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INTRODUCTION

Historically, polyhedral maps on surfaces made their first appearance as convex
polyhedra. The famous Kepler-Poinsot (star) polyhedra marked the first occurrence
of maps on orientable surfaces of higher genus (namely 4), and started the branch
of topology dealing with regular maps. Further impetus to the subject came from
the theory of automorphic functions and from the Four-Color-Problem (Coxeter
and Moser [CM80], Barnette [Bar83]).

A more systematic investigation of general polyhedral maps and nonconvex
polyhedra began only around 1970, and was inspired by Grünbaum’s book “Con-
vex Polytopes” [Grü67]. Since then, the subject has grown into an active field of
research on the interfaces of convex and discrete geometry, graph theory, and com-
binatorial topology. The underlying topology is mainly elementary, and many basic
concepts and constructions are inspired by convex polytope theory.

20.1 POLYHEDRA

Tessellations on surfaces are natural objects of study in topology that general-
ize convex polyhedra and plane tessellations. For general properties of convex
polyhedra, polytopes, and tessellations, see Grünbaum [Grü67], Coxeter [Cox73],
Grünbaum and Shephard [GS87], and Ziegler [Zie95], or Chapters 3, 15, 16, 17, 18,
and 19 of this Handbook. For a survey on polyhedral manifolds see Brehm and
Wills [BW93], which also has an extensive list of references. The long list of defini-
tions that follows places polyhedral maps in the general context of topological and
geometric complexes. For an account of 2- and 3-dimensional geometric topology,
see Moise [Moi77].

GLOSSARY

Polyhedral complex: A finite set Γ of convex polytopes, the faces of Γ, in real
n-space Rn, such that two conditions are satisfied. First, if Q ∈ Γ and F is a face
of Q, then F ∈ Γ. Second, if Q1, Q2 ∈ Γ, then Q1 ∩ Q2 is a face of Q1 and Q2

(possibly the empty face ∅). The subset ||Γ|| :=
⋃

Q∈Γ Q of Rn, equipped with
the induced topology, is called the underlying space of Γ. The dimension
d := dim Γ of Γ is the maximum of the dimensions (of the affine hulls) of the
elements in Γ. We also call Γ a polyhedral d-complex. A face of Γ of dimension
0, 1, or i is a vertex, an edge, or an i-face of Γ. A face that is maximal (with
respect to inclusion) is called a facet of Γ. (In our applications, the facets are
just the d-faces of Γ.)
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534 U. Brehm and E. Schulte

Face poset: The set P (Γ) of all faces of Γ, partially ordered by inclusion. As a
partially ordered set, P (Γ) ∪ {||Γ||} is a ranked lattice.

(Geometric) simplicial complex: A polyhedral complex Γ all of whose nonempty
faces are simplices. An abstract simplicial complex ∆ is a family of subsets
of a finite set V , the vertex set of ∆, such that {x} ∈ ∆ for all x ∈ V , and
such that F ⊆ G ∈ ∆ implies F ∈ ∆. Each abstract simplicial complex ∆ is
isomorphic (as a poset ordered by inclusion) to the face poset of a geometric
simplicial complex Γ. Once such an isomorphism is fixed, we set ||∆|| := ||Γ||,
and the terminology introduced for Γ carries over to ∆. (One often omits the
qualifications “geometric” or “abstract.”)

Link: The link of a vertex x in a simplicial complex Γ is the subcomplex consisting
of the faces that do not contain x of all the faces of Γ containing x.

Polyhedron: A subset P of Rn such that P = ||Γ|| for some polyhedral com-
plex Γ. In general, given P , there is no canonical way to associate with it the
complex Γ. However, once Γ is specified, the terminology for Γ regarding P (Γ)
is also carried over to P . (For other meanings of the term “polyhedron” see also
Chapter 18.)

Subdivision: If Γ1 and Γ2 are polyhedral complexes, Γ1 is a subdivision of Γ2 if
||Γ1|| = ||Γ2|| and each face of Γ1 is a subset of a face of Γ2. If Γ1 is a simplicial
complex, this is a simplicial subdivision.

Combinatorial d-manifold: For d = 1, this is a simplicial 1-complex ∆ such
that ||∆|| is a 1-sphere. Inductively, if d ≥ 2, it is a simplicial d-complex ∆
such that ||∆|| is a topological d-manifold (without boundary) and each vertex
link is a combinatorial (d−1)-sphere (that is, a combinatorial (d−1)-manifold
whose underlying space is a (d−1)-sphere).

Polyhedral d-manifold: A polyhedral d-complex Γ admitting a simplicial sub-
division that is a combinatorial d-manifold. If d = 2, this is simply a polyhedral
2-complex Γ for which ||Γ|| is a compact 2-manifold (without boundary).

Triangulation: A triangulation (simplicial decomposition) of a topological space
X is a simplicial complex Γ such that X and ||Γ|| are homeomorphic.

Ball complex: A finite family C of topological balls (homeomorphic images of
Euclidean unit balls) in a Hausdorff space, the underlying space ||C|| of C,
whose relative interiors partition ||C|| in such a way that the boundary of each
ball in C is the union of other balls in C. The dimension of C is the maximum
of the dimensions of the balls in C.

Embedding: For a ball complex C, a continuous mapping γ : ||C|| 7→ R
n that is a

homeomorphism of ||C|| onto its image. C is said to be embedded in R
n.

Polyhedral embedding: For a ball complex C, an embedding γ that maps each
ball in C onto a convex polytope.

Immersion: For a ball complex C, a continuous mapping γ : ||C|| 7→ R
n that is

locally injective (hence the image may have self-intersections). C is said to be
immersed in R

n.

Polyhedral immersion: For a ball complex C, an immersion γ that maps each
ball in C onto a convex polytope.

Map on a surface: An embedded finite graph M (without loops or multiple
edges) on a compact 2-manifold (surface) S such that two conditions are satisfied:
The closures of the connected components of S \M , the faces of M , are closed
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Chapter 20: Polyhedral maps 535

2-cells (closed topological disks), and each vertex of M has valency at least 3.
(Note that some authors use a broader definition of maps; e.g., see [CM80].)

Polyhedral map: A map M on S such that the intersection of any two distinct
faces is either empty, a common vertex, or a common edge.

Figure 20.1.1 shows a polyhedral map on a surface of genus 3, known as Dyck’s
regular map. We will further discuss this map in Sections 20.4 and 20.5.

Type: A map M on S is of type {p, q} if all its faces are topological p-gons such
that q meet at each vertex. The symbol {p, q} is the Schläfli symbol for M .

FIGURE 20.1.1

Dyck’s regular map, of type {3, 8}.
Vertices with the same label are identified.
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BASIC RESULTS

Simplicial complexes are important in topology, geometry, and combinatorics. Each
abstract simplicial d-complex ∆ with n vertices is isomorphic to the face poset of
a geometric simplicial complex Γ in R

2d+1 that is obtained as the image under
a projection (Schlegel diagram—see Chapter 15) of a simplicial d-subcomplex in
the boundary complex of the cyclic convex (2d+2)-polytope C(n, 2d + 2) with n
vertices; see [Grü67] or Chapter 15 of this Handbook.

Let C be a ball complex and P (C) the associated poset (i.e., C ordered by
inclusion). Let ∆(P (C)) denote the order complex of P (C); that is, the simplicial
complex whose vertex set is C and whose k-faces are the k-chains x0 < x1 < . . . < xk

in P (C). Then ||C|| and ||∆(P (C))|| are homeomorphic. This means that the poset
P (C) already carries complete topological information about ||C||. See [Bjö95] or
[BW93], as well as Chapter 17, for further information.

Each polyhedral d-complex is a d-dimensional ball complex. The set C of ver-
tices, edges, and faces of a mapM on a 2-manifold S is a 2-dimensional ball complex.
In particular, a map M is a polyhedral map if and only if the intersection of any two
elements of C is empty or an element of C. A map is usually identified with its poset
of vertices, edges, and faces, ordered by inclusion. If M is a polyhedral map, then
this poset is a lattice when augmented by ∅ and S as smallest and largest elements.
The dual lattice (obtained by reversing the order) again gives a polyhedral map,
the dual map, on the same 2-manifold S. Note that in the context of polyhedral
maps, the qualification “polyhedral” does not mean that it can be realized as a
polyhedral complex. However, a polyhedral 2-manifold can always be regarded as
a polyhedral map.
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An important problem is the following:

PROBLEM 20.1.1 General Embeddability Problem

When is a given finite poset isomorphic to the face poset of some polyhedral com-
plex in a given space R

n? When can a ball complex be polyhedrally embedded or
polyhedrally immersed in R

n?

These questions are different from the embeddability problems that are dis-
cussed in piecewise-linear topology, because simplicial subdivisions are excluded. A
complete answer is available only for the face posets of spherical maps:

THEOREM 20.1.2 Steinitz’s Theorem

Each polyhedral map M on the 2-sphere is isomorphic to the boundary complex of
a convex 3-polytope. Equivalently, a finite graph is the edge graph of a convex 3-
polytope if and only if it is planar and 3-connected (it has at least 4 vertices and
the removal of any 2 vertices leaves a connected graph).

Very little is known about polyhedral embeddings of orientable polyhedral maps
of positive genus g. There are some general necessary combinatorial conditions for
the existence of polyhedral embeddings in n-space Rn [BGH91]. Given a simplicial
polyhedral map of genus g it is generally difficult to decide whether or not it admits
a polyhedral embedding in 3-space R3. For each g ≥ 6, there are examples of simpli-
cial polyhedral maps that cannot be embedded in R

3 [BO00]. Each nonorientable
closed surface can be immersed but not embedded in R

3. However, the Möbius
strip and therefore each nonorientable surface can be triangulated in such a way
that the resulting simplicial polyhedral map cannot be polyhedrally immersed in
R

3 [Bre83]. On the other hand, each triangulation of the torus can be polyhedrally
embedded in R

3 [ABM08], and each triangulation of the real projective plane RP2

can be polyhedrally embedded in R
4 [BS95].

Another important type of problem asks for topological properties of the space
of all polyhedral embeddings, or of all convex d-polytopes, with a given face lattice.
This is the realization space for this face lattice. Every convex 3-polytope has
an open ball as its realization space. However, the realization spaces of convex
4-polytopes can be arbitrarily complicated; see the “Universality Theorem” by
Richter-Gebert [Ric96] in Chapter 15 of this Handbook.

For further embeddability results in higher dimensions, as well as for a discus-
sion of some related problems such as the polytopality problems and isotopy prob-
lems, see [Zie95, BLS+93, BW93]. For a computational approach to the embed-
dability problem in terms of oriented matroids, see Bokowski and Sturmfels [BS89],
as well as Chapter 6 of this Handbook. We shall revisit the embeddability problem
in Sections 20.2 and 20.5 for interesting special classes of polyhedral maps.

Many interesting maps M on compact surfaces S have a Schläfli symbol {p, q};
for examples, see Section 20.4. These maps can then be obtained from the regular
tessellation {p, q} of the 2-sphere, the Euclidean plane, or the hyperbolic plane by
making identifications. Trivially, qf0 = 2f1 = pf2, where f0, f1, f2 are the numbers
of vertices, edges, and faces of M , respectively. Also, if the Euler characteristic χ
of S is negative and m denotes the number of flags (incident triples consisting of a
vertex, an edge, and a face) of M , then

χ = f0 − f1 + f2 =
m

2

(

1

q
−

1

2
+

1

p

)

≤ −
m

84
, (20.1.1)
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Chapter 20: Polyhedral maps 537

and equality holds on the right-hand side if and only if M is of type {3, 7} or {7, 3}.

20.2 EXTREMAL PROPERTIES

There is a natural interest in polyhedral maps and polyhedra defined by certain
minimality properties. For relations with the famous Map Color Theorem, which
gives the minimum genus of a surface on which the complete graph Kn can be
embedded, see Ringel [Rin74], Barnette [Bar83], Gross and Tucker [GT87], and
Mohar and Thomassen [MT01]. See also Brehm and Wills [BW93].

GLOSSARY

f-vector: For a map M , the vector f(M) = (f0, f1, f2), where f0, f1, f2 are the
numbers of vertices, edges, and faces of M , respectively.

Weakly neighborly: A polyhedral map is weakly neighborly (a wnp map) if
any two vertices lie in a common face.

Neighborly: A map is neighborly if any two vertices are joined by an edge.

Nonconvex vertex: A vertex x of a polyhedral 2-manifold M in R
3 is a convex

vertex if at least one of the two components into whichM divides a small convex
neighborhood of x in R

3 is convex; otherwise, x is nonconvex.

Tight polyhedral 2-manifold: A polyhedral 2-manifold M embedded in R
3

such that every hyperplane strictly supporting M locally at a point supports M
globally.

BASIC RESULTS

THEOREM 20.2.1

Let M be a polyhedral map of Euler characteristic χ with f -vector (f0, f1, f2). Then

f0 ≥ ⌈(7 +
√

49− 24χ)/2⌉. (20.2.1)

Here, ⌈t⌉ denotes the smallest integer greater than or equal to t. This lower
bound is known as the Heawood bound and is an easy consequence of Euler’s
formula f0 − f1 + f2 = χ (= 2− 2g if M is orientable of genus g).

THEOREM 20.2.2

Except for the nonorientable 2-manifolds with χ = 0 (Klein bottle) or χ = −1
and the orientable 2-manifold of genus g = 2 (χ = −2), each 2-manifold admits a
triangulation for which the lower bound (20.2.1) is attained.

This is closely related to the Map Color Theorem. The same lower bound
(20.2.1) holds for the number f2 of faces of M , since the dual of M is a polyhedral
map with the same Euler characteristic and with f -vector (f2, f1, f0).

The exact minimum for the number f1 of edges of a polyhedral map is known
for only some manifolds. Let E+(χ) or E−(χ), respectively, denote the smallest
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538 U. Brehm and E. Schulte

number f1 such that there is a polyhedral map with f1 edges on the orientable 2-
manifold, or on the nonorientable 2-manifold, respectively, of Euler characteristic χ.
The known values of E+(χ) and E−(χ) are listed in Table 20.2.1; undecided cases
are left blank. The polyhedral maps that attain the minimal values E+(2), E+(−8),
E−(0), and E−(−6) are uniquely determined.

TABLE 20.2.1 The known values of E+(χ) and E−(χ).

χ 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 −26

E+(χ) 6 − 18 − 27 − 33 − 38 − 40 78

E
−
(χ) − 15 18 23 26 30 33 35 36 40 42

FIGURE 20.2.1

A self-dual polyhedral map on RP2
with the minimum number (15) of edges.

For a map on RP2 with 15 edges, see Figure 20.2.1. For the unique polyhedral
map with 40 edges on the orientable 2-manifold of genus 5 (χ = −8), see Fig-
ure 20.2.2 (and [Bre90a]). This map is weakly neighborly and self-dual, and has a
cyclic group of automorphisms acting regularly on the set of vertices and on the set
of faces.

FIGURE 20.2.2

The unique polyhedral map of genus 5 with

the minimum number (40) of edges.
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A general bound for the number f1 of edges is given by

THEOREM 20.2.3 [Bre90a]

f1 ≥ −χ+min{y ∈ N | y(
√

2y − 6) ≥ −8χ and y ≥ 8} ,

where N is the set of natural numbers.
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If M is a polyhedral map on a surface S, then a new polyhedral map M ′ on
S can be obtained from M by the following operation, called face splitting. A
new edge xy is added across a face of M , where x and y are points on edges of M
that are not contained in a common edge. The new vertices x and y of M ′ may
be vertices of M , or one or both may be relative interior points of edges of M .
The dual operation is called vertex splitting. On the sphere S2, the (boundary
complex of the) tetrahedron is the only polyhedral map that is minimal with respect
to face splitting. On the real projective plane RP2, there are exactly 16 polyhedral
maps that are minimal with respect to face splitting [Bar91], and exactly 7 that are
minimal with respect to both face splitting and vertex splitting. These are exactly
the polyhedral maps on RP2 with 15 edges, which is the minimum number of edges
for RP2. For an example, see Figure 20.2.1.

For neighborly polyhedral maps we always have equality in (20.2.1). Weakly
neighborly polyhedral maps (wnp maps) are a generalization of neighborly poly-
hedral maps. On the 2-sphere, the only wnp maps are the (boundary complexes
of the) pyramids and the triangular prism. Every other 2-manifold admits only
finitely many combinatorially distinct wnp maps. Moreover,

lim sup
χ→∞

Vmax(χ) · |2χ|
−2/3 ≤ 1 ,

where Vmax(χ) denotes the maximum number of vertices of a wnp map of Euler
characteristic χ; see [BA86], which also discusses further equalities and inequalities
for general polyhedral maps. For several 2-manifolds, all wnp maps have been
determined. For example, on the torus there are exactly five wnp maps, and three
of them are geometrically realizable as polyhedra in R

3.
In some instances, the combinatorial lower bound (20.2.1) can also be attained

geometrically by (necessarily orientable) polyhedra in R
3. Trivially, the tetrahedron

minimizes f0 (= 4) for g = 0. For g = 1 there is a polyhedron with f0 = 7 known
as the Császár torus; see Figure 20.2.3. A pair of congruent copies of the torus
shown in Figure 20.2.3b can be linked (if the coordinates orthogonal to the plane
of projection are sufficiently small). Polyhedra that have the minimum number of
vertices have also been found for g = 2 (the exceptional case), 3, 4, or 5, with 10,
10, 11, or 12 vertices, respectively. For g ≤ 4 each triangulation with the minimum
number of vertices admits a realization as a polyhedron in R

3, but for g = 5 there
are also minimal triangulations which do not admit such a realization. For g = 6,
none of the 59 combinatorially different triangulations with 12 vertices admits a
geometric realization as a polyhedron in R

3 [Sch10].

FIGURE 20.2.3

(a) The unique 7-vertex
triangulation of the torus and

(b) a symmetric realization

as a polyhedron.                       (a)                                                  (b)
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The minimum number of vertices for polyhedral maps that admit polyhedral
immersions in R

3 is 9 for the real projective plane RP2 [Bre90b], the Klein bottle,
and the surface of Euler characteristic χ = −1. The minimum number is 10 for
the surface with χ = −3 [Leo09]. The lower bound for RP2 follows directly from
the fact that each immersion of RP2 in R

3 has (generically) a triple point (like the
classical Boy surface).

There are also some surprising results for higher genus. For example, for each
q ≥ 3 there exists a polyhedral map Mq of type {4, q} with f0 = 2q and g =
2q−3(q − 4) + 1 such that Mq and its dual have polyhedral embeddings in R

3

[MSW83]. These polyhedra are combinatorially regular in the sense of Section 20.5.
Note that f0 = O(g/ log g). Thus for sufficiently large genus, Mq has more handles
than vertices, and its dual has more handles than faces.

Every polyhedral 2-manifold in R
3 of genus g ≥ 1 contains at least 5 nonconvex

vertices. This bound is attained for each g ≥ 1. For tight polyhedral 2-manifolds,
the lower bound for the number of nonconvex vertices is larger and depends on g.
For a survey on tight polyhedral submanifolds see [Küh95].

20.3 EBERHARD’S THEOREM AND RELATED RESULTS

Eberhard’s theorem is one of the oldest nontrivial results about convex polyhedra.
The standard reference is Grünbaum [Grü67, Grü70]. For recent developments see
also Jendrol [Jen93].

GLOSSARY

p-sequence: For a polyhedral map M , the sequence p(M) = (pk(M))k≥3, where
pk = pk(M) is the number of k-gonal faces of M .

v-sequence: For a polyhedral map M , the sequence v(M) = (vk(M))k≥3, where
vk = vk(M) is the number of vertices of M of degree k.

EBERHARD-TYPE RESULTS

Significant results are known for the general problem of determining what kind
of polygons, and how many of each kind, may be combined to form the faces of
a polyhedral map M on an orientable surface of genus g. These refine results
(for d = 3) about the boundary complex and the number of i-dimensional faces
(i = 0, . . . , d− 1) of a convex d-polytope [Grü67, Zie95]; see Chapter 17.

If M is a polyhedral map of genus g with f -vector (f0, f1, f2), then

∑

k≥3

pk = f2,
∑

k≥3

vk = f0,
∑

k≥3

kpk = 2f1 =
∑

k≥3

kvk . (20.3.1)

Further, Euler’s formula f0 − f1 + f2 = 2(1− g) implies the equations

∑

k≥3

(6 − k)pk + 2
∑

k≥3

(3− k)vk = 12(1− g) (20.3.2)
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Chapter 20: Polyhedral maps 541

and
∑

k≥3

(4− k)(pk + vk) = 8(1− g) . (20.3.3)

These equations contain no information about p6, v3 and p4, v4, respectively.
Eberhard-type results deal with the problem of determining which pairs (pk)k≥3

and (vk)k≥3 of sequences of nonnegative integers can occur as p-sequences p(M)
and v-sequences v(M) of polyhedral maps M of a given genus g. The above equa-
tions yield simple necessary conditions. As a consequence of Steinitz’s theorem
(Section 20.1), the problem for g = 0 is equivalent to a similar such problem for
convex 3-polytopes [Grü67, Grü70]. The classical theorem of Eberhard says the
following:

THEOREM 20.3.1 Eberhard’s Theorem

For each sequence (pk | 3 ≤ k 6= 6) of nonnegative integers satisfying

∑

k≥3

(6− k)pk = 12,

there exists a value of p6 such that the sequence (pk)k≥3 is the p-sequence of a

spherical polyhedral map all of whose vertices have degree 3, or, equivalently, of a
convex 3-polytope that is simple (has vertices only of degree 3).

This is the case g = 0 and v3 = f0, vk = 0 (k ≥ 4).
More general results have been established [Jen93]. Given two sequences p′ =

(pk | 3 ≤ k 6= 6) and v′ = (vk | k > 3) of nonnegative integers such that the equation
(20.3.2) is satisfied for a given genus g, let E(p′, v′; g) denote the set of integers p6 ≥
0 such that (pk)k≥3 and (vk)k≥3, with v3 := (

∑

k≥3 kpk −
∑

k≥4 kvk)/3 determined
by (20.3.1), are the p-sequences and v-sequences, respectively, of a polyhedral map
of genus g. For all but two admissible triples (p′, v′, g), the set E(p′, v′; g) is known
up to a finite number of elements. For example, for g = 0, the set E(p′, v′; 0) is
nonempty if and only if

∑

k 6≡0 (mod3) vk 6= 1 or pk 6= 0 for at least one odd k.
In particular, for each such nonempty set, there exists a constant c depending on
(p′, v′) such that E(p′, v′; 0) = {j | c ≤ j}, {j | c ≤ j ≡ 0 (mod2)}, or {j | c ≤ j ≡
1 (mod2)}. Similarly, for each triple with g ≥ 2, there is a constant c depending
on (p′, v′, g) such that E(p′, v′; g) = {j | c ≤ j}. There are analogous results for
sequences (pk | 3 ≤ k 6= 4) and (vk | 3 ≤ k 6= 4) that satisfy the equation (20.3.3)
or other related equations.

For g = 1 there is also a more geometric Eberhard-type result available, which
requires the polyhedral map M to be polyhedrally embedded in R

3:

THEOREM 20.3.2 [Gri83]

Let s, pk (k ≥ 3, k 6= 6) be nonnegative integers. Then there exists a toroidal poly-
hedral 2-manifold M in R

3 with pk(M) = pk (k 6= 6) and
∑

k≥3(k − 3)vk(M) = s
if and only if

∑

k≥3(6− k)pk = 2s and s ≥ 6.

Also, for toroidal polyhedral 2-manifolds inR
3 (as well as for convex 3-polytopes),

the exact range of possible f -vectors is known [Grü67, BW93].

THEOREM 20.3.3

A polyhedral embedding in R
3 of some torus with f -vector (f0, f1, f2) exists if and
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542 U. Brehm and E. Schulte

only if f0 − f1 + f2 = 0, f2(11 − f2)/2 ≤ f0 ≤ 2f2, f0(11− f0)/2 ≤ f2 ≤ 2f0, and
2f1 − 3f0 ≥ 6.

For generalizations of Eberhard’s theorem to tilings of the Euclidean plane, see
also [GS87].

20.4 REGULAR MAPS

Regular maps are topological analogues of the ordinary regular polyhedra and star-
polyhedra on surfaces. Historically they became important in the context of trans-
formations of algebraic equations and representations of algebraic curves in homo-
geneous complex variables. There is a large body of literature on regular maps and
their groups. The classical text is Coxeter and Moser [CM80]. For more recent texts
see McMullen and Schulte [MS02], and Conder, Jones, Siran, and Tucker [CJST].

GLOSSARY

(Combinatorial) automorphism: An incidence-preserving bijection (of the set
of vertices, edges, and faces) of a map M on a surface S to itself. The (combina-
torial automorphism) group A(M) of M is the group of all such bijections.
It can be “realized” by a group of homeomorphisms of S.

Regular map: A map M on S whose group A(M) is transitive on the flags
(incident triples consisting of a vertex, an edge, and a face) of M .

Chiral map: A map M on S whose group A(M) has two orbits on the flags such
that any two adjacent flags are in distinct orbits. Here two flags are adjacent
if they differ in precisely one element: a vertex, an edge, or a face. (For a chiral
map the underlying surface S must be orientable.)

GENERAL RESULTS

Each regular map M is of type {p, q} for some finite p and q. Its group A(M) is
transitive on the vertices, the edges, and the faces of M . In general, the Schläfli
symbol {p, q} does not determine M uniquely. The group A(M) is generated by
involutions ρ0, ρ1, ρ2 such that the standard relations

ρ0
2 = ρ1

2 = ρ2
2 = (ρ0ρ1)

p
= (ρ1ρ2)

q
= (ρ0ρ2)

2
= 1

hold, but in general there are also further independent relations. Any triangle in
the “barycentric subdivision” (order complex) of M is a fundamental region for
A(M) on the underlying surface S; see Section 20.1. For any fixed such triangle,
we can take for ρi the “combinatorial reflection” in its side opposite to the vertex
that corresponds to an i-dimensional element of M . The set of standard relations
gives a presentation for the symmetry group of the regular tessellation {p, q} on
the 2-sphere, in the Euclidean plane, or in the hyperbolic plane, whichever is the
universal covering of M . See Figure 20.5.1 (a) for a conformal (hyperbolic) drawing
of the Dyck map (shown also in Figure 20.1.1) with a fundamental region shaded.
The identifications on the boundary of the drawing are indicated by letters.
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The regular maps on orientable surfaces of genus g ≤ 301 and on non-orientable
surfaces of genus h ≤ 602 have been enumerated by computer (see [Con12]). A
similar enumeration is also known for chiral maps on orientable surfaces of genus
g ≤ 301. Up to isomorphism, if g = 0, there are just the Platonic solids (or regular
spherical tessellations) {3, 3}, {3, 4}, {4, 3}, {3, 5}, and {5, 3}. When g = 1 there
are three infinite families of torus maps of type {3, 6}, {6, 3}, and {4, 4}, each
a quotient of the corresponding Euclidean universal covering tessellations {3, 6},
{6, 3}, and {4, 4}, respectively. For g ≥ 2, the universal covering tessellation {p, q}
is hyperbolic and there are only finitely many regular maps on a surface of genus
g. The latter follows from the Hurwitz formula |A(M)| ≤ 84 |χ| (or from the
inequality 20.1.1), where χ is the Euler characteristic of S. Each regular map on a
nonorientable surface is doubly covered by a regular map of the same type on an
orientable surface, and this covering map is unique [Wil78].

Generally speaking, given M , the topology of S is reflected in the relations
that have to be added to the standard relations to obtain a presentation for A(M).
Conversely, many interesting regular maps can be constructed by adding certain
kinds of extra relations for the group. Two examples are the regular maps {p, q}r
and {p, q|r} obtained by adding the extra relations (ρ0ρ1ρ2)

r
= 1 or (ρ0ρ1ρ2ρ1)

r
=

1, respectively. Often these are “infinite maps” on noncompact surfaces, but there
are also many (finite) maps on compact surfaces. The Dyck map {3, 8}6 and the
famous Klein map {3, 7}8 (with group PGL(2, 7)) are both of genus 3 and of
the first kind, while the traditional regular skew polyhedra in Euclidean 3-space
or 4-space are of the second kind. For more details and further interesting classes
of regular maps, see [CM80, MS02, CJST] and Chapter 18 of this Handbook. In
Section 20.5 we shall discuss polyhedral embeddings of regular maps in ordinary
3-space.

The rotation subgroup (orientation preserving subgroup) of the group of an
orientable regular map (of type {3, 7} or {7, 3}) that achieves equality in the Hur-
witz formula is also called a Hurwitz group. The Klein map is the regular map
of smallest genus whose rotation subgroup is a Hurwitz group [Con90].

20.5 SYMMETRIC POLYHEDRA

Traditionally, much of the appeal of polyhedral 2-manifolds comes from their com-
binatorial or geometric symmetry properties. For surveys on symmetric polyhedra
in R

3 see Schulte and Wills [SW91, SW12], Bokowski and Wills [BW88], and Brehm
and Wills [BW93].

GLOSSARY

Combinatorially regular: A polyhedral 2-manifold (or polyhedron) P is combi-
natorially regular if its combinatorial automorphism group A(P ) is flag-transitive
(or, equivalently, if the underlying polyhedral map is a regular map).

Equivelar: A polyhedral 2-manifold (or polyhedron) P is equivelar of type {p, q}
if all its 2-faces are convex p-gons and all its vertices are q-valent.
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GENERAL RESULTS

See Section 20.4 for results about regular maps. Up to isomorphism, the Platonic
solids are the only combinatorially regular polyhedra of genus 0. For the torus,
each regular map that is a polyhedral map also admits an embedding in R

3 as a
combinatorially regular polyhedron. Much less is known for maps of genus g ≥ 2.
Two infinite sequences of combinatorially regular polyhedra have been discovered,
one consisting of polyhedra of type {4, q} (q ≥ 3) and the other of their duals of type
{q, 4} (see [MSW83, RZ11]). These are polyhedral embeddings of the maps Mq and
their duals mentioned in Section 20.2. Several famous regular maps have also been
realized as polyhedra, including Klein’s {3, 7}8, Dyck’s {3, 8}6, the map {3, 10}6
(a relative of Dyck’s map), and Coxeter’s {4, 6|3}, {6, 4|3}, {4, 8|3}, and {8, 4|3}
[SW85, SW91, BS89, BL16]. It is conjectured that there are just eight regular
maps in the genus range 2 ≤ g ≤ 6 that can be realized as combinatorially regular
polyhedra in R

3 (see [SW12]). However, a complete classification of the regular
maps of high genus that admit realizations as combinatorially regular polyhedra in
R

3 does not seem to be within reach at present. See Figure 20.5.1 for an illustration
of a polyhedral realization of Dyck’s regular map {3, 8}6 shown in Figure 20.1.1.
Figure 20.5.1(a) shows a conformal drawing of the Dyck map, with a fundamental
region shaded, while (b) shows a maximally symmetric polyhedral realization. For
the Klein map {7, 3}8, the dual of {3, 7}8, there exists also a non-self-intersecting
polyhedral realization with non-convex heptagonal faces [McC09].

FIGURE 20.5.1

Dyck’s regular map:

(a) a conformal drawing, with

fundamental region shaded;

(b) a symmetric polyhedral

realization.
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For a more general concept of polyhedra in R
3 or higher-dimensional spaces, as

well as an enumeration of the corresponding regular polyhedra, see Chapter 18 of
this Handbook. The latter also contains a depiction of the polyhedral realization
of {4, 8|3}.

Equivelarity is a local regularity condition. Each combinatorially regular poly-
hedron in R

3 is equivelar. However, there are many other equivelar polyhedra. For
sufficiently large genus g, for example, there are equivelar polyhedra for each of the
types {3, q} with q = 7, 8, 9; {4, q} with q = 5, 6; and {q, 4} with q = 5, 6 [BW93].

The symmetry group of a polyhedron is generally much smaller than the com-
binatorial automorphism group of the underlying polyhedral map. In particular,
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the five Platonic solids are the only polyhedra in R
3 with a flag-transitive symmetry

group. Note that even for higher genus (namely, for g = 1, 3, 5, 7, 11, and 19) there
exist polyhedra with vertex-transitive symmetry groups. Such a polyhedral torus
is shown in Figure 20.5.2.

FIGURE 20.5.2

A vertex-transitive polyhedral torus.

Finally, if we relax the requirement that a polyhedron be free of self-intersections
and allow more general “polyhedral realizations” of maps (for instance, polyhedral
immersions), then there is much more flexibility in the construction of “polyhe-
dra” with high symmetry properties. The most famous examples are the Kepler-
Poinsot star-polyhedra, but there are also many others. For more details see
[SW91, BW88, BW93, MS02] and Chapter 18 of this Handbook.

20.6 SOURCES AND RELATED MATERIAL

SURVEYS

[Bar83]: A text about colorings of maps and polyhedra.

[Bjö95]: A survey on topological methods in combinatorics.

[BLS+93]: A monograph on oriented matroids.

[BS89]: A text about computational aspects of geometric realizability.

[BW93]: A survey on polyhedral manifolds in 2 and higher dimensions.

[Con90]: A survey on Hurwitz groups.

[CJST]: A monograph on regular maps on surfaces.

[Cox73]: A monograph on regular polytopes, regular tessellations, and reflection
groups.

[CM80]: A monograph on discrete groups and their presentations.

[GT87]: A text about topological graph theory, in particular graph embeddings in
surfaces.

[Grü67]: A monograph on convex polytopes.

[Grü70]: A survey on convex polytopes complementing the exposition in [Grü67].
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[GS87]: A monograph on plane tilings and patterns.

[Küh95]: A survey on tight polyhedral manifolds.

[Moi77]: A text about geometric topology in low dimensions.

[MT01]: A text about embeddings of graphs in surfaces.

[MS02]: A monograph on abstract regular polytopes and their groups.

[Rin74]: A text about maps on surfaces and the Map Color Theorem.

[SW91]: A survey on combinatorially regular polyhedra in 3-space.

[Zie95]: A graduate textbook on convex polytopes.
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[Grü67] B. Grünbaum. Convex Polytopes. Interscience, London, 1967. Revised edition
(V. Kaibel, V. Klee, and G.M. Ziegler, editors), vol. 221 of Grad. Texts in Math.,
Springer, New York, 2003.
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