] for a class of compact
subsets of Rd. Considering the whole filtration and its persistent homology allows
us to relax the assumptions made on X. For the Čech and Vietoris-Rips complexes,
the following stability result holds in any compact metric space [CSO14].

THEOREM 25.3.1 Stability of persistence-based signatures

Let (X, dX) and (Y, dY ) be two compact metric spaces. Then

db(dgm(H(Čech(X))), dgm(H(Čech(Y )))) ≤ 2dGH(X,Y ),

db(dgm(H(Rips(X))), dgm(H(Rips(Y )))) ≤ 2dGH(X,Y )

where dgm(H(Čech(X))) (resp., dgm(H(Rips(X)))) denotes the persistence dia-
grams of the Čech (resp., Vietoris-Rips) filtrations built on top of X and db(., .) is
the bottleneck distance.

This result indeed holds for larger families of geometric complexes built on top
of metric spaces, in particular for the so-called witness complexes [SC04], and also
extends to spaces endowed with a dissimilarity measure (no need of the triangle
inequality). Computing persistent homology of geometric filtrations built on top

Preliminary version (August 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



676 F. Chazal

of data is a classical strategy in TDA; see for example [CISZ08] for a “historical”
application.

A first version of Theorem 25.3.1, restricted to the case of finite metric spaces,
is given in [CCSG+09] where it is applied to shape comparison and classification.
From a practical perspective, the computation of the Gromov-Hausdorff distance
between two metric spaces is in general out of reach, even for finite metric spaces
with relatively small cardinality. The computation of persistence diagrams of ge-
ometric filtrations built on top of metric spaces thus provides a tractable way to
compare them. It is however important to notice that the size of the k-dimensional
skeleton of geometric filtrations, such as the Rips-Vietoris or Čech complexes, built
on top of n data points is O(nk), leading to severe practical restriction for their
use. Various approaches have been proposed to circumvent this problem. From an
algorithmic point of view, new data structures have been proposed to efficiently rep-
resent geometric filtrations [BM14] and compute their persistence; see Chapter 22.
Other lighter filtrations have also been proposed, such as the graph induced com-
plex [DFW15] or the sparse Rips complex [She13]. From a statistical point of view,
subsampling and bootstrap methods have been proposed to avoid the prohibitive
computation of the persistent homology on filtrations built on the whole data; see
the next paragraph. Despite these recent attempts, the practical computation of
persistent homology of geometric filtrations built on top of a large data set remains
a severe issue.

STATISTICAL ANALYSIS OF PERSISTENCE-BASED SIGNATURES

In the context of data analysis, where data usually carries some noise and out-
liers, the study of persistent homology from a statistical perspective has recently
attracted some interest. Assuming that the data Xn = {x1, . . . , xn} is an i.i.d.
sample from some probability measure µ supported on a compact metric space
(M,dM ), the persistence diagram of geometric filtrations built on top of Xn be-
comes a random variable distributed according a probability measure in the space
of persistence diagrams endowed with the bottleneck distance. Recent efforts have
been made to understand and exploit the statistical properties of these distributions
of diagrams. For example, building on the stability result for persistence-based sig-
natures, [CGLM15] established convergence rates for the diagrams built on top of
Xn to the diagrams built on top of M as n→ +∞. In the same direction, consid-
ering subsamples of fixed size m, [BGMP14] and [CFL+15a] prove stability results
for the associated distributions of diagrams under perturbations of the probabil-
ity measure µ in the Gromov-Prohorov and Wasserstein metrics respectively. The
latter results provide new promising methods for inferring persistence-based topo-
logical information that are resilient to the presence of noise and outliers in the data
and that turn out to be practically efficient (persistent homology being computed
on filtrations built on top of small fixed-size subsamples).

More generally, a main difficulty in the use of persistent homology in statistical
settings hinges on the fact that the space of persistence diagrams is highly nonlin-
ear. This makes the definition and computation of basic statistical quantities such
as, e.g., means, nonobvious. Despite this difficulty it has been shown that several
standard statistical notions and tools can still be defined and used with persistent
diagrams, such as Fréchet means [MMH11], confidence sets [FLR+14], or bootstrap
techniques [CFL+15b], etc. Attempts have also been made to find new representa-
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tions of persistence diagrams as elements of linear spaces in which statistical tools
are easier to handle. A particularly interesting contribution in this direction is the
introduction of the notion of persistence landscape, a representation of persistence
diagrams as a family of piecewise linear functions on the real line [Bub15].

25.4 OTHER APPLICATIONS OF TOPOLOGICAL
METHODS IN DATA ANALYSIS

Topological Data Analysis has known an important development during the last
decade and it now includes a broad spectrum of tools, methods, and applications
that go beyond the mathematical results presented in the first three sections of
this paper. In this section, we present other directions in which TDA has been
developed or applied.

VISUALIZATION AND DIMENSIONALITY REDUCTION

Beyond mathematical and statistical relevance, the efficient and easy-to-understand
visualization of the topological and geometric structure of data is an important
task in data analysis. The TDA toolbox proposes a few methods to represent and
visualize some topological features of data.

Data visualization using Mapper. Mapper is a method to visualize high-
dimensional and complex data using simplicial complexes. Introduced in [SMC07],
it relies on the idea that local and partial clustering of the data leads to a cover
of the whole data whose nerve provides a simplified representation of the global
structure. Given a data set X, a function f : X → R, and a finite cover (Ii)i=1,...,n

of f(X) ⊂ R by a family of intervals, the Mapper method first clusterizes each
preimage f−1(Ii), of the interval Ii to obtain a (finite) cover U1, . . . , Uki of f−1(Ii).
The union of the obtained clusters for all the intervals Ii’s is a cover of X and
Mapper outputs a graph, the 1-skeleton of this cover. The method is very flexible
as it leaves the choice of the function f , the cover (Ii)i=1,...,n, and the clustering
methods to the user. The output graph provides an easy-to-visualize representation
of the structure of the data driven by the function f . The Mapper algorithm has
been popularized and is widely used as a visualization tool to explore and discover
hidden insights in high-dimensional data sets; see, e.g., [Car09, LSL+13] for a pre-
cise description and a discussion of the Mapper algorithm. When the length of
the intervals Ii’s is small, the output of Mapper can be seen as a discrete version
of the Reeb graph of the function f . However, despite a few recent results, the
theoretical analysis of the Mapper method and its formal connection with the Reeb
graph remain an open research area.

Morse theory. Other topological methods, including in particular Morse theory,
are also successfully used for data visualization, but in a rather different perspective
than Mapper. The interested reader is referred to the following collection of books
providing a good survey on the topic: [PTHT11, PHCF12, BHPP14].

Circular coordinates and dimensionality reduction. Nonlinear dimensional-
ity reduction (NLDR) includes a set of techniques whose aim is to represent high-
dimensional data in low-dimensional spaces while preserving the intrinsic structure

Preliminary version (August 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



678 F. Chazal

of the data. Classical NLDR methods map the data in a low-dimensional Eu-
clidean space Rk assuming that real-valued coordinates are sufficient to correctly
and efficiently parametrize the underlying structure M (which is assumed to be
a manifold) of the data. More precisely, NLDR methods intend to infer a set of
functions f1, . . . , fk : M → R such that the map F = (f1, . . . , fk) : M → Rk is an
embedding preserving the geometric structure of M . As a consequence, the the-
oretical guarantees of NLDR methods require M to have a very simple geometry.
For example, ISOMAP [TSL00] assumes M to be isometric to a convex open subset
of Rk. To enrich the class of functions used to parametrize the data, [SMVJ11] in-
troduces a persistence-based method to detect and construct circular coordinates,
i.e., functions f : M → S1 where S1 is the unit circle. The approach relies on
the classical property that S1 is the classifying space of the first cohomology group
(with integer coefficients) H1(M,Z), i.e., H1(M,Z) is equal to the set of equivalence
classes of maps from M to S1, where two maps are equivalent if they are homotopic
[Hat01]. The method consists first in building a filtered simplicial complex on top
of the data and using persistent cohomology to identify relevant, i.e., persistent,
cohomology classes. Then a smooth (harmonic) cocycle is chosen in each of these
classes and integrated to give a circular function on the data.

This approach opens the door to new NLDR methods combining real-valued
and circle-valued coordinates. Using time-delay embedding of time series and time-
dependent data [Tak81], the circular coordinates approach also opens the door to
new topological approaches in time series analysis [PH13, Rob14].

TOPOLOGICAL DATA ANALYSIS IN SCIENCES

Despite its youth, TDA has already led to promising applications and results in
various domains of science and the TDA toolbox is now used with many different
kinds of data. The following list provides a short and nonexhaustive selection of
domains where topological approaches appear to be particularly promising.

Biology: Biology is currently probably the largest field of application of TDA.
There already exists a vast literature using persistent homology and the Mapper
algorithm to analyze various types of biological data; see, e.g., [DCCW+10,
NLC11] for an application to breast cancer data.

Networks analysis: Beyond sensor network problems, the use of topological
data analysis tools to understand and analyze the structure of networks has
recently attracted some interest. A basic idea is to build filtered simplicial
complexes on top of weighted networks and to compute their persistent homol-
ogy. Despite a few existing preliminary experimental results, this remains a
widely unexplored research direction.

Material science: Persistent homology recently found some promising ap-
plications in the study of structure of materials, such as for example granular
media [KGKM13] or amorphous materials [NHH+15].

Shape analysis: The geometric nature of 2D and 3D shapes makes topological
methods particularly relevant to design shape descriptors for various tasks such
as classification and segmentation of registration; see, for example, [CZCG05,
FL12, FL11, COO15].
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25.5 FURTHER READINGS

[Car09, Ghr08]: two survey papers that present various aspects of TDA addressing
a large audience.

[Oud15]: a recent book that offers a very good introduction.

Although not discussed in this chapter, (discrete) Morse theory, Reeb graphs [DW13]
and, more recently, category and sheaf theory are among the mathematical tools
used in TDA. An introduction to these topics from a computational and applied
perspective can be found in the recent books [EH10, Ghr14].
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