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INTRODUCTION

This chapter surveys computational topology results in the special, low-dimensional
case where the ambient space is a surface. Surface topology is very well-understood
and comparably simpler than the higher-dimensional counterparts; many compu-
tational problems that are undecidable in general (e.g., homotopy questions) can
be solved efficiently on surfaces. This leads to a distinct flavor of computational
topology and to dedicated techniques for revisiting topological problems on surfaces
from a computational viewpoint.

Topological surfaces and graphs drawn on them appear in various fields of
mathematics and computer science, and these aspects are not surveyed here:

• in topology of three-dimensional manifolds, also in connection to the recent
resolution of the Poincaré conjecture, combinatorial and algebraic structures
defined on surfaces are often relevant, e.g., via the study of mapping class
groups and Teichmüller spaces [FM11];

• in topological graph theory, a branch of structural graph theory, graphs on
surfaces are studied from a combinatorial point of view, also in relation to the
theory of Robertson and Seymour on graph minors; for example, colorability
questions of graphs on surfaces, generalizing the four-color theorem for planar
graphs, are well-studied [MT01];

• in enumerative combinatorics, a natural problem is to count (exactly or
asymptotically) maps with given properties in the plane or on surfaces, with
the help of generating series; moreover, typical properties of random maps
are investigated [Mie09, Bet12, LZ04];

• various applications involve surface meshes, in particular in geometry process-
ing and computer graphics, for approximation [CDP04], topological simplifi-
cation [GW01, WHDS04], compression [AG05], and parameterization [GY03].
Techniques for general surfaces apply also to subsets of the plane, and are thus
relevant in VLSI design [LM85] and map simplification [BKS98].

This chapter is organized as follows. We first review the basic concepts and
properties of topological surfaces and graphs embedded on them (Sections 23.1
and 23.2). Then we consider three categories of topological problems, mostly from
a computational perspective: drawing an abstract input graph on a surface (Sec-
tion 23.3), homotopy questions and variations (Section 23.4), and optimization of
curves and graphs on surfaces, also from a homological point of view (Section 23.5).
Then we survey techniques that allow us to solve general graph problems faster in
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the case where the input graph is embedded on a fixed surface (Section 23.6).
Finally, we collect other miscellaneous results (Section 23.7).

23.1 SURFACES

Surfaces are considered from a topological point of view: Two homeomorphic sur-
faces are regarded as equivalent. Surfaces such as the sphere or the disk are topo-
logically uninteresting; our focus is on surfaces in which some closed curves are
non-contractible (they cannot be deformed to a point by a continuous motion on
the surface).

GLOSSARY

Homeomorphism: Given two topological spaces X and X ′, a map h : X → X ′

is a homeomorphism if h is bijective and both h and its inverse are continuous.

Surface (topological definition): In this chapter, a surface S is a compact
two-dimensional manifold possibly with boundary. Equivalently, S is a compact
topological space that is Hausdorff (any two distinct points have disjoint neigh-
borhoods) and such that every point has a neighborhood homeomorphic to the
plane or the closed half-plane. The set of points of a surface S that have no
neighborhood homeomorphic to the plane is the boundary of S.

Surface (combinatorial definition): Equivalently, a surface S is a topological
space obtained from finitely many disjoint triangles by identifying some pairs of
edges of the triangles (by the quotient topology). The boundary of S is the
union of the edges that are not identified with any other edge.

Path: A path on S is a continuous map p : [0, 1] → S. Its two endpoints are
p(0) and p(1).

Connectedness: A surface is connected if any two points of the surface are
the endpoints of some path. The inclusionwise maximal connected subsets of a
surface form its connected components.

Orientability: A surface is non-orientable if some subset of it (with the in-
duced topology) is homeomorphic to the Möbius strip (defined in Figure 23.1.1).
Otherwise, it is orientable.

PROPERTIES: CLASSIFICATION OF SURFACES

Every connected surface is homeomorphic to exactly one of the following surfaces:

• the orientable surface of genus g ≥ 0 with b ≥ 0 boundary components
(or, more concisely, boundaries), obtained from the sphere by removing
g disjoint open disks, attaching a handle (defined in Figure 23.1.1) to each of
the resulting g circles, and finally removing b open disks with disjoint closures;

• the non-orientable surface of genus g ≥ 1 with b ≥ 0 boundary components
(or boundaries), obtained from the sphere by removing g disjoint open disks,
attaching a Möbius strip (defined in Figure 23.1.1) to each of the resulting
g circles, and finally removing b open disks with disjoint closures.

Preliminary version (September 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 23: Computational topology of graphs on surfaces 607

disk (orientable,
g = 0, b = 1)

sphere S2 (ori-
entable, g = 0,
b = 0)
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FIGURE 23.1.1
Examples of surfaces. Each surface (top row) comes with a polygonal schema (bottom row),
a polygon with some labeled and directed edges; the surface can be obtained by identifying
the pairs of edges with the same labels, respecting their direction. The genus g and number
of boundary components b are specified, as well as whether the surface is orientable.

Every surface can be obtained by identifying pairs of edges of disjoint trian-
gles. More concisely, every surface can be defined by a polygonal schema, a
polygon with labels and directions on some of the edges specifying how they must
be identified. In particular, one can define a canonical polygonal schema for every
connected surface without boundary:

• The canonical polygonal schema of the orientable surface of genus g ≥ 1
is a 4g-gon whose successive edges are labeled a1, b1, ā1, b̄1, . . . , ag, bg, āg, b̄g,
and where edge x is directed clockwise, edge x̄ is directed counterclockwise.
Identifying edge x with x̄, as indicated by their directions, gives the orientable
surface of genus g. See Figure 23.1.2.

• Similarly, the canonical polygonal schema of the non-orientable surface of
genus g ≥ 1 is a 2g-gon whose successive edges are labeled a1, a1, . . . , ag, ag,
and where all edges are directed clockwise.

FIGURE 23.1.2
A double torus with a system of loops (left); the surface cut along the loops (middle) is a
disk, shown in the form of a (canonical) polygonal schema (right).

EXAMPLES

Table 23.1.1 lists some common connected surfaces. See also Figures 23.1.1 and 23.1.2.
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TABLE 23.1.1 Some common surfaces.

Surface Orientable? Genus # of boundary components

Sphere Yes 0 0

Disk Yes 0 1

Annulus = cylinder Yes 0 2

Pair of pants Yes 0 3

Torus Yes 1 0

Handle Yes 1 1

Double torus Yes 2 0

Projective plane No 1 0

Möbius strip No 1 1

Klein bottle No 2 0

23.2 GRAPHS ON SURFACES

GLOSSARY

Let S be a surface.

Loop: A loop is a path whose two endpoints are equal to a single point, called
the basepoint of the loop.

Closed curve: A closed curve on S is a continuous map from the unit circle S1

to S. This is almost the same as a loop, except that a closed curve has no
distinguished basepoint. A closed curve is sometimes called a cycle, although,
contrary to the standard terminology in graph theory, here a cycle may self-
intersect.

Curve: A curve is either a path or a closed curve. For most purposes, the param-
eterization is unimportant; for example, a path p could be regarded as equivalent
to p ◦ ϕ, where ϕ : [0, 1]→ [0, 1] is bijective and increasing.

Simplicity: A path or a closed curve is simple if it is injective. A loop ` : [0, 1]→
S is simple if its restriction to [0, 1) is injective.

Graph: In this chapter, unless specified otherwise, graphs are finite, undirected,
and may have loops and multiple edges.

Curve (in a graph): A curve in a graph G (also called walk in the terminology
of graph theory) is a sequence of directed edges e1, . . . , ek of G where the target
of ei equals the source of ei+1. Repetitions of vertices and edges are allowed.
The endpoints of the curve are the source of e1 and the target of ek. If they
are equal, the curve is closed.

Graph embedding (topological definition): A graph G naturally leads to a
topological space Ĝ, defined as follows: One considers a disjoint set of segments,
one per edge of G, and identifies the endpoints that correspond to the same
vertex of G. This gives a topological space, from which Ĝ is obtained by adding
one isolated point per isolated vertex of G. (As a special case, if G has no loop
and no multiple edge, then G is a one-dimensional simplicial complex, and Ĝ
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Chapter 23: Computational topology of graphs on surfaces 609

is the associated topological space.) An embedding of G is a continuous map
from Ĝ into S that is a homeomorphism from Ĝ onto its image.

Graph embedding (concrete definition): Equivalently, an embedding of G
on S is a “crossing-free” drawing of G: It maps the vertices of G to distinct
points of S, and its edges to paths of S whose endpoints are the images of their
incident vertices; the image of an edge can self-intersect, or intersect the image
of another edge or vertex, only at its endpoints. When no confusion arises, we
identify G with its embedding on S, or with the image of that embedding.

Face: The faces of an embedded graph G are the connected components of the
complement of the image of G.

Degree: The degree of a vertex v is the number of edges incident to v, counted
with multiplicity (if an edge is a loop). The degree of a face f is the number of
edges incident to f , counted with multiplicity (if an edge has the same face on
both sides).

Cellular embedding: A graph embedding is cellular if its faces are homeo-
morphic to open disks.

Triangulation: A graph embedding is a triangulation if it is cellular and its
faces have degree three. The triangulation may fail to be a simplicial complex:
A triangle is not necessarily incident to three distinct vertices, or even to three
distinct edges.

Cutting: Given an embedded graph G on S without isolated vertex, the operation
of cutting S along G results in a (possibly disconnected) surface with boundary,
denoted S\\G (or sometimes SQG or similar); each connected component of S\\G
corresponds to a face of G on S, and by identifying pieces of the boundaries of
these components in the obvious way, one recovers the surface S. Similarly, one
can cut along a set of disjoint, simple closed curves. (Technically, if S has non-
empty boundary, an additional condition is needed: The intersection of an edge
with the boundary of S can be either the entire edge, its two endpoints, or one
of its endpoints.)

Planarity: A graph is planar if it has an embedding to the plane (or equivalently
the sphere).

Dual graph: A dual graph of a cellularly embedded graph G on S (assumed
without boundary) is a graph G∗ embedded on S with one vertex f∗ inside each
face f of S, and with an edge e∗ for each edge e of G, such that e∗ crosses e and
no other edge of G. A dual graph is cellularly embedded. Its combinatorial map
(see below) is uniquely determined by the combinatorial map of G.

Euler genus: The Euler genus ḡ of a connected surface S with genus g equals 2g
if S is orientable, and g if S is non-orientable.

Euler characteristic: The Euler characteristic of a cellularly embedded graphG
equals χ(G) := v − e + f , where v, e, and f are its number of vertices, edges,
and faces, respectively.

PROPERTIES: EULER’S FORMULA AND CONSEQUENCES

1. Euler’s formula: If G is cellularly embedded on a connected surface S of
Euler genus ḡ with b boundary components, then χ(G) = 2−ḡ−b. In particular,
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χ(G) does not depend on G, only on S, and is consequently called the Euler
characteristic of S.

2. The number of vertices and faces of a graph G cellularly embedded on a con-
nected surface is at most linear in the number of its edges. In particular, the
combinatorial complexity of G is linear in its number of edges.

3. Conversely, letG be a (not necessarily cellular) graph embedding on a connected
surface with Euler genus ḡ and b boundaries. Assume that G has no face of
degree one or two that is an open disk. Then the numbers e of edges and v of
vertices of G satisfy e = O(v + ḡ + b).

DATA STRUCTURES

In all the problems we shall consider, the exact embedding of a graph on a surface
is irrelevant; only the actual combinatorial data associated to the embedding is
meaningful. If G is a graph cellularly embedded on a surface S without boundary,
we only need the information of G together with the facial walks, namely, the closed
walks in G encountered when walking along the boundary of the faces of G. This
information is called the combinatorial map of G, and allows us to reconstruct the
surface, by attaching disks to every facial walk. (Some conditions on the walks are
needed to ensure that the resulting space is indeed a surface.) If S has boundaries,
one can specify the corresponding faces of G. If S is orientable and G has no loop
edge, instead of the facial walks one could as well specify the cyclic ordering of the
edges incident to each vertex.

However, more complicated data structures are needed to perform basic op-
erations efficiently. For example, one should be able to compute the degree of a
face in time linear in the degree; to count the number of faces of G in linear time;
to determine whether the surface is orientable in linear time; etc. (The last two
operations, together with counting the number of vertices and edges, allow us to
identify the topology of the surface in linear time using Euler’s formula; this can
also be done in logarithmic space [BEKT16].)

FIGURE 23.2.1
The graph-encoded map data structure. Each edge bears four flags, drawn parallel to it.
Three operations allow us to move from a flag to a nearby flag.

One such data structure, the graph-encoded map or gem representation [Lin82],
uses flags (quarter-edges, or, equivalently, incidences between a vertex, an edge, and
a face) of G, see Figure 23.2.1; three involutive operations can be applied to a flag to
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move to an incident flag. Alternative data structures have been designed for more
general situations (e.g., to allow surfaces with boundaries) or to take advantage
of special situations (e.g., in the case where G is a triangulation, or where S is
orientable); see the survey [Ket99]. However, the choice of the data structure is
irrelevant for the theoretical design and asymptotic analysis of the algorithms.

CONVENTIONS FOR THIS CHAPTER

Henceforth, we assume all surfaces to be connected.
In several works mentioned in the following, only orientable surfaces are con-

sidered. In some cases, non-orientable surfaces are just as easy to handle, but
sometimes they lead to additional difficulties. We refer to the original articles
to determine whether the results hold on non-orientable surfaces.

Also, in most problems studied in this chapter, surfaces with boundaries are
no harder to handle than surfaces without boundary: Any algorithm for surfaces
without boundary immediately implies an algorithm for surfaces with boundary
(with the same running time, or by replacing g by g+ b in the complexity, where g
and b are the genus and the number of boundary components). For this reason, we
mostly focus on computational problems for surfaces without boundary.

Finally, when we consider cellularly embedded graphs for algorithmic prob-
lems, we implicitly assume that they are specified in the form of a data
structure as described above (e.g., a graph-encoded map).

23.3 EMBEDDING AND DRAWING GRAPHS ON SURFACES

Being able to build embeddings of a graph on a surface with small genus is im-
portant; almost all algorithms for graphs embeddable on a fixed surface require an
embedding of the input graph (there are a few exceptions [ES14, Kel06, MS12]).
We discuss algorithmic results related to the problem of embedding a graph on a
surface, and then consider more general drawings where crossings are allowed.

EMBEDDING GRAPHS ON SURFACES

Let G be an abstract graph (not embedded on any surface), given, e.g., by the
(unordered) list of the edges incident to every vertex. We assume that G is con-
nected. Let n denote the combinatorial complexity of G, that is, the total number
of vertices and edges of G.

1. General facts: An embedding on an orientable surface with minimum possible
genus is cellular. If G is embeddable on an orientable (resp., non-orientable)
surface of genus g, then it is embeddable on an orientable (resp., non-orientable)
surface of genus g′, for every g′ ≥ g.

2. General bound: G can be cellularly embedded on some orientable surface with
genus O(n).

3. Planar case: There is an O(n)-time algorithm for deciding embeddability in
the sphere (equivalently, in the plane) [HT74]; also in O(n) time, the graph can
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be embedded with straight-line segments in the plane [Sch90a] (see also [NR04,
Ch. 4]), if it has no loop or multiple edge. See Chapter 55 for more results on
graph drawing.

4. Time complexity: Given a graph G and a surface S, specified by its Euler
genus ḡ and by whether it is orientable, determining whether G embeds on S is
NP-hard [Tho89], but can be done in 2poly(ḡ) · n time [KMR08, Moh99] (where
poly(ḡ) is a polynomial in ḡ), which is linear if ḡ is fixed. Such an embedding
can be computed in the same amount of time if it exists.

5. Space complexity: For every fixed ḡ, determining whether an input graph G
embeds on some surface (orientable or not) of Euler genus at most ḡ can be
done in space logarithmic in the input size [EK14].

6. Approximation: Given as input a graph G and an integer ḡ, one can in polyno-
mial time either correctly report that G embeds on no surface of Euler genus ḡ,
or compute an embedding on some surface of Euler genus ḡO(1) [KS15].

Except for the planar case, these algorithms are rather complicated, and im-
plementing them is a real challenge. For example, there seems to be no available
implementation of a polynomial-time algorithm for testing embeddability in the
torus, and no publicly available implementation of any algorithm to decide whether
a graph embeds on the double torus; attempts of implementing some known embed-
ding algorithms, even in the simplest cases, have unveiled some difficulties [MK11].
On the other hand, a recent approach is promising in practice for graphs of mod-
erate size, using integer linear programming or Boolean satisfiability reformula-
tions [BCHK16].

In contrast, determining the maximum genus of an orientable surface without
boundary on which a graph can be cellularly embedded can be done in polynomial
time [FGM88]. There are also results on the embeddability of two-dimensional
simplicial complexes on surfaces [Moh97].

On a less algorithmic side, in the field of topological graph theory, a lot more
is known about the embeddability of some classes of graphs on some surfaces; see,
e.g., [Arc96, Sect. 4.2] and references therein.

GLOSSARY ON DRAWINGS

Let G be a graph and S be a surface.

Drawing: Drawings are more general than embeddings in that they allow a finite
set of crossing points, where exactly two pieces of edges intersect and actually
cross. Formally, recall that G has an associated topological space Ĝ. A (topo-
logical) drawing of G on S is a continuous map from Ĝ into S such that the
preimage of every point in S has cardinality zero or one, except for a finite set of
points (“crossings”), whose preimages have cardinality two; moreover, each such
crossing point has a disk neighborhood that contains exactly the images of two
pieces of edges of Ĝ, which form, up to homeomorphism, two crossing straight
lines.

Arrangement: Let D be a drawing of G on S. The arrangement of D on S
is the graph G′ embedded on S that has the same image as D and is obtained
from D by inserting a vertex of degree four at each crossing in D and subdividing
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the edges of G accordingly. Similarly, one can consider the arrangement of a set
of curves drawn on S.

Crossing number: The crossing number of G with respect to S is the minimum
number of crossings that G has in any drawing of G on S.

Pair crossing number: The pair crossing number of G with respect to S is
the minimum number of pairs of edges of G that cross, over all drawings of G
on S.

Odd crossing number: The odd crossing number of G with respect to S is the
minimum number of pairs of edges of G that cross an odd number of times, over
all drawings of G on S.

DRAWING GRAPHS ON SURFACES WITH FEW CROSSINGS

1. Crossing numbers: Computing the planar crossing number of a graph is NP-
hard (even in very special cases, such as that of a planar graph with a single
additional edge [CM13]), and there exists no polynomial-time algorithm with
approximation guarantee better than a certain constant [Cab13]. However,
for every fixed k, one can, in linear time, determine whether an input graph
has planar crossing number at most k [KR07], although the problem admits
no polynomial kernel [HD16]. Some approximation algorithms for the planar
crossing number are known in restricted cases, such as bounded maximum
degree [HC10, Chu11].

2. Variations on crossing numbers: The relations between the various notions of
crossing numbers are not fully understood. Let c, p, and o denote the planar
crossing number, planar pair crossing number, and planar odd crossing number,
respectively, of some graph G. It is clear that o ≤ p ≤ c, and it is known that
the left inequality can be strict [PSŠ08]. It is widely believed that p = c,
but the best bound known so far is c = O(p3/2 log2 p) (this follows essentially
from [Tót12]). See, e.g., [Mat14] for more details, and [Sch13a] for a wide
survey on the various notions of crossing numbers.

3. Hanani–Tutte theorem: The (weak) Hanani–Tutte theorem [Han34, Tut70],
however, states that if o = 0 then c = 0. Furthermore it holds not only
for the plane, but for arbitrary surfaces [CN00, PSŠ09b]: If a graph G can
be drawn on a surface S in a way that every pair of edges crosses an even
number of times, then G can be embedded on S. In the planar case, it actually
suffices to assume that every pair of independent edges (which do not share
any endpoints) crosses an even number of times, but whether this generalizes
to arbitrary surfaces is open, except for the projective plane [PSS09a, CVK+16].
We refer to surveys [Sch13b, Sch14] for more details.

23.4 HOMOTOPY AND ISOTOPY

Most works in computational topology for surfaces do not take as input a given ab-
stract graph, as in the previous section; instead, they consider an already embedded
graph, given by its combinatorial map.
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GLOSSARY

Let S be a surface.

Reversal: The reversal of a path p : [0, 1]→ S is the path p−1 : [0, 1]→ S defined
by p−1(t) = p(1− t).

Concatenation: The concatenation of two paths p, q : [0, 1]→ S with p(1) = q(0)
is the path p · q defined by (p · q)(t) = p(2t) if t ≤ 1/2 and (p · q)(t) = q(2t− 1)
if t ≥ 1/2.

Homotopy for paths: Given two paths p, q : [0, 1]→ S, a homotopy between p
and q is a continuous deformation between p and q that keeps the endpoints fixed.
More formally, it is a continuous map h : [0, 1]× [0, 1]→ S such that h(0, ·) = p,
h(1, ·) = q, and both h(·, 0) and h(·, 1) are constant maps (equal, respectively,
to p(0) = q(0) and to p(1) = q(1)). The paths p and q are homotopic. Being
homotopic is an equivalence relation, partitioning the paths with given endpoints
into homotopy classes.

Fundamental group: The homotopy classes of loops with a given basepoint
form a group, where concatenation of loops accounts for the multiplication and
reversal accounts for the inverse operation: if [p] denotes the homotopy class of
path p, then we have [p · q] = [p] · [q] and [p−1] = [p]−1.

Homotopy for closed curves (also called free homotopy): Given two closed
curves γ, δ : S1 → S, a homotopy between γ and δ is a continuous deformation
between them, namely, a continuous map h : [0, 1]×S1 → S such that h(0, ·) = γ
and h(1, ·) = δ.

Contractibility: A loop or closed curve is contractible if it is homotopic to a
constant loop or closed curve.

Isotopy: An isotopy between two simple paths, loops, or closed curves is a ho-
motopy h that does not create self-intersections: for each t, h(t, ·) is a simple
path, loop, or closed curve. An isotopy of a graph G is a continuous family of
embeddings of G (the vertices and edges move continuously).

Ambient isotopy: An ambient isotopy of a surface S is a continuous map i :
[0, 1]× S → S such that for each t ∈ [0, 1], i(t, ·) is a homeomorphism.

Minimally crossing: A family of closed curves Γ = (γ1, . . . , γk) is minimally
crossing if for every family of closed curves Γ′ = (γ′1, . . . , γ

′
k) with γi and γ′i

homotopic for each i, the number of intersections and self-intersections in Γ is
no larger than in Γ′.

Covering space: Let S̃ be a possibly non-compact connected surface. A contin-
uous map π : S̃ → S is a covering map if every point x ∈ S has a connected
neighborhood U such that π−1(U) is a disjoint union of open sets (Ui)i∈I and
π|Ui

: Ui → U is a homeomorphism for each i. We say that (S̃, π) is a covering
space of S. A lift of a path p is a path p̃ on S̃ such that π ◦ p̃ = p. Finally, if
each loop in S̃ is contractible, then (S̃, π) is a universal covering space of S,
which is essentially unique (precisely: if (S̃, π) and (S̃′, π′) are universal covering
spaces, then there is a homeomorphism τ : S̃ → S̃′ such that π = π′ ◦ τ).
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BASIC PROPERTIES

1. Two paths p and q are homotopic if and only if p · q−1 is a (well-defined and)
contractible loop.

2. Two loops p and q with the same basepoint are freely homotopic (viewed as
closed curves without basepoint) if the homotopy classes of the loops p and q
are conjugates in the fundamental group.

3. The fundamental group of a surface S without boundary of genus g is best
understood by looking at a canonical polygonal schema of the surface: If S is
orientable, it is the group generated by 2g generators a1, b1, . . . , ag, bg and with
a single relation, a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g , corresponding to the boundary of
the polygonal schema. Similarly, if S is non-orientable, it is the group generated
by g generators a1, . . . , ag and with a single relation, a1a1 . . . agag.

4. The fundamental group of a surface with at least one boundary component is
a free group (because such a surface has the homotopy type of a graph).

5. Let (S̃, π) be a covering space of S. Every path p on S admits lifts on S̃;
moreover, if x̃ is a lift of p(0), then p has a unique lift p̃ such that p̃(0) = x̃.
Two paths are homotopic on S if and only if they have homotopic lifts on S̃. In
particular, two paths are homotopic if they admit lifts with the same endpoints
in the universal covering space.

DECIDING HOMOTOPY AND ISOTOPY

1. Homotopy: One of the first and most studied problems regarding curves on
surfaces is concerned with homotopy tests: (1) The contractibility problem: Is
a given closed curve (or, equivalently here, loop) contractible? (2) The free
homotopy problem: Are two given closed curves (freely) homotopic? These
problems translate to central problems from group theory, in the special case
of fundamental groups of surfaces: Given a finitely generated group, presented
in the form of generators and relations, (1) does a given word in the gener-
ators represent the trivial element of the group (the word problem)? Do two
given words in the generators represent conjugate elements in the group (the
conjugacy problem)?

In computational geometry, these problems are studied in the following con-
text: The input is a cellularly embedded graph G and one or two closed curves
in G, represented as closed walks in G. There exist linear-time (and thus
optimal) algorithms for both the contractibility and the free homotopy prob-
lems [LR12, EW13]. (An earlier article [DG99] claims the same results, but
it is reported [LR12] that the algorithm for free homotopy in that article has
a subtle flaw.) The approaches rely on the construction of a part of the uni-
versal covering space, or on results from small cancellation theory in group
theory [GS90]. We remark that Dehn’s algorithm [Deh12] can be implemented
in linear time, but assuming that the surface is fixed and that the graph has a
single face, which the other algorithms mentioned above do not require.

2. Isotopy: Deciding whether two simple closed curves are isotopic can also be
done in linear time, because this equivalence relation is a simple refinement of
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homotopy for simple closed curves [Eps66]. Deciding isotopy of graph embed-
dings is more complicated, but can also be done efficiently, since it essentially
reduces to homotopy tests for closed curves [CVM14].

3. Minimum-cost homotopies: Often, when it is known that two curves are homo-
topic, one would like to compute a “reasonable” homotopy. Relevant questions
include finding a homotopy that sweeps the minimum possible area (in a dis-
cretized sense) [CW13], or has the minimum possible number of “steps”; a
homotopy in which the maximum length of the intermediate curves is minimal
(“height” of the homotopy) [CL09]; a homotopy in which the maximum dis-
tance traveled by a point from the first to the second curve is minimal (“width”
of the homotopy—this is related to the homotopic Fréchet distance) [HPN+16];
etc. Several of these questions have been studied only in the case of the plane,
and extensions to surfaces are still open.

ELEMENTARY MOVES AND UNCROSSING

FIGURE 23.4.1
The four Reidemeister moves, up to ambient isotopy. The pictures represent the intersec-
tion of the union of the curves with a small disk on S; in particular, in these pictures, the
regions bounded by the curves are homeomorphic to disks, and no other parts of curves
intersect the parts of the curves shown.

1. Elementary moves: Every family of closed curves in general position can be
made minimally crossing by a finite sequence of Reidemeister moves, described
in Figure 23.4.1. If a closed curve has k self-crossings, Ω(k2) Reidemeister moves
can be needed; this is tight if the curve is homotopic to a simple curve, but in
general no subexponential upper bound seems to be known [CE16]. Actually,
one can deform a family of curves continuously to make it minimally crossing
without increasing the total number of crossings at any step, and moreover,
in a minimally crossing family, each curve is itself minimally self-crossing, and
each pair of curves is minimally crossing [GS97] (see also [HS94a]). There are
other characterizations of curves not in minimally crossing position [HS85].

2. Making curves simple: Let G be a graph cellularly embedded on a surface S.
One can decide whether an input curve, represented by a closed walk in G, is
homotopic to a simple closed curve in S in near-linear time. More generally,
one can compute the minimum number of self-intersections of a curve in S
homotopic to an input closed walk in G, and the minimum number of inter-
sections between two curves in S respectively homotopic to two input closed
walks in G, in quadratic time [DL17].

3. Untangling curves by a homeomorphism: Given two families of disjoint, simple
curves, one can try to minimize the number of crossings between them by
changing one of them by a homeomorphism of the surface; some bounds are
known on the number of crossings that one can achieve [MSTW16].
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4. Simultaneous graph drawing: This also relates to the problem of embedding
two input graphs on the same surface in a way that the embeddings cross each
other few times. Here also some results are known [Neg01, RS05, HKMT16];
one can also require both combinatorial maps to be fixed.

5. Number of homotopy classes: How many simple closed curves in different ho-
motopy classes can one draw such that they pairwise cross at most k times,
for a given integer k? On orientable surfaces of genus g ≥ 2 without boundary
and k = 0, the answer is 3g − 2 (a pants decomposition, see below, together
with a contractible closed curve). The problem is more interesting for larger
values of k; it was recently proved that, for fixed k, the number of curves one
can draw is polynomial in the genus [Prz15].

23.5 OPTIMIZATION: SHORTEST CURVES AND GRAPHS

The problem of computing shortest curves and graphs satisfying certain topological
properties on surfaces has been widely considered. This leads to problems with a
flavor of combinatorial optimization.

For these problems to be meaningful, a metric must be provided. In compu-
tational geometry, one could naturally consider piecewise linear surfaces in some
Euclidean space (perhaps R3); however, efficient algorithms for computing short-
est paths in such surfaces [MMP87, CH96] need additional assumptions because
distances involve square roots, which leads to deep and unrelated questions on
the complexity of comparing sums of square roots [Blö91]. Furthermore, in the
context of graph problems in the specific case of surface-embedded graphs (Sec-
tion 23.7 below), that model would be insufficient. The notions of combinatorial
and cross-metric surfaces, defined below, have been developed to avoid these tech-
nical distractions, and are suitable in various settings. On the other hand, with an
oracle for shortest path computations, several of the results in this section extend
to more geometric settings, for example piecewise linear surfaces in some Euclidean
space (see, e.g., [EW05, Sect. 3.6]).

GLOSSARY

Discrete metrics on surfaces

Combinatorial surface: A combinatorial surface is the data of a cellular graph
embedding G, with positive weights on the edges. The only allowed curves are
walks in G; the length of a curve is the sum of the weights of the edges of G
traversed by the curve, counted with multiplicity. Algorithmically, curves are
stored as closed walks in G. The complexity of the combinatorial surface is the
complexity of the embedding G (asymptotically, its number of edges).

Cross-metric surface: A cross-metric surface [CVE10] is also the data of a
cellular graph embedding G on some surface S, with positive weights on the
edges. However, in contrast to the combinatorial surface model, here the curves
are drawn on the surface S in general position with respect to G; the length
of a curve is the sum of the weights of the edges of G crossed by the curve,
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counted with multiplicity. Algorithmically, a family of curves (or a graph) on a
cross-metric surface is stored by the combinatorial map of the arrangement of
that family of curves (or graph) together with G. The complexity of the cross-
metric surface is the complexity of the embedding G (asymptotically, its number
of edges).

Without loss of generality, one could draw the curves in a neighborhood of the
dual graph G∗ of G. Pushing them completely onto G∗ would transform them
into curves on the combinatorial surface defined by G∗. However, the cross-
metric surface defined by G retains more information than the combinatorial
surface defined by G∗: In the latter case, when curves share edges of G∗, they
automatically overlap; the cross-metric model allows us to make them disjoint
except at some well-defined crossing points. (We should point out that it is still
possible to define the notion of crossing between two curves in a combinatorial
surface, but this is still insufficient for some of the algorithms described below.)

d
n

s

n s

FIGURE 23.5.1
Left: Some closed curves on surfaces, (d) disk-bounding, (n) non-separating, (s) splitting.
Right: A pants decomposition of a surface.

Types of simple closed curves

Let γ be a simple closed curve in the interior of a surface S. See Figure 23.5.1.

Disk-bounding curve: γ is disk-bounding if the surface S cut along γ (denoted
by S\\γ) has two connected components, one of which is homeomorphic to the
disk.

Separating curve: γ is separating if S\\γ has two connected components.

Splitting curve: γ is splitting if γ is separating but not disk-bounding.

Essential curve: γ is essential if no component of S\\γ is a disk or an annulus.

Topological decompositions

Cut graph: A cut graph is a graph G embedded on a surface S such that S\\G
is homeomorphic to a closed disk.

System of loops: A system of loops on a surface without boundary is a cut
graph with a single vertex. See Figure 23.1.2.

Canonical system of loops: A system of loops G on a surface without bound-
ary S is canonical if the edges of the polygon S\\G appear in the same order as
in a canonical polygonal schema (see Section 23.1)

Pants decomposition: A pants decomposition of an orientable surface S is a
family Γ of simple, disjoint closed curves on S such that S\\Γ is a disjoint union
of pairs of pants. See Figure 23.5.1.

Octagonal decomposition: An octagonal decomposition of an orientable sur-
face S without boundary is a family Γ of closed curves on S such that each
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(self-)intersection point in Γ is a crossing between exactly two closed curves, and
each face of the arrangement of Γ on S is an octagon (a disk with eight sides).

Homology

In the context of graphs on surfaces, one-dimensional homology on surfaces over
the field Z/2Z is used; it can be described somewhat more concisely than more
general homology theories. Let S be a surface. Here we assume graph embeddings
to be piecewise linear (with respect to a fixed triangulation of S).

Homological sum: By the previous assumption, the closure of the symmetric
difference of the images of two graph embeddings G and G′ is the image of some
graph embedding G′′, called the homological sum of G and G′. (G′′ is defined
up to subdivision of edges with degree-two vertices, insertion of isolated vertices,
and the reverse operations; here, graph embeddings are considered up to such
operations.)

Homology cycle: A graph G embedded on S is a homology cycle if every vertex
of G has even degree. The set of homology cycles forms a vector space over
the field Z/2Z: The empty graph is the trivial element and addition is the
homological sum.

Homology boundary: A graph G embedded on S is a homology boundary if
the faces of G can be colored in two colors, say black and white, such that G is
the “boundary” between the two colors: Exactly one side of each edge of G is
incident to a black face. The set of homology boundaries forms a vector space
over Z/2Z. Every homology boundary is a homology cycle.

Homology group: It is the Z/2Z-vector space, denoted by H1(S), that is the
quotient of the homology cycles by the homology boundaries. A graph embed-
ding is homologically trivial if it is a homology boundary.

The homology of sets of loops or closed curves can be defined similarly, because
these loops and closed curves are the images of some graph embedding. Using
the more advanced theory of singular homology one can remove the restriction of
dealing with piecewise-linear graph embeddings.

BASIC PROPERTIES

1. A simple closed curve is disk-bounding if and only if it is contractible.

2. A simple closed curve is separating if and only if it is homologically trivial.

3. The homology group of a surface S without boundary has dimension ḡ, the
Euler genus of S, and is generated by the loops appearing on the boundary of
a canonical polygonal schema.

SHORTEST CURVES

Deciding whether a simple closed curve in a cross-metric (or combinatorial) surface
is separating or disk-bounding can be done in time linear in the size of the data
structure used to store the cellular graph and the curve; this boils down to deter-
mining whether some graph is connected, or whether some surface is a disk (which is

Preliminary version (September 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.
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easy using Euler’s formula). Here we consider the optimization version, by looking
for shortest curves with a given topological type in a combinatorial or cross-metric
surface. Non-disk-bounding or non-separating curves are of particular interest, be-
cause cutting along such a curve simplifies the topology of a surface. Below we use
non-trivial as a shorthand for either non-disk-bounding or non-separating.

TABLE 23.5.1 Algorithms for shortest non-trivial closed curves on surfaces without boundary,

depending on whether the graph is weighted and whether it is directed. “Non-

sep” and “non-db” mean non-separating and non-disk-bounding, respectively;

k is the size of the output. The best complexities known to date are in bold

(there can be several of them in each category due to the tradeoff between g,

n, and k). Of course, the undirected case reduces to the directed case, and the

unweighted case reduces to the weighted case; in each cell, we do not repeat

the algorithms that are available for more general scenarios.

UNDIRECTED DIRECTED

W
EI
GH

T
ED

O(n2 logn) [EHP04]

O(g3/2n3/2 logn) non-sep

gO(g)n3/2 non-db

}
[CM07]

gO(g)n logn [Kut06]

O(g3n logn) [CC07]

O(g2n logn) [CCE13]

gO(g)n log logn [INS+11]

2O(g)n log logn [Fox13]

O(gn logn) for 2-approx. [EHP04]

O(n2 logn) [CCVL16]

O(g1/2n3/2 logn) [CCVL16]

2O(g)n logn non-sep [EN11b]

O(g2n logn) non-sep

gO(g)n logn non-db

}
[Eri11]

O(g3n logn) non-db [Fox13]

U
N
W
EI
GH

T
ED

O(n3) [Tho90] (see [MT01])

O(n2) [CCVL12]

O(gnk) [CCVL12]

O(gn/ε) for (1 + ε)-approx. [CCVL12]

O(n2) [CCVL16]

O(gnk) [CCVL16]

1. Structural properties: In a combinatorial surface, a shortest noncontractible
or non-null-homologous loop based at a vertex x is made of two shortest paths
from x and of a single edge (this is the so-called 3-path condition [Tho90]). It
follows that the globally shortest non-contractible and non-null-homologous
closed curves do not repeat vertices and edges, and are also shortest non-disk-
bounding and non-separating closed curves. More generally, in the algorithms
mentioned below, a typical tool is to prove a bound on the number of crossings
between the (unknown) shortest curve and any shortest path.

2. Different scenarios for shortest non-trivial curves: Table 23.5.1 summarizes
the running times of the known algorithms. In such problems, it is relevant
to look for more efficient algorithms in the case where the genus g is smaller
compared to the complexity n of the graph defining the surface. The stan-
dard scenario, which is the only one considered elsewhere in this chapter, is
that of a combinatorial (or equivalently, cross-metric) surface (the undirected,
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weighted case, in the upper left corner in Table 23.5.1). One can also aim
for faster algorithms in the unweighted case (unit weights). Finally, one can
extend the techniques to the case of directed graphs, where the edges of the
combinatorial surface are directed and can only be used in a specified direc-
tion (equivalently, the edges of the cross-metric surface can only be crossed
in a specific direction).

3. Other topological types: Shortest simple closed curves of other topological
types have been investigated as well (in the following, n denotes the com-
plexity of the cross-metric surface): shortest splitting curves [CCV+08] (NP-
hard, but computable in O(n log n) time for fixed genus); shortest essential
curves [EW10] (O(n2 log n) time, or O(n log n) for fixed genus and number of
boundaries—in this case, surfaces with boundary require more sophisticated
techniques); and non-separating curves which are shortest in their (unspeci-
fied) homotopy class [CDEM10] (O(n log n)).

4. Shortest homotopic curves: A slightly different problem is that of computing
a shortest curve homotopic to a given curve (either a path or a closed curve);
this is also doable in small polynomial time, using octagonal decompositions
to build a part of the universal covering space [CVE10] (earlier algorithms
dealt with simple curves only, with an iterated shortening process that leads
to a global optimum [CVL05, CVL07]).

5. Shortest paths: All these algorithms rely on shortest path computations on
combinatorial (or cross-metric) surfaces, which can be done in O(n log n)
time using Dijkstra’s algorithm [Dij59] classically speeded up with Fibonacci
heaps [FT87] in the primal (or dual) graph. This actually computes the short-
est paths from a single source to all other vertices of the combinatorial surface.
Other algorithms are available for computing multiple shortest paths quickly
under some conditions on the locations of the endpoints [CCE13].

SHORTEST DECOMPOSITIONS

Decompositions of surfaces are central in topology; for example, the standard proof
of the classification theorem transforms an arbitrary cut graph into a canonical
system of loops. Many algorithms described in the previous subsection rely on
topological decompositions and their properties.

1. Shortest cut graph: The problem of computing a shortest cut graph on a cross-
metric surface has been extensively studied. Computing the shortest cut graph
is NP-hard, but there is an O(log2 g)-approximation algorithm that runs in
O(g2n log n) time [EHP04]. Moreover, for every ε > 0 one can compute a
(1 + ε)-approximation in f(ε, g) ·n3 time, for some function f [CAM15]. If one
is looking for a shortest cut graph with a specified vertex set P (for example,
a shortest system of loops with given basepoint [EW05]), then there is an
algorithm with running time O(n log n + gn + |P |) [CV10]. At the root of
several of these articles lies the tree-cotree property [Epp03]: If G is a cellular
graph embedding, there exists a partition (T,C,X) of the edges of G such that
T is a spanning tree of G and the edges dual to C form a spanning tree of the
dual graph G∗. Contracting T and deleting C transforms G into a system of
loops, each loop corresponding to an element of X.
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2. Other topological decompositions: Some canonical system of loops (for ori-
entable surfaces without boundary) can be computed in O(gn) time [LPVV01].
An octagonal decomposition or a pants decomposition made of closed curves
which are as short as possible in their respective homotopy classes can be com-
puted in O(gn log n) time [CVE10]. But in general the complexity of computing
shortest such decompositions is open. On the other hand, there are bounds on
the maximum length of some decompositions, assuming that the combinatorial
surface is an unweighted triangulation, or, dually, that the cross-metric surface
is unweighted and each vertex has degree three [CVHM15].

3. Stretch: Let S be a cross-metric surface, and let G be the associated embedded
graph. The stretch of S is the minimum of the product of the lengths of γ
and δ, over all closed curves γ and δ crossing exactly once. This quantity is
related to the planar crossing number and the size of a largest toroidal grid
minor of G∗ [HC10], and can be computed in small polynomial time [CCH14].

HOMOLOGY AND ITS RELATION TO CUTS AND FLOWS

As hinted above, homology is useful because a simple closed curve is separat-
ing if and only if it is null-homologous; the algorithms for computing shortest
non-separating closed curves actually compute shortest non-null-homologous closed
curves, which turn out to be simple.

Homology is a natural concept; in particular, it is interesting to look for a
family of closed curves, of minimum total length, the homology classes of which
generate the homology group. Some efficient algorithms have been given for this
purpose [EW05], also in connection with an algorithm to compute a minimum cycle
basis of a surface-embedded graph [BCFN16].

Another reason for the importance of homology is its relation to cuts: Given a
graph G cellularly embedded on a surface S without boundary, the (s, t)-cuts in G
are dual to the subgraphs of G∗ in some fixed homology class on the surface obtained
from S by removing the faces of G∗ containing s and t. Thus, computing minimum
cuts amounts to computing shortest homologous subgraphs. This property has
been exploited to study general graph problems, where better algorithms can be
designed in the specific case of graphs embedded on a fixed surface, to:

1. compute minimum (s, t)-cuts in near-linear time [CEN09, EN11b]. The best
algorithm runs in 2O(g)n log n time, where g is the genus [EN11b], and relies
on the homology cover , a particular type of covering space;

2. compute maximum (s, t)-flows faster, by exploiting further the duality between
flows and cuts [CEN12, BEN+16];

3. count and sample minimum (s, t)-cuts efficiently [CFN14];

4. compute global minimum cuts efficiently (without fixing s and t) [EFN12];

5. deal with other problems, e.g., to compute the edge expansion and other con-
nectivity measures [Pat13] or to bound the space complexity of bipartite match-
ing [DGKT12].
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23.6 ALGORITHMS FOR GRAPHS EMBEDDED ON A FIXED
SURFACE

Some general graph problems can be solved faster in the special case of graphs em-
bedded on a fixed surface. Examples include cut and flow problems (see previous
section), multicommodity problems, domination and independence problems, con-
nectivity problems (Steiner tree, traveling salesman problem, etc.), disjoint paths
problems, shortest paths problems, subgraph problems, and more.

Sometimes the problems are solvable in polynomial-time on arbitrary graphs,
and the goal is to obtain faster algorithms for surface-embedded graphs. But
in many cases, the problems considered are NP-hard on arbitrary graphs, and
polynomial-time algorithms are obtained for graphs embeddable on a fixed surface
(occasionally by fixing some other parameters of the problem). Typically, optimiza-
tion problems are considered, in which case it is relevant to look for approximation
algorithms.

The methods involved usually combine topological aspects (as described above)
with techniques from structural and algorithmic graph theory.

GLOSSARY

Minor: A graph H is a minor of another graph G if H can be obtained from G
by removing edges and isolated vertices, and contracting edges.

Minor-closed family: A family F of graphs is minor-closed if every minor of a
graph in F is also in F .

Tree decomposition: A tree decomposition of a graph G = (V,E) is a tree T in
which each node is labeled by a subset of V , such that:

• for each v ∈ V , the set of nodes in T whose labels contain v induces a
non-empty connected subtree of T , and

• if G has an edge connecting vertices u and v, then the label of at least one
node of T contains both u and v.

Width: The width of a tree decomposition is the maximum cardinality of the
labels minus one.

Treewidth: The treewidth of a graph G is the minimum width of a tree decom-
position of G.

SURVEY OF TECHNIQUES

Central to algorithmic and structural graph theory is the study of minor-closed
families of graphs; by a deep result of Robertson and Seymour [RS04], for each
such family F , there is a finite set XF of graphs such that G ∈ F if and only if no
graph in XF is a minor of G. We refer to [KM07] for a survey on these structural
aspects.

The graphs embeddable on a fixed surface form a minor-closed family, and
have the benefit that they can be studied using topological techniques. Robertson
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and Seymour provide a decomposition theorem for minor-closed families of graphs
involving graphs embeddable on a fixed surface [RS03]; efficient algorithms for
surface-embedded graphs are sometimes extended to minor-closed families of graphs
(different from the family of all graphs).

It is impossible to list all results in algorithms for surface-embedded graphs
here, so we focus on general methods. Several algorithms are based on topologi-
cal techniques described in the previous sections (in particular, shortest non-trivial
curves or shortest decompositions), in several cases with advanced algorithmic tech-
niques [EN11a, KKS11, ES14, PPSL14]. Sometimes the same techniques have led
to new results for planar graphs [Eri10, EN11c, CV17b]. Methods applicable to
several algorithmic problems have also emerged, in many cases extending previous
ones invented for planar graphs:

1. Graph separators and treewidth: Let G be a graph with n vertices embedded on
a surface with genus g. In linear time, one can compute a balanced separator
of size O(

√
gn), namely, a set of O(

√
gn) vertices whose removal leaves a graph

without connected component of more than 2n/3 vertices [GHT84, Epp03].
Also, the treewidth of G is O(

√
gn).

2. Dynamic programming: Small treewidth implies efficient algorithms using dy-
namic programming in arbitrary graphs. When the graph is embedded, one can
exploit this fact to obtain algorithms with smaller dependence on the treewidth
for some problems [Bon12, RST13, RST14].

3. Irrelevant vertex technique: Several graph problems enjoy the following prop-
erty [Thi12]: If the input graph has large treewidth, there exists an irrelevant
vertex, whose removal creates an equivalent instance of the problem (e.g., a
vertex at the center of a large grid minor). This property is widely used in
structural graph theory and has been exploited several times in the context of
algorithms for surface-embedded graphs [KR07, KT12, RS12].

4. Polynomial-time approximation schemes (PTASs): Baker [Bak94] has intro-
duced a technique for designing approximation schemes for some optimization
problems with local constraints in planar graphs: She has showed that one can
delete a small part of the input graph without changing too much the value
of the solution and such that the resulting graph has small treewidth. The
technique has been extended to graphs embeddable on a fixed surface [Epp00],
to graphs that can be drawn on a fixed surface with a bounded number of
crossings per edge [GB07], and to more general contraction-closed problems
where contraction instead of deletion must be used [Kle05, DHM10]. A crucial
step in making the latter technique effective is the construction of a spanner :
In the case of a minimization problem, this is a subgraph of the input graph
containing a near-optimal solution and whose weight is linear in that of the
optimal solution. Brick decomposition is a technique that builds spanners for
some problems, originally in planar graphs, but also sometimes in graphs on
surfaces [BDT14].

5. Bidimensionality: This theory [Thi15, DFHT05, DHT06, DH08] applies to
minimization problems on unweighted graphs where contracting an edge of
the graph does not increase the value of the solution, and where the value of
the solution in grid graphs (and generalizations) is large. It leads to output-
sensitive algorithms for graphs embeddable on a fixed surface with running time

of the form 2O(
√
k) ·nO(1), where k is the value of the solution and n is the input
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size. This also provides PTASs in some cases [DH05]. For the problems where
bidimensionality applies, PTASs can sometimes also be obtained in weighted
graphs using a different framework [CACV+16].

6. Stochastic embeddings: Let G = (V,E) and G′ = (V ′, E′) be positively edge-
weighted graphs. A non-contracting metric embedding f from G to G′ is a map-
ping from V to V ′ such that d′(f(x), f(y)) ≥ d(x, y) for each x, y ∈ V , where d
and d′ represent shortest path distances in G and G′, respectively. The distor-
tion of f is the maximum of d′(f(x), f(y))/d(x, y) over all x 6= y ∈ V (see Chap-
ter 8). Every graph G embeddable on an orientable surface S of genus g admits
a probability distribution of non-contracting metric embeddings into planar
graphs such that for each x, y ∈ V , one has E[d′(f(x), f(y))] ≤ O(log g)·d(x, y),
where the expectation is over all f in the distribution [Sid10]. This reduces
several optimization problems on graphs on S to the same problem in planar
graphs, up to the loss of an O(log g) factor. Actually, such a distribution can be
computed in polynomial time even if no embedding of G on S is known [MS12].

23.7 OTHER MODELS

A rather large number of results relate to the concepts described in this chapter,
and it would be impossible to cover them all. Below, we provide a selection of
miscellaneous results that consider other models for representing graphs on surfaces.

COMPUTATIONAL TOPOLOGY IN THE PLANE WITH OBSTACLES

The plane minus finitely many points or polygons (“obstacles”) forms a (non-
compact) surface S. Taking any cellular graph embedding on S makes S a combina-
torial (or cross-metric) surface, so most of the topological algorithms above apply.
However, it is much more natural to consider arbitrary piecewise-linear curves in S,
whose length is defined by the Euclidean metric. In this model, S is defined by
the obstacles (a finite set of disjoint simple polygons, for simplicity of exposition);
curves are arbitrary polygonal lines avoiding the interior of the obstacles. Some
of the problems defined in the previous sections and related problems have been
studied in this model:

1. Homotopy and isotopy tests: There are efficient algorithms to test whether
two curves are (freely) homotopic [CLMS04], or whether two graphs are iso-
topic [CVM14].

2. Shortest homotopic paths can be computed efficiently as well [HS94b, Bes03,
EKL06]; see also Section 31.2. A variant where several simple and disjoint
paths must be shortened while preserving their homotopy class and keeping
their neighborhoods simple and disjoint (i.e., the paths are “thick”) has also
been investigated [GJK+88].

3. Shortest disjoint paths: Here the goal is to compute disjoint paths with min-
imum total length (or, more precisely, non-crossing paths, since in the limit
case, the solution may consist of overlapping paths). If the endpoints lie on
the boundary of a bounded number of obstacles, the problem is solvable in
polynomial time [EN11c].
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4. Other results include a constant-factor approximation algorithm for the short-
est pants decomposition in the case where the obstacles are points [Epp09]
and an algorithm for computing the homotopic Fréchet distance, a measure
of similarity between curves that takes the obstacles into account topologi-
cally [CCV+10, HPN+16].

SIMPLE AND DISJOINT CURVES IN GRAPHS

In the cross-metric model, defined by a cellularly embedded graph G, one can think
of curves as being drawn in a neighborhood of G∗. So, intuitively, curves are drawn
in G∗, but they can share vertices and edges of G∗ while being simple and pairwise
disjoint.

It is very natural, especially in topological graph theory, to forbid such overlaps:
A set of disjoint simple curves cannot repeat any vertex or edge of G∗. Many of
the problems mentioned in the previous sections make sense in this setup, which
turns out to be generally more difficult to handle than the cross-metric model. In
this model, the following results are known (here by circuit we mean a closed curve
in the graph without repeated vertex, and containing at least one edge):

1. Determining whether there exists a separating (resp., splitting) circuit is NP-
complete [CCVL11].

2. Determining some contractible (resp., non-contractible, resp., non-separating)
circuit, if such a circuit exists, is possible in linear time, even if one requires
the circuit to pass through a given vertex [CCVL11].

3. Computing a shortest contractible circuit is possible in polynomial time, but if
one requires the circuit to pass through a given vertex, the problem becomes
NP-hard [Cab10].

4. Computing a shortest separating circuit is NP-hard [Cab10].

5. There is a combinatorial characterization on whether curves can be made sim-
ple and disjoint in the graph by a homotopy on the surface [Sch91]. In the
case of a planar surface with boundaries, this leads to a polynomial-time al-
gorithm [Sch90b, Th. 31], which in turn has some algorithmic consequences
on the problem of computing vertex-disjoint paths in planar graphs [Sch90b,
Th. 34]. See also [Sch03, Ch. 76].

NORMAL CURVES ON SURFACES

Let Γ be a family of disjoint simple closed curves on a surface S in general position
with respect to a triangulation T of S. A natural way to represent Γ, as described
in the previous sections, is by its arrangement with T . Normal curves are a more
economical representation, at the price of a mild condition: For every triangle t
of T , the intersection of the image of Γ with t must be a set of (disjoint simple)
paths, called normal arcs, connecting different sides of t. For such a Γ, and for
each triangle t of T , one stores three integers recording the number of normal
arcs connecting each of the three pairs of sides of t. Overall, Γ is described by
3n non-negative integers, where n is the number of triangles in T . Conversely,
given a vector of 3n non-negative integers, one can unambiguously reconstruct Γ
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up to normal isotopy , that is, up to an ambient isotopy that leaves the edges of T
globally unchanged.

To store the vector of normal coordinates, O(n log(X/n)) bits are needed, where
X is the number of crossing points of Γ with T . In contrast, representing these
curves on a cross-metric surface requires at least to store a constant amount of
information per vertex of the arrangement, which is Θ(n+X) in total. So the normal
curve representation can be exponentially compressed compared to the “näıve” one.
Despite this, in time polynomial in the input size one can:

1. count the number of connected components of a normal curve (note that a
“normal curve” does not have to be connected), and partition these components
according to their (normal or not) isotopy classes, given by their multiplicities
and the normal coordinates of a representative [SSŠ02, EN13];

2. decide whether two normal curves are isotopic [SSŠ02, EN13];

3. compute the algebraic [SSŠ02, EN13] or the geometric [SSŠ08] intersection
number of two normal curves. (The algebraic intersection number of γ and δ is
the sum, over all crossings between γ and δ, of the sign of the crossing, which is
+1 if γ crosses δ from left to right at that crossing point and −1 otherwise; this
is well-defined if the surface is orientable, since it is invariant by isotopy. The
geometric intersection number of γ and δ is the minimum number of crossings
between curves γ′ and δ′ isotopic to γ and δ.)

These problems have been initially studied using straight-line programs, a con-
cise encoding of words over a finite alphabet; many algorithms on words can be
solved efficiently using the straight-line program representation, in particular be-
cause straight-line programs can represent exponentially long words; this leads to
efficient algorithms for normal curves [SSŠ02, SSŠ08]. The same and other problems
have been revisited using more topological techniques [EN13]. Normal curves are
the lower-dimensional analog of normal surfaces, widely used in three-dimensional
topology.

23.8 OTHER RESOURCES

Books. Graphs on surfaces from a combinatorial viewpoint are treated in detail
in [MT01]; see also [GT87]. For basic surface topology, we recommend [Arm83,
Sti93, Hen94].

Survey. [Eri12] surveys optimization problems for surface-embedded graphs, pro-
viding more details on a large fraction of Section 23.5.

Course notes and unpublished material. [Eri13] provides some notes in
computational topology with a strong emphasis on graphs on surfaces. [CV12,
CV17a] survey some algorithms for optimization of graphs and curves on surfaces.
[DMST11] emphasizes graph algorithms for surface-embedded graphs.
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[CCVL11] S. Cabello, É. Colin de Verdière, and F. Lazarus. Finding cycles with topological

properties in embedded graphs. SIAM J. Discete Math., 25:1600–1614, 2011.
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[CVL07] É. Colin de Verdière and F. Lazarus. Optimal pants decompositions and shortest

homotopic cycles on an orientable surface. J. ACM, 54:18, 2007.
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surfaces. European J. Combin., 30:1704–1717, 2009.

[RS03] N. Robertson and P.D. Seymour. Graph minors. XVI. Excluding a non-planar

graph. J. Combin. Theory Ser. B, 89(1):43–76, 2003.

[RS04] N. Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Com-

bin. Theory Ser. B, 92:325–357, 2004.

[RS05] R.B. Richter and G. Salazar. Two maps with large representativity on one surface.

J. Graph Theory, 50:234–245, 2005.

[RS12] N. Robertson and P.D. Seymour. Graph minors. XXII. Irrelevant vertices in linkage

problems. J. Combin. Theory Ser. B, 102:530–563, 2012.
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