
2 PACKING AND COVERING

Gábor Fejes Tóth

INTRODUCTION

The basic problems in the classical theory of packings and coverings, the develop-
ment of which was strongly influenced by the geometry of numbers and by crystal-
lography, are the determination of the densest packing and the thinnest covering
with congruent copies of a given body K. Roughly speaking, the density of an ar-
rangement is the ratio between the total volume of the members of the arrangement
and the volume of the whole space. In Section 2.1 we define this notion rigorously
and give an account of the known density bounds.

In Section 2.2 we consider packings in, and coverings of, bounded domains.
Section 2.3 is devoted to multiple arrangements and their decomposability. In Sec-
tion 2.4 we make a detour to spherical and hyperbolic spaces. In Section 2.5 we
discuss problems concerning the number of neighbors in a packing, while in Sec-
tion 2.6 we investigate some selected problems concerning lattice arrangements. We
close in Section 2.7 with problems concerning packing and covering with sequences
of convex sets.

2.1 DENSITY BOUNDS FOR ARRANGEMENTS IN E d

GLOSSARY

Convex body: A compact convex set with nonempty interior. A convex body
in the plane is called a convex disk. The collection of all convex bodies in
d-dimensional Euclidean space E

d is denoted by K(Ed). The subfamily of K(Ed)
consisting of centrally symmetric bodies is denoted by K∗(Ed).

Operations on K(Ed): For a set A and a real number λ we set λA = {x | x =
λa, a ∈ A}. λA is called a homothetic copy of A. The Minkowski sum

A + B of the sets A and B consists of all points a + b, a ∈ A, b ∈ B. The set
A−A = A+ (−A) is called the difference body of A. Bd denotes the unit ball
centered at the origin, and A+ rBd is called the parallel body of A at distance
r (r > 0). If A ⊂ E

d is a convex body with the origin in its interior, then the
polar body A∗ of A is {x ∈ E

d | 〈x, a〉 ≤ 1 for all a ∈ A}.

The Hausdorff distance between the sets A and B is defined by

d(A,B) = inf{̺ | A ⊂ B + ̺Bd , B ⊂ A + ̺Bd}.

Lattice: The set of all integer linear combinations of a particular basis of Ed.
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28 G. Fejes Tóth

Lattice arrangement: The set of translates of a given set in E
d by all vectors

of a lattice.

Packing: A family of sets whose interiors are mutually disjoint.

Covering: A family of sets whose union is the whole space.

The volume (Lebesgue measure) of a measurable set A is denoted by V (A). In
the case of the plane we use the term area and the notation a(A).

Density of an arrangement relative to a set: Let A be an arrangement (a
family of sets each having finite volume) and D a set with finite volume. The
inner density dinn(A|D), outer density dout(A|D), and density d(A|D) of
A relative to D are defined by

dinn(A|D) =
1

V (D)

∑

A∈A,A⊂D

V (A),

dout(A|D) =
1

V (D)

∑

A∈A, A∩D 6=∅
V (A),

and

d(A|D) =
1

V (D)

∑

A∈A
V (A ∩D).

(If one of the sums on the right side is divergent, then the corresponding density
is infinite.)

The lower density and upper density of an arrangement A are given by the
limits d−(A) = lim inf

λ→∞
dinn(A|λBd), d+(A) = lim sup

λ→∞
dout(A|λBd). If d−(A) =

d+(A), then we call the common value the density of A and denote it by d(A).
It is easily seen that these quantities are independent of the choice of the origin.

The packing density δ(K) and covering density ϑ(K) of a convex body (or
more generally of a measurable set) K are defined by

δ(K) = sup {d+(P) | P is a packing of Ed with congruent copies of K}

and

ϑ(K) = inf {d−(C) | C is a covering of Ed with congruent copies of K}.

The translational packing density δT (K), lattice packing density δL(K),
translational covering density ϑT (K), and lattice covering density ϑL(K)
are defined analogously, by taking the supremum and infimum over arrangements
consisting of translates of K and over lattice arrangements of K, respectively.
It is obvious that in the definitions of δL(K) and ϑL(K) we can take maximum
and minimum instead of supremum and infimum. By a theorem of Groemer,
the same holds for the translational and for the general packing and covering
densities.

Dirichlet cell: Given a set S of points in E
d such that the distances between

the points of S have a positive lower bound, the Dirichlet cell, also known as
the Voronoi cell, associated to an element s of S consists of those points of Ed

that are closer to s than to any other element of S.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.



Chapter 2: Packing and covering 29

KNOWN VALUES OF PACKING AND COVERING DENSITIES

Apart from the obvious examples of space fillers, there are only a few specific bodies
for which the packing or covering densities have been determined. The bodies for
which the packing density is known are given in Table 2.1.1.

TABLE 2.1.1 Bodies K for which δ(K) is known.

BODY SOURCE

Circular disk in E
2

[Thu10]

Parallel body of a rectangle [Fej67]

Intersection of two congruent circular disks [Fej71]

Centrally symmetric n-gon (algorithm in O(n) time) [MS90]

Ball in E
3

[Hal05]

Ball in E
8

[Via17]

Ball in E
24

[CKM17]

Truncated rhombic dodecahedron in E
3

[Bez94]

We have δ(B2) = π/
√

12. The longstanding conjecture that δ(B3) = π/
√

18
has been confirmed by Hales. A packing of balls reaching this density is obtained
by placing the centers at the vertices and face-centers of a cubic lattice. We discuss
the sphere packing problem in the next section.

For the rest of the bodies in Table 2.1.1, the packing density can be given only
by rather complicated formulas. We note that, with appropriate modification of
the definition, the packing density of a set with infinite volume can also be defined.
A. Bezdek and W. Kuperberg (see [BK91]) showed that the packing density of
an infinite circular cylinder is π/

√
12, that is, infinite circular cylinders cannot be

packed more densely than their base. It is conjectured that the same statement
holds for circular cylinders of any finite height.

A theorem of L. Fejes Tóth [Fej50] states that

δ(K) ≤ a(K)

H(K)
for K ∈ K(E2), (2.1.1)

where H(K) denotes the minimum area of a hexagon containing K. This bound is
best possible for centrally symmetric disks, and it implies that

δ(K) = δT (K) = δL(K) =
a(K)

H(K)
for K ∈ K∗(E2).

The packing densities of the convex disks in Table 2.1.1 have been determined
utilizing this relation.

It is conjectured that an inequality analogous to (2.1.1) holds for coverings, and
this is supported by the following weaker result [Fej64]:

Let h(K) denote the maximum area of a hexagon contained in a convex disk
K. Let C be a covering of the plane with congruent copies of K such that no two
copies of K cross. Then

d−(C) ≥ a(K)

h(K)
.
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30 G. Fejes Tóth

The convex disks A and B cross if both A \ B and B \ A are disconnected. As
translates of a convex disk do not cross, it follows that

ϑT (K) ≥ a(K)

h(K)
for K ∈ K(E2).

Again, this bound is best possible for centrally symmetric disks, and it implies that

ϑT (K) = ϑL(K) =
a(K)

h(K)
for K ∈ K∗(E2). (2.1.2)

Based on this, Mount and Silverman gave an algorithm that determines ϑT (K) for a
centrally symmetric n-gon in O(n) time. Also the classical result ϑ(B2) = 2π/

√
27

of Kershner [Ker39] follows from this relation.

The bound ϑT (K) ≤ a(K)
h(K) holds without the restriction to non-crossing disks

for “fat” disks. A convex disk is r-fat if it is contained in a unit circle and contains a
concentric circle of radius r. G. Fejes Tóth [Fej05a] proved the inequality ϑT (K) ≤
a(K)
h(K) for 0.933-fat convex disks and, sharpening an earlier result of Heppes [Hep03]

also for 0.741-fat ellipses. The algorithm of Mount and Silverman enables us to
determine the covering density of centrally symmetric 0.933-fat convex polygons.
We note that all regular polygons with at least 10 sides are 0.933-fat, and with a

modification of the proof in [Fej05a] it can be shown that the bound ϑT (K) ≤ a(K)
h(K)

holds also in the case when K is a regular octagon. It follows that if Pn denotes a
regular n-gon, then

ϑ(P6k) =
k sin π

3k

sin π
3

and

ϑ(P6k±2) =
(3k ± 1) sin π

3k±1

2 sin kπ
3k±1 + sin (k±1)π

3k±1

for all k ≥ 1. The covering density is not known for any convex body other than
the space fillers and the examples mentioned above.

The true nature of difficulty in removing the non-crossing condition is shown
by an ingenious example by A Bezdek and W. Kuperberg [BK10]. Modifying a
pentagonal tile, they constructed convex disks K with the property that in any
thinnest covering of the plane with congruent copies of K, crossing pairs occur.
The thinnest covering in their construction contains rotated copies of K, so it is
not a counterexample for the conjectures that for every convex disk K we have

ϑT (K) ≤ a(K)
h(K) and ϑT (K) = ϑL(K). The equality ϑT (K) = ϑL(K) was first

proved by Januszewski [Jan10] for triangles. Januszewski’s result was extended
by Sriamorn and Xue [SX15] to a wider class of convex disks containing, besides
triangles, all convex quadrilaterals. A quarter-convex disk is the affine image of a
set of the form {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ f(x)} for some positive concave function
f(x) defined for 0 ≤ x ≤ 1. Sriamorn and Xue proved that ϑT (K) = ϑL(T ) for
every quarter-convex disk.

One could expect that the restriction to arrangements of translates of a set
means a considerable simplification. However, this apparent advantage has not
been exploited so far in dimensions greater than 2. On the other hand, the lattice
packing density of some special convex bodies in E

3 has been determined; see
Table 2.1.2.
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TABLE 2.1.2 Bodies K ∈ E
3 for which δL(K) is known.

BODY δL(K) SOURCE

{x | |x| ≤ 1, |x3| ≤ λ} (λ ≤ 1) π(3 − λ2)1/2/6 [Cha50]

{x | |xi| ≤ 1, |x1 + x2 + x3| ≤ λ}































9− λ2

9
for 0 < λ ≤ 1

2

9λ(9− λ2)

4(−λ3 − 3λ2 + 24λ− 1)
for 1

2
≤ λ ≤ 1

9(λ3 − 9λ2 + 27λ − 3)

8λ(λ2 − 9λ+ 27)
for 1 ≤ λ ≤ 3

[Whi51]

{x |
√

(x1)2 + (x2)2 + |x3| ≤ 1} π
√
6/9 = 0.8550332 . . . [Whi48]

Tetrahedron 18/49 = 0.3673469 . . . [Hoy70]

Octahedron 18/19 = 0.9473684 . . . [Min04]

Dodecahedron (5 +
√
5)/8 = 0.9045084 . . . [BH00]

Icosahedron 0.8363574 . . . [BH00]

Cuboctahedron 45/49 = 0.9183633 . . . [BH00]

Icosidodecahedron (45 + 17
√
5)/96 = 0.8647203 . . . [BH00]

Rhombic Cuboctahedron (16
√
2− 20)/3 = 0.8758056 . . . [BH00]

Rhombic Icosidodecahedron (768
√
5− 1290)/531 = 0.8047084 . . . [BH00]

Truncated Cube 9(5− 3
√
2)/7 = 0.9737476 . . . [BH00]

Truncated Dodecahedron (25 + 37
√
5)/120 = 0.8977876 . . . [BH00]

Truncated Icosahedron 0.78498777 . . . [BH00]

Truncated Cuboctahedron 0.8493732 . . . [BH00]

Truncated Icosidodecahedron (19 + 10
√
5)/50 = 0.8272135 . . . [BH00]

Truncated Tetrahedron 207/304 = 0.6809210 . . . [BH00]

Snub Cube 0.787699 . . . [BH00]

Snub Dodecahedron 0.7886401 . . . [BH00]

All results given in Table 2.1.2 are based on Minkowski’s work [Min04] on
critical lattices of convex bodies. We emphasize the following special case: Gauss’s
result that δL(B3) = π/

√
18 is the special case λ = 1 of Chalk’s theorem concerning

the frustum of the ball. In [BH00] Betke and Henk gave an efficient algorithm for
computing δL(K) for an arbitrary 3-polytope. As an application they calculated
the lattice packing densities of all regular and Archimedean polytopes.

Additional bodies can be added to Table 2.1.2 using the following observations.
It has been noticed by Chalk and Rogers [CR48] that the relation δT (K) =

δL(K) (K ∈ K(E2)) readily implies that for a cylinder C in E
3 based on a convex

disk K we have δL(C) = δL(K). Thus, δL(C) is determined by the lattice packing
density of its base.

Next, we recall the observation of Minkowski (see [Rog64, p. 69]) that an ar-
rangement A of translates of a convex body K is a packing if and only if the
arrangement of translates of the body 1

2 (K −K) by the same vectors is a packing.

This implies that, for K ∈ K(Ed),

δT (K) = 2dδT (K−K)
V (K)

V (K−K)
and δL(K) = 2dδL(K−K)

V (K)

V (K−K)
. (2.1.3)

Generally, K is not uniquely determined by K −K; e.g., we have K −K = Bd for
every K ⊂ E

d that is a body of constant width 1, and the determination of δL(K)
for such a body is reduced to the determination of δL(Bd), which is established for
d ≤ 8 and d = 24. We give the known values of δL(Bd) and ϑ(Bd), in Table 2.1.3.
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32 G. Fejes Tóth

TABLE 2.1.3 Known values of δL(Bd) and ϑL(Bd).

d δL(B
d) SOURCE ϑL(B

d) SOURCE

2
π

2
√
3

[Lag73]
2π

3
√
3

[Ker39]

3
π√
18

[Gau]
5
√
5π

24
[Bam54]

4
π2

16
[KZ72]

2π2

5
√
5

[DR63]

5
π2

15
√
2

[KZ77]
245

√
35π2

3888
√
3

[RB75]

6
π3

48
√
3

[Bli35]

7
π3

105
[Bli35]

8
π4

384
[Bli35]

24
π12

12!
[CK04]

THE KEPLER CONJECTURE

In 1611 Kepler [Kep87] described the face-centered cubic lattice packing of congru-
ent balls consisting of hexagonal layers. He observed that the packing is built at
the same time of square layers. Then he proclaimed that this arrangement is “the
tightest possible, so that in no other arrangement could more pallets be stuffed into
the same container.” This sentence of Kepler has been interpreted by some authors
as the conjecture that the density of a packing of congruent balls cannot exceed
the density of the face-centered cubic lattice packing, that is, π/

√
18. It is doubtful

whether Kepler meant this, but attributing the conjecture to him certainly helped
in advertising it outside the mathematical community. Today the term “Kepler
conjecture” is widely accepted despite the fact that Kepler’s statement as quoted
above is certainly false if the container is smooth. Schürmann [Sch06] proved that
if K is a smooth convex body in d-dimensional space (d ≥ 2), then there exists
a natural number n0, depending on K, such that the densest packing of n ≥ n0

congruent balls in K cannot be part of a lattice arrangement.
Early research concerning Kepler’s conjecture concentrated on two easier prob-

lems: proving the conjecture for special arrangements and giving upper bounds for
δ(B3).

We mentioned Gauss’s result that δL(B3) = π/
√

18. A stronger result estab-
lishing Kepler’s conjecture for a restricted class of packings is due to A. Bezdek,
W. Kuperberg and Makai [BKM91]. They proved that the conjecture holds for
packings consisting of parallel strings of balls. A string of balls is a collection of
congruent balls whose centers are collinear and such that each of them touches two
others. Before the confirmation of the Kepler conjecture, the best upper bound for
δ(B3) was given by Muder [Mud93], who proved that δ(B3) ≤ 0.773055.

The first step toward the solution of Kepler’s conjecture in its full general-
ity was made in the early 1950s by L. Fejes Tóth (see [Fej72] pp. 174–181). He
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considered weighted averages of the volumes of Dirichlet cells of a finite collection
of balls in a packing. He showed that the Kepler conjecture holds if a particular
weighted average of volumes involving not more than 13 cells is greater than or
equal the volume of the rhombic dodecahedron circumscribed around a ball (this
being the Dirichlet cell of a ball in the face-centered cubic lattice). His argument
constitutes a program that, if realizable in principle, reduces Kepler’s conjecture to
an optimization problem in a finite number of variables. Later, in [Fej64] p. 300,
he suggested that with the use of computers δ(B3) could be “approximated with
great exactitude.”

In 1990 W.-Y. Hsiang announced the solution of the Kepler conjecture. His
approach is very similar to the program proposed by L. Fejes Tóth. Unfortunately,
Hsiang’s paper [Hsi93] contains significant gaps, so it cannot be accepted as a proof.
Hsiang maintains his claim of having a proof. He gave more detail in [Hsi01]. The
mathematical community lost interest in checking those details, however.

About the same time as Hsiang, Tom Hales also attacked the Kepler conjecture.
His first attempt [Hal92] was a program based on the Delone subdivision of space,
which is dual to the subdivision by Dirichlet cells. He modified his approach in
several steps [Hal93, Hal97, Hal98]. His final version, worked out in collaboration
with his graduate student Ferguson in [HF06], uses a subdivision that is a hybrid of
certain Delone-type tetrahedra and Dirichlet cells. With each ball B in a saturated
packing of unit balls, an object, called a decomposition star, is associated, consisting
of certain tetrahedra having the center of B as a common vertex together with
parts of a modified Dirichlet cell of B. A complicated scoring rule is introduced
that takes into account the volumes of the different parts of the decomposition star
with appropriate weights. The score of a decomposition star in the face-centered
cubic lattice is a certain number, which Hales takes to be 8. The key property of
the decomposition stars and the scoring rule is that the decomposition star of a
ball B, as well as its score, depends only on balls lying in a certain neighborhood of
B. From the mathematical point of view, the main step of the proof is the theorem
that

the Kepler conjecture holds, provided the score of each decomposition

star in a saturated packing of unit balls is at most 8.

The task of proving this, which is an optimization problem in finitely many
variables, has been carried out with the aid of computers. As Hales points out, there
is hope that in the future such a problem “might eventually become an instance of a
general family of optimization problems for which general optimization techniques
exist.” In the absence of such general techniques, manual procedures had to be
used to guide the work of computers.

Computers are used in the proof in several ways. The topological structure of
the decomposition stars is described by planar maps. A computer program enu-
merates around 5000 planar maps that have to be examined as potential counterex-
amples to the conjecture. Interval arithmetic is used to prove various inequalities.
Nonlinear optimization problems are replaced by linear problems that dominate the
original ones in order to apply linear programming methods. Even the organization
of the few gigabytes of data is a difficult task.

After examining the proof for over two years the team of a dozen referees came
to the conclusion that the general framework of the proof is sound, they did not find
any error, but they cannot say for certain that everything is correct. In particular
they could not check the work done by the computer. The theoretical foundation of

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.



34 G. Fejes Tóth

the proof was published in the Annals of Mathematics [Hal05], and the details, along
with historical notes, were given in a series of articles in a special issue of Discrete

and Computational Geometry ([Hal06a, Hal06b, Hal06c, Hal06d, HF06, HF11].
It is safe to say that the 300-page proof, aided by computer calculations taking

months, is one of the most complex proofs in the history of mathematics. Lagarias,
who in [Lag02] extracts the common ideas of the programs of L. Fejes Tóth, W.-Y.
Hsiang, and Hales and puts them into a general framework, finds that “the Hales–
Ferguson proof, assumed correct, is a tour de force of nonlinear optimization.”

Disappointed because the referees were unable to certify the correctness of the
proof, and realizing that, besides him, probably no human being will ever check
all details, Hales launched a project named Flyspeck designed for a computerized
formal verification of his proof. The article [HHM10] by the Flyspeck team reor-
ganizes the original proof into a more transparent form to provide a greater level of
certification of the correctness of the computer code and other details of the proof.
The final part of the paper lists errata in the original proof of the Kepler conjecture.
The book [Hal12] shows in detail how geometric ideas and elements of proof are
arranged and processed in preparation for the formal proof-checking scrutiny.

Marchal [Mar11] proposed an alternate subdivision associated with the packing
which is simpler and provides a less complex strategy of proof than that of Hales.

On August 10, 2014 the team of the Flyspeck project announced the successful
completion of the project [Fly14], where they noted that “the formal proof takes the
same general approach as the original proof, with modifications in the geometric
partition of space that have been suggested by Marchal.”

EXISTENCE OF ECONOMICAL ARRANGEMENTS

Table 2.1.4 lists the known bounds establishing the existence of reasonably dense
packings and thin coverings. When c appears in a bound without specification, it
means a suitable constant characteristic of the specific bound. The proofs of most
of these are nonconstructive. For constructive methods yielding slightly weaker
bounds, as well as improvements for special convex bodies.

Bound 1 for the packing density of general convex bodies follows by combining
Bound 6 with the relation (2.1.3) and the inequality V (K − K) ≤

(
2d
d

)
V (K) of

Rogers and Shephard [RS57]). For d ≥ 3 all methods establishing the existence of
dense packings rely on the theory of lattices, thus providing the same lower bounds
for δ(K) and δT (K) as for δL(K).

Better bounds than for general convex bodies are known for balls. Improving
earlier results by Ball [Bal92] and Vance [Van11], Venkatesh [Ven13] proved that
for any constant c > sinh2(πe)/π2e3 = 65963.8 . . . there is a number n(c) such that
for n > n(c) we have δ(Bn) ≥ δL(Bn) ≥ cn2−n. Moreover, there are infinitely
many dimensions n for which δL(Bn) ≥ n ln lnn2−n−1.

Rogers [Rog59] proved that

ϑL(Bn) ≤ cn(loge n)
1

2
log

2
2πe.

Gritzmann [Gri85] proved a similar bound for a larger class of convex bodies:

ϑL(K) ≤ cd(ln d)1+log
2
e

holds for a suitable constant c and for every convex body K in E
d that has an affine

image symmetric about at least log2 ln d + 4 coordinate hyperplanes.
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TABLE 2.1.4 Bounds establishing the existence of dense packings and thin coverings.

No. BOUND SOURCE

Bounds for general convex bodies in E
d

1 δL(K) ≥ cd3/2/4d (d large) [Sch63a, Sch63b]

2 ϑT (K) ≤ d lnd+ d ln ln d+ 5d [Rog57]

3 ϑL(K) ≤ dlog2 ln d+c [Rog59]

ϑ(K) ≤ 3 K ∈ E
3

[Smi00]

Bounds for centrally symmetric convex bodies in E
d

4 δL(K) ≥ ζ(d)/2d−1 [Hla43]

5 δL(K) ≥ cd/2d (d large) [Sch63a, Sch63b]

δL(K) ≥ 0 : 538 . . . K ∈ E
3

[Smi05]

Bounds for general convex bodies in E
2

6 δ(K) ≥
√
3/2 = 0.8660 . . . [KK90]

7 ϑ(K) ≤ 1.2281771 . . . [Ism98]

8 δL(K) ≥ 2/3 [Far50]

9 ϑL(K) ≤ 3/2 [Far50]

Bounds for centrally symmetric convex bodies in E
2

10 δL(K) ≥ 0.892656 . . . [Tam70]

11 ϑL(K) ≤ 2π/
√
27 [Fej72, p. 103]

The determination of the densest packing of congruent regular tetrahedra is
mentioned as part of Problem 18 of Hibert’s famous problems [Hil00]. In recent
years a series of papers was devoted to the construction of dense packing of regular
tetrahedra. The presently known best arrangement was constructed by Chen, Engel
and Glotzer [CEG10]. It has density 4000/4671 = 0.856347 . . .. A nice survey on
packing regular tetrahedra was written by Lagarias and Zong [LZ02].

UPPER BOUNDS FOR δ(K) AND LOWER BOUNDS FOR ϑ(K)

The packing density of Bd is not known, except for the cases mentioned in Ta-
ble 2.1.1. Asymptotically, the best upper bound known for δ(Bd) is

δ(Bd) ≤ 2−0.599d+o(d) (as d → ∞), (2.1.4)

given by Kabatiansky and Levenshtein [KL78]. This bound is not obtained directly
by the investigation of packings in E

d but rather through studying the analogous
problem in spherical geometry, where the powerful technique of linear programming
can be used (see Section 2.4). For low dimensions, Rogers’s simplex bound

δ(Bd) ≤ σd (2.1.5)

gives a better estimate (see [Rog58]). Here, σd is the ratio between the total volume
of the sectors of d+1 unit balls centered at the vertices of a regular simplex of edge
length 2 and the volume of the simplex.

Recently, Rogers’s bound has been improved in low dimensions as well. On
one hand, K. Bezdek [Bez02] extended the method of Rogers by investigating the
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surface area of the Voronoi regions, rather than their volume; on the other hand,
Cohn and Elkies [CE03, Coh02] developed linear programming bounds that apply
directly to sphere packings in E

d. This latter method is very powerful. Using the
approach of [CE03] Cohn and Kumar [CK04, CK09] reconfirmed Blichfeldt’s result
concerning the value of δL(B8) and determined δL(B24). Finally, Viazovska [Via17]
succeeded in proving that δ(B8) = δL(B8) and Cohn, Kumar, Miller, Radchenko
and Viazovska [CKM17] showed that δ(B)24 = δL(B24).

Coxeter, Few, and Rogers [CFR59] proved a dual counterpart to Rogers’s sim-
plex bound:

ϑ(Bd) ≥ τd,

where τd is the ratio between the total volume of the intersections of d+1 unit balls
with the regular simplex of edge

√
2(d + 1)/d if their centers lie at the vertices of

the simplex, and the volume of the simplex. Asymptotically,

τd ∼ d/e3/2.

In contrast to packings, where there is a sizable gap between the upper bound
(2.1.4) and the lower bound (Bound 6 in Table 2.1.4), this bound compares quite
favorably with the corresponding Bound 2 in Table 2.1.4.

It is known that there is no tiling of space by regular tetrahedra or octahe-
dra. However, until recently no nontrivial upper bound was known for the packing
density of these solids. Gravel, Elser, and Kallus [GEK11] proved upper bounds of
1 − 2.6 . . .× 10−25 and 1 − 1.4 . . .× 10−12, respectively, for the packing density of
the regular tetrahedron and octahedron. According to a result of W. Schmidt (see
[Sch61]), we have δ(K) < 1 and ϑ(K) > 1 for every smooth convex body; but the
method of proof does not allow one to derive any explicit bound. There is a general
upper bound for δ(K) that is nontrivial (smaller than 1) for a wide class of convex
bodies [FK93a]. It is quite reasonable for “longish” bodies. For cylinders in E

d, the
bound is asymptotically equal to the Kabatiansky-Levenshtein bound for Bd (as
d → ∞). The method yields nontrivial upper bounds also for the packing density
of the regular cross-polytope for all dimensions greater than 6 (see [FFV15]).

Zong [Zon14] proved the bound δT (T ) ≤ 0.384061 for the translational pack-
ing density of a tetrahedron. De Oliveira Filho and Vallentin [OV] extended the
method of Cohn and Elkies to obtain upper bounds for the packing density of con-
vex bodies. In [DGOV17] this extension is used to obtain upper bounds for the
translational packing density of superballs and certain Platonic and Archimedean
solids in three dimensions. In particular, Zong’s upper bound for the translational
packing density of a tetrahedron is improved to 0.3745, getting closer to the density
18/49 = 0.3673 . . . of the densest lattice packing of tetrahedra.

We note that no nontrivial lower bound is known for ϑ(K) for any K ∈ E
d,

d ≥ 3, other than a ball.

REGULARITY OF OPTIMAL ARRANGEMENTS

The packings and coverings attaining the packing and covering densities of a set
are, of course, not uniquely determined, but it is a natural question whether there
exist among the optimal arrangements some that satisfy certain regularity proper-
ties. Of particular interest are those bodies for which the densest packing and/or
thinnest covering with congruent copies can be realized by a lattice arrangement.
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As mentioned above, δ(K) = δL(K) for K ∈ K∗(E2). A plausible interpretation
of this result is that the assumption of maximum density creates from a chaotic
structure a regular one. Unfortunately, certain results indicate that such bodies are
rather exceptional.

Let Lp and Lc be the classes of those convex disks K ∈ K(E2) for which
δ(K) = δL(K) and ϑ(K) = ϑL(K), respectively. Then, in the topology induced by
the Hausdorff metric on K(E2), the sets Lp and Lc are nowhere dense [FZ94, Fej95].
It is conjectured that an analogous statement holds also in higher dimensions.

Rogers [Rog64, p. 15] conjectures that for sufficiently large d we have δ(Bd) >
δL(Bd). The following result of A. Bezdek and W. Kuperberg (see [BK91]) supports
this conjecture: For d ≥ 3 there are ellipsoids E in E

d for which δ(E) > δL(E).
An even more surprising result holds for coverings [FK95]: For d ≥ 3 every strictly
convex body K in E

d has an affine image K ′ such that ϑ(K ′) < ϑL(K ′). In
particular, there is an ellipsoid E in E

3 for which

ϑ(E) < 1.394 <
3
√

3

2
(3 arcsec 3 − π) = τ3 ≤ ϑT (E) ≤ ϑL(E).

We note that no example of a convex body K is known for which δL(K) < δT (K)
or ϑL(K) > ϑT (K).

Schmitt [Sch88a] constructed a star-shaped prototile for a monohedral tiling in
E
3 such that no tiling with its replicas is periodic. It is not known whether a convex

body with this property exists; however, with a slight modification of Schmitt’s
construction, Conway produced a convex prototile that admits only nonperiodic
tilings if no mirror-image is allowed (see Section 3.4). Another result of Schmitt’s
[Sch91] is that there are star-shaped sets in the plane whose densest packing cannot
be realized in a periodic arrangement.

2.2 FINITE ARRANGEMENTS

PACKING IN AND COVERING OF A BODY WITH GIVEN SHAPE

What is the size of the smallest square tray that can hold n given glasses? Thue’s
result gives a bound that is asymptotically sharp as n → ∞; however, for practical
reasons, small values of n are of interest.

Generally, for given sets K and C and a positive integer n one can ask for the
quantities

Mp(K,C, n) = inf{λ | n congruent copies of C can be packed in λK}
and

Mc(K,C, n) = sup{λ | n congruent copies of C can cover λK}.
Tables 2.2.1–2.2.2 contain the known results of Mp(K,B2, n) in the cases when

K is a circle, square, or regular triangle.
Most of these results were obtained by ad hoc methods. An exception is the

case of packing circles in a square. In [GMP94, Pei94] a heuristic algorithm for
the determination of Mp(K,B2, n) and the corresponding optimal arrangements is
given in the case where K is the unit square. The algorithm consists of the following
steps:
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TABLE 2.2.1 Packing of congruent circles in unit squares.

n Mp(K,B2, n) SOURCE n Mp(K,B2, n) SOURCE

2 3.414213562. . . (elementary) 17 8.532660354 . . . [GMP94]

3 3.931851653 . . . (elementary) 18 8.656402355 . . . [GMP94]

4 4 (elementary) 19 8.907460939 . . . [GMP94]

5 4.828427125 . . . (elementary) 20 8.978083353 . . . [GMP94]

6 5.328201177 . . . [Gra63, Mel94c] 21 9.358035345 . . . [NO97]

7 5.732050807 . . . Schaer (unpublished) 22 9.463845078 . . . [NO97]

8 5.863703305 . . . [SM65] 23 9.727406613 . . . [NO97]

9 6 [Sch95] 24 9.863703306 . . . [NO97]

10 6.747441523 . . . [GPW90] 25 10 [Wen87b]

11 7.022509506 . . . [GMP94] 26 10.37749821 . . . [NO97]

12 7.144957554 . . . [GMP94] 27 10.47998305 . . . [NO97]

13 7.463047839 . . . [GMP94] 28 10.67548744 . . . [Mar04]

14 7.732050808 . . . [Wen87a] 29 10.81512001 . . . [Mar07]

15 7.863703305 . . . [GMP94] 30 10.90856381 . . . [Mar07]

16 8 [Wen83] 36 12 [KW87]

Step 1. Find a good upper bound m for Mp(K,B2, n). This requires the
construction of a reasonably good arrangement, which can be established, e.g., by
the Monte Carlo method.

Step 2. Iterate an elimination process on a successively refined grid to restrict
possible locations for the centers of a packing of unit circles in mK.

Step 3. Based on the result of Step 2, guess the nerve graph of the packing,
then determine the optimal packing with the given graph.

Step 4. Verify that the arrangement obtained in Step 3 is indeed optimal.

FIGURE 2.2.1

Densest packing of n ≤ 20
equal circles in a square.

We do not know whether these steps always provide the optimal arrangement in
finite time, but in [GMP94, GPW90] the method was implemented successfully for
n ≤ 20. The best arrangements are shown in Figure 2.2.1. Observe that quite often
an optimal arrangement can contain a freely movable circle. Using more refined
numerical technics Nurmela and Österg̊ard [NO97] and Markót [Mar04, Mar07]
solved the cases 21 ≤ n ≤ 30 as well.

The sequence Mp(K,B2, n) seems to be strictly increasing when K is a square
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TABLE 2.2.2 Packing of congruent circles in circles (left), and in equilateral

triangles T of unit side length (right)

n Mp(B2, B2, n) SORCE n Mp(T,B2, n) SORCE

2 2 (elementary) 2 5.464101615. . . (elementary)

3 2.154700538 . . . (elementary) 3 5.464101615 . . . (elementary)

4 2.414213562 . . . (elementary) 4 6.92820323 . . . [Mel93]

5 2.701301617 . . . (elementary) 5 7.464101615 . . . [Mel93]

6 3 (elementary) 6 7.464101615 . . . [Ole61, Gro66]

7 3 (elementary) 7 8.92820323 . . . [Mel93]

8 3.304764871 . . . [Pir69] 8 9.293810046 . . . [Mel93]

9 3.61312593 . . . [Pir69] 9 9.464101615 . . . [Mel93]

10 3.813898249 . . . [Pir69] 10 9.464101615 . . . [Ole61, Gro66]

11 3.9238044 . . . [Mel94a] 11 10.73008794 . . . [Mel93]

12 4.02960193 . . . [Fod00] 12 10.92820323 . . . [Mel94b]

13 4.23606797 . . . [Fod03a]
k(k+1)

2
2(k +

√
3− 1) [Ole61, Gro66]

14 4.32842855 . . . [Fod03b]

19 4.86370330 . . . [Fod99]

or when K is a circle and n ≥ 7. In contrast to this, it is conjectured that in the
case where K is a regular triangle, we have Mp(K,B2, n) = Mp(K,B2, n − 1) for
all triangular numbers n = k(k + 1)/2 (k > 1).

The problem of finding the densest packing of n congruent circles in a circle
has been considered also in the Minkowski plane. In terms of Euclidean geometry,
this is the same as asking for the smallest number ̺(n,K) such that n mutually
disjoint translates of the centrally symmetric convex disk K (the unit circle in the
Minkowski metric) can be contained in ̺(n,K)K. Doyle, Lagarias, and Randell
[DLR92] solved the problem for all K ∈ K∗(E2) and n ≤ 7. There is an n-gon
inscribed in K having equal sides in the Minkowski metric (generated by K) and
having a vertex at an arbitrary boundary point of K. Let α(n,K) be the maximum
Minkowski side-length of such an n-gon. Then we have ̺(n,K) = 1 + 2/α(n,K)
for 2 ≤ n ≤ 6 and ̺(7,K) = ̺(6,K) = 3.

The densest packing of n congruent balls in a cube in E
3 was determined for

n ≤ 10 by Schaer [Sch66a, Sch66b, Sch66c, Sch94] and for n = 14 by Joós [Joo09a]).
The problem of finding the densest packing of n congruent balls in the regular
cross-polytope was solved for n ≤ 7 by Golser [Gol77]. Böröczky Jr. and Wintsche
[BW00] generalized Golser’s result to higher dimensions. K. Bezdek [Bez87] solved
the problem of packing n congruent balls in a regular tetrahedron, for n = 5, 8, 9
and 10. The known values of Mc(K,B2, n) in the cases when K is a circle, square,
or regular triangle are shown in Table 2.2.3.

G. Kuperberg and W. Kuperberg solved the problem of thinnest covering of the
cube with k congruent balls for k = 2, 3, 4 and 8. Joós [Joo14a, Joo14b] settled the
cases k = 5 and 6. Joós [Joo08, Joo09b] also proved that the minimum radius of 8
congruent balls that can cover the unit 4-dimensional cube is

√
5/12. The problem

of covering the n-dimensional cross-polytope with k congruent balls of minimum
radius was studied by Böröczky, Jr., Fábián and Wintsche [BFW06] who found the
solution for k = 2, n, and 2n. Remarkably, the case k = n = 3 is exceptional,
breaking the pattern holding for k = n 6= 3.
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TABLE 2.2.3 Covering circles, squares, and equilateral triangles with congruent circles.

K n Mc(K,B2, n) SOURCE

B2 2 2 (elementary)

3 2/
√
3 (elementary)

4
√
2 (elementary)

5 1.64100446 . . . [Bez84]

6 1.7988 . . . [Bez84]

7 2 (elementary)

8–10 1 + 2 cos 2π
n−1

[Fej05b]

Unit square 2 4
√
5/5 (elementary)

3 16√
65

[BB85, HM97]

4 2
√
2 [BB85, HM97]

5 3.065975 . . . [BB85, HM97]

6 12√
13

[BB85]

7 1 +
√
7 [BB85, HM97]

Regular triangle 2 2 (elementary)

of side 1 3 2
√
3 [BB85, Mel97]

4 2 +
√
3 [BB85, Mel97]

5 4 [BB85, Mel97]

6 3
√
3 [BB85, Mel97]

9 6 [BB85]

10 4
√
3 [BB85]

SAUSAGE CONJECTURES

Intensive research on another type of finite packing and covering problem has been
generated by the sausage conjectures of L. Fejes Tóth and Wills (see [GW93]):

What is the convex body of minimum volume in E
d that can accommodate k

nonoverlapping unit balls? What is the convex body of maximum volume in E
d

that can be covered by k unit balls?
According to the conjectures mentioned above, for d ≥ 5 the extreme bodies

are “sausages” and in the optimal arrangements the centers of the balls are equally
spaced on a line segment (Figure 2.2.2).

FIGURE 2.2.2

Sausage-like arrangements of circles.

After several partial results supporting these conjectures (see [GW93]) the
breakthrough concerning the sausage conjecture for ball packings was achieved by
Betke, Henk, and Wills [BHW94]: they proved that the conjecture holds for dimen-
sions d ≥ 13387. Betke and Henk [BH98] improved the bound on d to d ≥ 42.

Several generalizations of the problems mentioned above have been consid-
ered. Connections of these types of problems to the classical theory of packing and
coverings, as well as to crystallography, have been observed. For details we refer
to [Bor04].
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THE COVERING PROBLEMS OF BORSUK, HADWIGER, and LEVI

In 1933, Borsuk [Bor33] formulated the conjecture that any bounded set in E
d can

be partitioned into d+1 subsets of smaller diameter. Borsuk verified the conjecture
for d = 2, and the three-dimensional case was settled independently by Eggleston,
Grünbaum, and Heppes. The Borsuk conjecture was proved for many special cases:
for smooth convex bodies by Hadwiger [Had46] and Melzak [Mel67], for sets having
the symmetry group of the regular simplex by Rogers [Rog71], and for sets of
revolution by Ko lodziejczyk [Kol88]. Hadwiger and Melzak’s result was generalized
by Dekster [Dek93] who proved that the conjecture holds for every convex body for
which there exists a direction in which every line tangent to the body contains at
least one point of the body’s boundary at which the tangent hyperplane is unique.

However, Kahn and Kalai [KK93] showed that Borsuk’s conjecture is false in
the following very strong sense: Let b(d) denote the smallest integer such that every
bounded set in E

d can be partitioned into b(d) subsets of smaller diameter. Then

b(d) ≥ (1.2)
√
d for every sufficiently large value of d. The best known upper bound

for b(d) is b(d) ≤ (
√

3/2 + o(1))n due to Schramm [Sch88b]. The lowest dimension
known in which the Borsuk conjecture fails is 64 [JB14]. The papers [Rai07] and
[Rai08] are excellent surveys on Borsuk’s problem.

In the 1950’s, Hadwiger and Levi, independently of each other, asked for the
smallest integer h(K) such that the convex body K can be covered by h(K) smaller
positive homothetic copies of K. Boltjanskĭı observed that the Hadwiger-Levi cov-
ering problem for convex bodies is equivalent to an illumination problem. We say
that a boundary point x of the convex body K is illuminated from the direction

u if the ray emanating from x in the direction u intersects the interior of K. Let
i(K) be the minimum number of directions from which the boundary of K can be
illuminated. Then h(K) = i(K) for every convex body.

It is conjectured that h(K) ≤ 2d for all K ∈ K(Ed) and that equality holds
only for parallelotopes. Levi verified the conjecture for the plane, but it is open for
d ≥ 3. Lassak proved Hadwiger’s conjecture for centrally symmetric convex bodies
in E

3, and K. Bezdek extended Lassak’s result to convex polytopes with any affine
symmetry. There is a great variety of results confirming the conjecture for special
classes of bodies in E

n by establishing upper bounds for h(K) or i(K) smaller than
2n. The difficulty of the problem is exposed by the following example of Naszódi
[Nas16b]. Clearly, we have h(Bd) = d + 1. On the other hand, for any ε > 0 there
is a centrally symmetric convex body K and a positive constant c = c(ε) such that
K is ε close to Bd and h(K) ≥ cd. For literature and further results concerning the
Hadwiger-Levi problem, we refer to [Bez93, BMS97, MS99].

2.3 MULTIPLE ARRANGEMENTS

GLOSSARY

k-Fold packing: An arrangement A such that each point of the space belongs
to the interior of at most k members of A.
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k-Fold covering: An arrangement A such that each point of the space belongs
to at least k members of A.

Densities: In analogy to the packing and covering densities of a body K, we
define the quantities δk(K), δkT (K), δkL(K), ϑk(K), ϑk

T (K), and ϑk
L(K) as the

suprema of the densities of all k-fold packings and the infima of the densities of
all k-fold coverings with congruent copies, translates, and lattice translates of
K, respectively.

TABLE 2.3.1 Bounds for k-fold packing and covering densities.

BOUND SOURCE

δkT (K) ≥ ck K ∈ K(E
d
) [ER62]

ϑk
L(K) ≤ ((k + 1)1/d + 8d)d K ∈ K(E

d
) [Coh76]

δkL(K) ≥ k − ck2/5 K ∈ K(E
2
) [Bol89]

ϑk
L(K) ≤ k + ck2/5 K ∈ K(E

2
) [Bol89]

δkL(P ) ≥ k − ck1/3 P convex polygon [Bol89]

ϑk
L(P ) ≤ k + ck1/3 P convex polygon [Bol89]

δkL(B
d) ≤ k − ck

d−1

2d d 6≡ 1 (4) [Bol79, Bol82]

δkL(B
d) ≤ k − ck

d−3

2d d ≡ 1 (4) [Bol79, Bol82]

ϑk
L(B

2) ≥ k + ck
d−1

2d d 6≡ 1 (4) [Bol79, Bol82]

ϑk
L(B

2) ≥ k + ck
d−3

2d d ≡ 1 (4) [Bol79, Bol82]

δk(Bd) ≥ (2k/(k + 1))d/2δ(Bd) [Few64]

δkL(B
d) ≥ (2k/(k + 1))d/2δL(B

d) [Few64]

δk(Bd) ≤ (1 + d−1)((d + 1)k − 1)(k/(k + 1))d/2 [Few64]

δ2(Bd) ≤ 4
3
(d+ 2)( 2

3
)d/2 [Few68]

ϑk(Bd) ≥ ck c = cd > 1 [Fej79]

δk(B2) ≤ π

6
cot

π

6k
[Fej76]

ϑk(B2) ≥ π

3
csc

π

3k
[Fej76]

The information known about the asymptotic behavior of k-fold packing and
covering densities is summarized in Table 2.3.1. There, in the various bounds,
different constants appear, all of which are denoted by c. The known values of
δkL(Bd) and ϑk

L(Bd) (for k ≥ 2) are given in Table 2.3.2.
The k-fold lattice packing density and the k-fold lattice covering density of a

triangle T was determined for all k by Sriamorn [Sri16]. We have δkL(T ) = 2k2

2k+1

and ϑk
L(T ) = 2k+1

2 . Moreover, Sriamorn [Sri14] showed tat δkT (T ) = δkL(T ) and
Sriamorn and Wetayawanich [SW15] showed that ϑk

T (T ) = ϑk
L(T ) for all k.

General methods for the determination of the densest k-fold lattice packings
and the thinnest k-fold lattice coverings with circles have been developed by Horváth,
Temesvári, and Yakovlev [THY87] and by Temesvári [Tem88], respectively.

These methods reduce both problems to the determination of the optima of
finitely many well-defined functions of one variable. The proofs readily provide
algorithms for finding the optimal arrangements; however, the authors did not try
to implement them. Only the values of δ9L(B2) and ϑ8

L(B2) have been added in this
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TABLE 2.3.2 Known values of δkL(Bd) and ϑk
L(Bd).

RESULT SOURCE

δ2L(B
2) =

π√
3

[Hep59]

δ3L(B
2) =

√
3π

2
[Hep59]

δ4L(B
2) =

2π√
3

[Hep59]

δ5L(B
2) =

4π√
7

[Blu63]

δ6L(B
2) =

35π

8
√
6

[Blu63]

δ7L(B
2) =

8π√
15

[Bol76]

δ8L(B
2) =

3969π

4
√

220− 2
√
193

√

449 + 32
√
193

[Yak83]

δ9L(B
2) =

25π

2
√
21

[Tem94]

δ2L(B
3) =

8π

9
√
3

[FK69]

ϑ2
L(B

2) =
4π

3
√
3

[Blu57]

ϑ3
L(B

2) =
π
√

27138 + 2910
√
97

216
[Blu57]

ϑ4
L(B

2) =
25π

18
[Blu57]

ϑ5
L(B

2) =
32π

7
√
7

[Tem84]

ϑ6
L(B

2) =
98π

27
√
3

[Tem92a]

ϑ7
L(B

2) = 7.672 . . . [Tem92b]

ϑ8
L(B

2) =
32π

3
√
15

[Tem94]

ϑ2
L(B

3) =
8π

√
3
√

76
√
6− 159

[Few67]

way to the list of values of δkL(B2) and ϑk
L(B2) that had been determined previously

by ad hoc methods.
We note that we have δkL(B2) = kδL(B2) for k ≤ 4 and ϑ2

L(B2) = 2ϑL(B2).
These are the only cases where the extreme multiple arrangements of circles are
not better than repeated simple arrangements. These relations have been extended
to arbitrary centrally symmetric convex disks by Dumir and Hans-Gill [DH72a,
DH72b] and by G. Fejes Tóth (see [Fej84a]). There is a simple reason for the
relations δ3L(K) = 3δL(K) and δ4L(K) = 4δL(K) (K ∈ K∗(E2)): Every 3-fold
lattice packing of the plane with a centrally symmetric disk is the union of 3 simple
lattice packings and every 4-fold packing is the union of two 2-fold packings.

This last observation brings us to the topic of decompositions of multiple ar-
rangements. Our goal here is to find insight into the structure of multiple arrange-
ments by decomposing them into possibly few simple ones. Pach [Pac85] showed
that any double packing with positive homothetic copies of a convex disk can be
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decomposed into 4 simple packings. Further, if P is a k-fold packing with con-
vex disks such that for some integer L the inradius r(K) and the area a(K) of
each member K of P satisfy the inequality 9π2kr2(K)/a(K) ≤ L, then P can be
decomposed into L simple packings.

A set S is cover-decomposable if there is an integer k = k(S) such that ev-
ery locally finite k-fold covering with translates of S can be decomposed into two
coverings. Pach [Pac86] proved that centrally symmetric convex polygons are cover-
decomposable and conjectured that all convex disks are cover-decomposable. His
proof heavily uses the property of central symmetry, and more than two decades
elapsed until the cover-decomposability of a non-symmetric polygon, namely of
the triangle was proved by Tardos and Tóth [TT07]. Soon after, Pálvölgyi and
Tóth [PT10] proved that all convex polygons are cover-decomposable. On the
other hand, it turned out [Pál13] that the circle is not cover-decomposable. More-
over, convex sets that have two parallel tangents which both touch it in a point
where the boundary has positive finite curvature, are not cover-decomposable.
Pálvölgyi [Pál10] showed that concave polygons with no parallel sides are not cover-
decomposable. He also proved that polyhedra in 3 and higher dimensions are not
cover-decomposable. For details we refer to the survey paper [PPT13] and the
web-site http://www.cs.elte.hu/~dom/covdec/.

2.4 PROBLEMS IN NONEUCLIDEAN SPACES

Research on packing and covering in spherical and hyperbolic spaces has been
concentrated on arrangements of balls. In contrast to spherical geometry, where the
finite, combinatorial nature of the problems, as well as applications, have inspired
research, investigations in hyperbolic geometry have been hampered by the lack of
a reasonable notion of density relative to the whole hyperbolic space.

SPHERICAL SPACE

Let M(d, ϕ) be the maximum number of caps of spherical diameter ϕ forming a
packing on the d-dimensional spherical space S

d, that is, on the boundary of Bd+1,
and let m(d, ϕ) be the minimum number of caps of spherical diameter ϕ covering S

d.
An upper bound for M(d, ϕ), which is sharp for certain values of d and ϕ and yields
the best estimate known as d → ∞, is the so-called linear programming bound

(see [CS93, pp. 257-266]). It establishes a surprising connection between M(d, ϕ)
and the expansion of real polynomials in terms of certain Jacobi polynomials. The

Jacobi polynomials, P
(α,β)
i (x), i = 0, 1 . . . , α > −1, β > −1, form a complete

system of orthogonal polynomials on [−1, 1] with respect to the weight function
(1 − x)α(1 + x)β . Set α = β = (d− 1)/2 and let

f(t) =

k∑

i=0

fiP
(α,α)
i (t)

be a real polynomial such that f0 > 0, fi ≥ 0 (i = 1, 2, . . . , k), and f(t) ≤ 0 for
−1 ≤ t ≤ cosϕ. Then

M(d, ϕ) ≤ f(1)/f0.

With the use of appropriate polynomials Kabatiansky and Levenshtein [KL78]
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obtained the asymptotic bound:

1

d
lnM(d, ϕ) ≤ 1 + sinϕ

2 sinϕ
ln

1 + sinϕ

2 sinϕ
− 1 − sinϕ

2 sinϕ
ln

1 − sinϕ

2 sinϕ
+ o(1).

This implies the simpler bound

M(d, ϕ) ≤ (1 − cosϕ)−d/22−0.099d+o(d) (as d → ∞, ϕ ≤ ϕ∗ = 62.9974 . . .).

Bound (2.1.4) for δ(Bd) follows in the limiting case when ϕ → 0.
The following is a list of values of d and ϕ for which the linear programming

bound turns out to be exact (see [Lev79]).

M(2, arccos1/
√

5) = 12 M(3, arccos1/5) = 120 M(4, arccos1/5) = 16
M(5, arccos1/4) = 27 M(6, arccos1/3) = 56 M(7, π/3) = 240
M(20, arccos1/7) = 162 M(21, arccos1/11) = 100 M(21, arccos1/6) = 275
M(21, arccos1/4) = 891 M(22, arccos1/5) = 552 M(22, arccos1/3) = 4600

M(23, π/3) = 196560

For small values of d and specific values of ϕ the linear programming bound is
superseded by the “simplex bound” of Böröczky [Bor78], which is the generalization
of Rogers’s bound (2.1.5) for ball packings in S

d. The value of M(d, ϕ) has been
determined for all d and ϕ ≥ π/2 (see [DH51, Ran55]). We have

M(d, ϕ) = i + 1 for
1

2
π + arcsin

1

i + 1
< ϕ ≤ 1

2
π + arcsin

1

i
, i = 1, . . . , d,

M(d, ϕ) = d + 2 for
1

2
π < ϕ ≤ 1

2
π + arcsin

1

d + 1
,

and

M(d,
1

2
π) = 2(d + 1).

Consider a decreasing continuous positive-valued potential function f defined
on (0, 4]. How should N distinct points {x1, x2, . . . , xN} be placed on the unit

sphere in n-dimensional space to minimize the potential energy
∑

i6=j

f(‖xi − xj‖2).

Of special interest are completely monotonic potential functions f which are
infinitely differentiable and satisfy the inequalities (−1)kf (k)(x) ≥ 0 for every k ≥ 0
and every x ∈ (0, 4]. Cohn and Kumar [CK07] introduced the notion of universally
optimal arrangement. An arrangement of points is universally optimal if its
potential energy is minimal under every completely monotonic potential function.

Cohn and Kumar [CK07] proved universal optimality of the sets of vertices
of all regular simplicial polytopes in every dimension, as well as of several other
arrangements in dimensions 2–8 and 21–24. These arrangements are listed in Table
1 of their paper and they coincide with the arrangements for which the linear
programming bound for M(d, ϕ) is sharp. For the potential function f(r) = 1/rs,
the leading term of the potential energy for large s comes from the minimal distance.
It follows that for universally optimal arrangements of points the minimal distance
is maximal. For, if there were an arrangement with the same number of points
but a larger minimal distance, then it would have lower potential energy when s is
sufficiently large. With the special choice of f(r) = 2 − 1/r2 and f(r) = log(4/r),
respectively, it also follows that these arrangements maximize the sum, as well as
the product, of the distances between pairs of points.
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Rogers [Rog63] proved the existence of thin coverings of the sphere by congruent
balls. His bound was improved by Böröczky and Wintsche [BW00], Verger-Gaugry
[Ver05] and Dumer [Dum07]. The latter author proved that the d-dimensional
sphere can be covered by congruent balls with density 1

2d ln d + ln d + 5d. In the
limiting case when the radius of the balls approaches zero, this improves bound 2
of Table 2.1.4 by a factor of 1

2 . Naszódi [Nas16a] proved the existence of economic
coverings of the sphere by congruent copies of a general spherically convex set.

TABLE 2.4.1 Densest packing and thinnest covering with

congruent circles on a sphere.

n an Source An Source

2 180◦ (elementary) 180◦ (elementary)

3 120◦ (elementary) 180◦ (elementary)

4 109.471 . . .◦ [Fej43a] 141.047 . . .◦ [Fej43b]

5 90◦ [SW51] 126.869 . . .◦ [Sch55]

6 90◦ [Fej43a] 109.471 . . .◦ [Fej43b]

7 77.866 . . .◦ [SW51] 102.053 . . .◦ [Sch55]

8 74.869 . . .◦ [SW51]

9 70.528 . . .◦ [SW51]

10 66.316 . . .◦ [Dan86, Har86] 84.615 . . .◦ [Fej69a]

11 63.435 . . .◦ [Dan86, Bor83]

12 63.435 . . .◦ [Fej43a] 74.754 . . .◦ [Fej43b]

13 57.136 . . .◦ [MT12]

14 55.670 . . .◦ [MT15] 69.875 . . .◦ [Fej69a]

24 43.667 . . .◦ [Rob61]

Extensive research has been done on circle packings and circle coverings on
S
2. Traditionally, here the inverse functions of M(2, ϕ) and m(2, ϕ) are considered.

Let an be the maximum number such that n caps of spherical diameter an can
form a packing and let An be the minimum number such that n caps of spherical
diameter An can form a covering on S

2. The known values of an and An are given in
Table 2.4.1. In addition, conjecturally best circle packings and circle coverings for
n ≤ 130, as well as good arrangements with icosahedral symmetry for n ≤ 55000,
have been constructed [HSS12]. The ad hoc methods of the earlier constructions
have recently been replaced by different computer algorithms, but none of them
has been shown to give the optimum.

Observe that a5 = a6 and a11 = a12. Also, A2 = A3. It is conjectured that
an > an+1 and An > An+1 in all other cases.

HYPERBOLIC SPACE

The density of a general arrangement of sets in d-dimensional hyperbolic space H
d

cannot be defined by a limit as in E
d (see [FK93b]). The main difficulty is that in

hyperbolic geometry the volume and the surface area of a ball of radius r are of
the same order of magnitude as r → ∞. In the absence of a reasonable definition
of density with respect to the whole space, two natural problems arise:
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(i) Estimate the density of an arrangement relative to a bounded domain.

(ii) Find substitutes for the notions of densest packing and thinnest covering.

Concerning the first problem, we mention the following result of K. Bezdek (see
[Bez84]). Consider a packing of finitely many, but at least two, circles of radius r
in the hyperbolic plane H

2. Then the density of the circles relative to the outer
parallel domain of radius r of the convex hull of their centers is at most π/

√
12.

As a corollary it follows that if at least two congruent circles are packed in a
circular domain in H

2, then the density of the packing relative to the domain is
at most π/

√
12. We note that the density of such a finite packing relative to the

convex hull of the circles can be arbitrarily close to 1 as r → ∞. K. Böröczky Jr.
[Bor05] proved a dual counterpart to the above-mentioned theorem of K. Bezdek,
a corollary of which is that if at least two congruent circles cover a circular domain
in H

2, then the density of the covering relative to the domain is at most 2π/
√

27.
Rogers’s simplex bound (2.1.5) for ball packings in E

d has been extended by
Böröczky [Bor78] to H

d as follows. If balls of radius r are packed in H
d then the

density of each ball relative to its Dirichlet cell is less than or equal to the density
of d+ 1 balls of radius r centered at the vertices of a regular simplex of side-length
2r relative to this simplex. Of course, we should not interpret this result as a global
density bound. The impossibility of such an interpretation is shown by an ingenious
example of Böröczky (see [FK93b]). He constructed a packing P of congruent circles
in H

2 and two tilings, T1 and T2, both consisting of congruent tiles, such that each
tile of T1, as well as each tile of T2, contains exactly one circle from P , but such
that the tiles of T1 and T2 have different areas.

The first notion that has been suggested as a substitute for densest packing and
thinnest covering is “solidity.” P is a solid packing if no finite subset of P can be
rearranged so as to form, together with the rest of P , a packing not congruent to
P . Analogously, C is a solid covering if no finite subset of C can be rearranged so
as to form, together with the rest of C, a covering not congruent to C. Obviously,
in E

d a solid packing with congruent copies of a body K has density δ(K), and a
solid covering with congruent copies of K has density ϑ(K). This justifies the use
of solidity as a natural substitute for “densest packing” and “thinnest covering” in
hyperbolic space.

The tiling with Schläfli symbol {p, 3} (see Chapters 18 or 20 of this Handbook)
has regular p-gonal faces such that at each vertex of the tiling three faces meet.
There exists such a tiling for each p ≥ 2: for p ≤ 5 on the sphere, for p ≥ 7
on the hyperbolic plane, while for p = 6 we have the well-known hexagonal tiling
in Euclidean plane. The incircles of such a tiling form a solid packing and the
circumcircles form a solid covering. In addition, several packings and coverings by
incongruent circles, including the incircles and the circumcircles of certain trihedral
Archimedean tilings have been confirmed to be solid (see [Fej68, Fej74, Hep92,
Flo00, Flo01, FH00]).

Other substitutes for the notion of densest packing and thinnest covering have
been proposed in [FKK98] and [Kup00]. A packing P with congruent copies of a
body K is completely saturated if no finite subset of P can be replaced by a
greater number of congruent copies of K that, together with the rest of P , form
a packing. Analogously, a covering C with congruent copies of K is completely

reduced if no finite subset of C can be replaced by a smaller number of congru-
ent copies of K that, together with the rest of C, form a covering. While there
are convex bodies that do not admit a solid packing or solid covering, it has been
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shown [Bow03, FKK98] that each body in E
d or H

d admits a completely saturated
packing and a completely reduced covering. However, the following rather coun-
terintuitive result of Bowen makes it doubtful whether complete saturatedness and
complete reducedness are good substitutes for the notions of densest packing and
thinnest covering in hyperbolic space. For any ε > 0 there is a body K in H

d that
admits a tiling and at the same time a completely saturated packing P with the
following property. For every point p in H

d, the limit

lim
λ→∞

1

V (Bλ(p))

∑

P∈P
V (P ∩ (Bλ(p))

exists, is independent of p, and is less than ε. Here V (·) denotes the volume in H
d

and Bλ(p) denotes the ball of radius λ centered at p.
Bowen and Radin [BR03, BR04] proposed a probabilistic approach to analyze

the efficiency of packings in hyperbolic geometry. Their approach can be sketched
as follows.

Instead of studying individual arrangements, one considers the space ΣK con-
sisting of all saturated packings of Hd by congruent copies of K. A suitable metric
on ΣK is introduced that makes ΣK compact and makes the natural action of the
group Gd of rigid motions of Hd on ΣK continuous. We consider Borel probability
measures on ΣK that are invariant under Gd. For such an invariant measure µ the
density d(µ) of µ is defined as d(µ) = µ(A), where A is the set of packings P ∈ ΣK

for which the origin of Hd is contained in some member of P . It follows easily from
the invariance of µ that this definition is independent of the choice of the origin.
The connection of density of measures to density of packings is established by the
following theorem.

If µ is an ergodic invariant Borel probability measure on ΣK , then—with the
exception of a set of µ-measure zero—for every packing P ∈ ΣK , and for all p ∈ H

d,

lim
λ→∞

1

V (Bλ(p))

∑

P∈P
V (P ∩ (Bλ(p)) = d(µ). (2.4.1)

(A measure µ is ergodic if it cannot be expressed as the positive linear combi-
nation of two invariant measures.)

The packing density δ(K) of K can now be defined as the supremum of d(µ)
for all ergodic invariant measures on ΣK . A packing P ∈ ΣK is optimally dense

if there is an ergodic invariant measure µ such that the orbit of P under Gd is dense
in the support of µ and, for all p ∈ H

d, (2.4.1) holds.
It is shown in [BR03] and [BR04] that there exists an ergodic invariant measure

µ with d(µ) = δ(K) and a subset of the support of µ of full µ-measure of optimally
dense packings. Bowen and Radin prove several results justifying that this is a
workable notion of optimal density and optimally dense packings. In particular,
the definitions carry over without any change to E

d, and there they coincide with
the usual notions. The advantage of this probabilistic approach is that it neglects
pathological packings such as the example by Böröczky. As for packings of balls, it
is shown in [BR03] that there are only countably many radii for which there exists
an optimally dense packing of balls of the given radius that is periodic.
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2.5 NEIGHBORS

GLOSSARY

Neighbors: Two members of a packing whose closures intersect.

Newton number N(K) of a convex body K: The maximum number of neighbors
of K in all packings with congruent copies of K.

Hadwiger number H(K) of a convex body K: The maximum number of neigh-
bors of K in all packings with translates of K.

n-neighbor packing: A packing in which each member has exactly n neighbors.

n+-neighbor packing: A packing in which each member has at least n neighbors.
Table 2.5.1 contains the results known about Newton numbers and Hadwiger

numbers. Cheong and Lee [CL07] showed that, surprisingly, there are non-convex
Jordan regions with arbitrary large Hadwiger number.

It seems that the maximum number of neighbors of one body in a lattice packing
with congruent copies of K is considerably smaller than H(K). While H(Bd) is of
exponential order of magnitude, the highest known number of neighbors in a lattice
packing with Bd occurs in the Barnes-Wall lattice and is cO(log d) [CS93]. Moreover,
Gruber [Gru86] showed that, in the sense of Baire categories, most convex bodies
in E

d have no more than 2d2 neighbors in their densest lattice packing. Talata
[Tal98b] gave examples of convex bodies in E

d for which the difference between the
Hadwiger number and the maximum number of neighbors in a lattice packing is
2d−1. Alon [Alo97] constructed a finite ball packing in E

d in which each ball has

cO(
√
d) neighbors.
A problem related to the determination of the Hadwiger number concerns the

maximum number C(K) of mutually nonoverlapping translates of a set K that have
a common point. No more than four nonoverlapping translates of a topological disk
in the plane can share a point [BKK95], while for d ≥ 3 there are starlike bodies in
E
d for which C(K) is arbitrarily large.

For a given convex body K, let M(K) denote the maximum natural number
with the property that an M(K)-neighbor packing with finitely many congruent
copies of K exists. For n ≤ M(K), let L(n,K) denote the minimum cardinality,
and, for n > M(K), let λ(n,K) denote the minimum density, of an n-neighbor
packing with congruent copies of K. The quantities MT (K), M+(K), M+

T (K),
LT (n,K), L+(n,K), L+

T (n,K), λT (n,K), λ+(n,K), and λ+
T (n,K) are defined anal-

ogously.
Österreicher and Linhart [OL82] showed that for a smooth convex disk K we

have L(2,K) ≥ 3, L(3,K) ≥ 6, L(4,K) ≥ 8, and L(5,K) ≥ 16. All of these
inequalities are sharp. We have M+

T (K) = 3 for all convex disks, and there exists
a 4-neighbor packing of density 0 with translates of any convex disk. There exists
a 5-neighbor packing of density 0 with translates of a parallelogram, but Makai
[Mak85] proved that λ+

T (5,K) ≥ 3/7 and λ+
T (6,K) ≥ 1/2 for every K ∈ K(E2) that

is not a parallelogram, and that λ+
T (5,K) ≥ 9/14 and λ+

T (6,K) ≥ 3/4 for every K ∈
K∗(E2) that is not a parallelogram. The case of equality characterizes triangles and
affinely regular hexagons, respectively. According to a result of Chvátal [Chv75],
λ+
T (6, P ) = 11/15 for a parallelogram P .
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TABLE 2.5.1 Newton and Hadwiger numbers.

BODY K RESULT SOURCE

B3 N(K) = 12 [SW53]

B4 N(K) = 24 [Mus08]

B8 N(K) = 240 [Lev79, OS79]

B24 N(K) = 196560 [Lev79, OS79]

Regular triangle N(K) = 12 [Bor71]

Square N(K) = 8 [You39, Bor71, KLL95]

Regular pentagon N(K) = 6 [ZX02]

Regular n-gon for n ≥ 6 N(K) = 6 [Bor71, Zha98]

Isosceles triangle with base angle π/6 N(K) = 21 [Weg92]

Convex disk of diameter d and width w N(K) ≤ (4 + 2π) d
w

+ w
d
+ 2 [Fej69b]

Parallelotope in E
d

H(K) = 3d − 1 [Had46]

Tetrahedron H(K) = 18 [Tal99a]

Octahedron H(K) = 18 [LZ99]

Rhombic dodecahedron H(K) = 18 [LZ99]

Starlike region in E
2

H(K) ≤ 35 [Lan11]

Centrally symmetric starlike region in E
2

H(K) ≤ 12 [Lan09]

Convex body in E
d

H(K) ≤ 3d − 1 [Had46]

Convex body in E
d

H(K) ≥ 2cd, c > 0 [Tal98a]

Simplex in E
d

H(K) ≥ 1.13488d−o(d) [Tal00]

Unit ball in Lp norm 2n+o(1) as p → ∞ [Xu07]

Set in E
d
with int (K −K) 6= ∅ H(K) ≥ d2 + d [Smi75]

A construction of Wegner (see [FK93c]) shows that M(B3) ≥ 6 and L(6, B3) ≤
240, while Kertész [Ker94] proved that M(B3) ≤ 8. It is an open problem whether
an n-neighbor or n+-neighbor packing of finitely many congruent balls exists for
n = 7 and n = 8.

The long-standing conjecture of L. Fejes Tóth [Fej69c] that a 12-neighbor pack-
ing of congruent balls consist of parallel hexagonal layers was recently confirmed
independently by Hales [Hal13] and by Böröczky and Szabó [BS15]. Both proofs
heavily depend on the use of computers. Hales uses the technique he developed for
the proof of the Kepler conjecture, while the proof by Böröczky and Szabó relies
on the computer-aided solution of the “strong thirteen spheres problem” by Musin
and Tarasov.

Harborth, Szabó and Ujváry-Menyhárt [HSU02] constructed finite n-neighbor
packings of incongruent balls in E

3 for all n ≤ 12 except for 11. The question
whether a finite 11-neighbor packing of balls exists remains open. Since the smallest
ball in a finite ball-packing has at most twelve neighbors, there is no finite n-
neighbor packing for n ≥ 12. On the other hand, the average number of neighbors in
a finite packing of balls can be greater than 12. G. Kuperberg and Schramm [KS94]
constructed a finite packing of balls in which the average number of neighbors is
666/53 = 12.566 and showed that the average number of neighbors in every finite
packing of balls is at most 8 + 4

√
3 = 14.928.

For 6+-neighbor packings with (not necessarily equal) circles, the following nice
theorem of Bárány, Füredi, and Pach [BFP84]) holds:

In a 6+-neighbor packing with circles, either all circles are congruent or arbi-
trarily small circles occur.
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2.6 SELECTED PROBLEMS ON LATTICE ARRANGEMENTS

In this section we discuss, from the vast literature on lattices, some special prob-
lems concerning arrangements of convex bodies in which the restriction to lattice
arrangements is automatically imposed by the nature of the problem.

GLOSSARY

Point-trapping arrangement: An arrangement A such that every component
of the complement of the union of the members of A is bounded.

Connected arrangement: An arrangement A such that the union of the mem-
bers of A is connected.

j-impassable arrangement: An arrangement A such that every j-dimensional
flat intersects the interior of a member of A.

Obviously, a point-trapping arrangement of congruent copies of a body can be
arbitrarily thin. On the other hand, Bárány, Böröczky, Makai, and Pach showed
that the density of a point-trapping lattice arrangement of any convex body in
E
d is greater than or equal to 1/2. For d ≥ 3, equality is attained only in the

“checkerboard” arrangement of parallelotopes (see [BBM86]).
Bleicher [Ble75] showed that the minimum density of a point-trapping lattice

of unit balls in E
3 is equal to

32

√
(7142 + 1802

√
17)−1 = 0.265 . . . .

The extreme lattice is generated by three vectors of length 1
2

√
7 +

√
17, any two of

which make an angle of arccos
√
17−1
8 = 67.021 . . .◦.

For a convex body K, let c(K) denote the minimum density of a connected
lattice arrangement of congruent copies of K. According to Groemer [Gro66],

1

d!
≤ c(K) ≤ πd/2

2dΓ(1 + d/2)
for K ∈ Kd.

The lower bound is attained when K is a simplex or cross-polytope, and the upper
bound is attained for a ball.

For a given convex body K in E
d, let ̺j(K) denote the infimum of the densities

of all j-impassable lattice arrangements of copies of K. Obviously, ̺0(K) = ϑL(K).

Let K̂ = (K − K)∗ denote the polar body of the difference body of K. Between

̺d−1(K) and δL(K̂) Makai [Mak78], and independently also Kanan and Lovász
[KL88], found the following surprising connection:

̺d−1(K)δL(K̂) = 2dV (K)V (K̂).

Little is known about ̺j(K) for 0 < j < d − 1. The value of ̺1(B3) has been
determined by Bambah and Woods [BW94]. We have

̺1(B3) = 9π/32 = 0.8835 . . . .

An extreme lattice is generated by the vectors 4
3 (1, 1, 0), 4

3 (0, 1, 1), and 4
3 (1, 0, 1).
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2.7 PACKING AND COVERING WITH SEQUENCES OF CON-
VEX BODIES

In this section we consider the following problem: Given a convex set K and a
sequence {Ci} of convex bodies in E

d, is it possible to find rigid motions σi such
that {σiCi} covers K, or forms a packing in K? If there are such motions σi,
then we say that the sequence {Ci} permits an isometric covering of K, or an
isometric packing in K, respectively. If there are not only rigid motions but even
translations τi so that {τiCi} is a covering of K, or a packing in K, then we say
that {Ci} permits a translative covering of K, or a translative packing in K,
respectively.

First we consider translative packings and coverings of cubes by sequences of
boxes. By a box we mean an orthogonal parallelotope whose sides are parallel to
the coordinate axes. We let Id(s) denote a cube of side length s in E

d.
Groemer (see [Gro85]) proved that a sequence {Ci} of boxes whose edge lengths

are at most 1 permits a translative covering of Id(s) if

∑

i

V (Ci) ≥ (s + 1)d − 1,

and that it permits a translative packing in Id(s) if

∑

i

V (Ci) ≤ (s− 1)d − s− 1

s− 2
((s− 1)d−2 − 1).

Slightly stronger conditions (see [Las97]) guarantee even the existence of on-line
algorithms for the determination of the translations τi. This means that the deter-
mination of τi is based only on Ci and the previously fixed sets τiCi.

We recall (see [Las97]) that to any convex body K in E
d there exist two boxes,

say Q1 and Q2, with V (Q1) ≥ 2d−dV (K) and V (Q2) ≤ d!V (K), such that Q1 ⊂
K ⊂ Q2. It follows immediately that if {Ci} is a sequence of convex bodies in E

d

whose diameters are at most 1 and

∑

i

V (Ci) ≥
1

2
dd((s + 1)d − 1),

then {Ci} permits an isometric covering of Id(s); and that if

∑

i

V (Ci) ≤
1

d!

(
(s− 1)d − s− 1

s− 2
((s− 1)d−2 − 1)

)
,

then it permits an isometric packing in Id(s).
The sequence {Ci} of convex bodies is bounded if the set of the diameters of

the bodies is bounded. As further consequences of the results above we mention the
following. If {Ci} is a bounded sequence of convex bodies such that

∑
V (Ci) = ∞,

then it permits an isometric covering of E
d with density 1

2d
d and an isometric

packing in E
d with density 1

d! . Moreover, if all the sets Ci are boxes, then {Ci}
permits a translative covering of Ed and a translative packing in E

d with density 1.
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In E
2, any bounded sequence {Ci} of convex disks with

∑
a(Ci) = ∞ permits

even a translative packing and covering with density 1
2 and 2, respectively. It is

an open problem whether for d > 2 any bounded sequence {Ci} of convex bodies
in E

d with
∑

V (Ci) = ∞ permits a translative covering. If the sequence {Ci} is
unbounded, then the condition

∑
V (Ci) = ∞ no longer suffices for {Ci} to permit

even an isometric covering of the space. For example, if Ci is the rectangle of
side lengths i and 1

i2 , then
∑

a(Ci) = ∞ but {Ci} does not permit an isometric

covering of E2. There is a simple reason for this, which brings us to one of the most
interesting topics of this subject, namely Tarski’s plank problem.

A plank is a region between two parallel hyperplanes. Tarski conjectured that
if a convex body of minimum width w is covered by a collection of planks in E

d, then
the sum of the widths of the planks is at least w. Tarski’s conjecture was first proved
by Bang. Bang’s theorem immediately implies that the sequence of rectangles above

does not permit an isometric covering of E2, not even of (π
2

12 + ǫ)B2.
In his paper, Bang asked whether his theorem can be generalized so that the

width of each plank is measured relative to the width of the convex body being
covered, in the direction normal to the plank. Bang’s problem has been solved for
centrally symmetric bodies by Ball [Bal91]. This case has a particularly appealing
formulation in terms of normed spaces: If the unit ball in a Banach space is covered
by a countable collection of planks, then the total width of the planks is at least 2.

The paper of Groemer [Gro85] gives a nice account on problems about packing
and covering with sequences of convex bodies.

2.8 SOURCES AND RELATED MATERIAL

SURVEYS

The monographs [Bor04, Fej72, Rog64, Zon99] are devoted solely to packing and
covering; also the books [CS93, CFG91, EGH89, Fej64, Gru07, GL87, BMP05,
PA95] contain results relevant to this chapter. Additional material and bibliography
can be found in the following surveys: [Bar69, Fej83, Fej84b, Fej99, FK93b, FK93c,
FK01, Flo87, Flo02, GW93, Gro85, Gru79].

RELATED CHAPTERS

Chapter 3: Tilings
Chapter 7: Lattice points and lattice polytopes
Chapter 13: Geometric discrepancy theory and uniform distribution
Chapter 18: Symmetry of polytopes and polyhedra
Chapter 20: Polyhedral maps
Chapter 64: Crystals, periodic and aperiodic
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auf einer Kugelfläche liegenden Punktsystems. Jber. Deutsch. Math. Verein., 53:66–68,

1943.
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[Fej68] L. Fejes Tóth. Solid circle-packings and circle-coverings. Studia Sci. Math. Hungar.,

3:401–409, 1968.
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[Fej83] G. Fejes Tóth. New results in the theory of packing and covering. In P.M. Gruber

and J.M. Wills, editors, Convexity and Its Applications, pages 318–359, Birkhäuser,

Basel, 1983.
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Kreisüberdeckungen. Studia Sci. Math. Hungar., 23:23–35, 1988.
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Tanárk. Föisk. Tud. Közl., 8:93–112, 1992.
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