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INTRODUCTION

Geometric objects are often put together from simple pieces according to certain
combinatorial rules. As such, they can be described as complexes with their con-
stituent cells, which are usually polytopes and often simplices. Many constraints of
a combinatorial and topological nature govern the incidence structure of cell com-
plexes and are therefore relevant in the analysis of geometric objects. Since these
incidence structures are in most cases too complicated to be well understood, it is
worthwhile to focus on simpler invariants that still say something nontrivial about
their combinatorial structure. The invariants to be discussed in this chapter are
the f -vectors f = (f0, f1, . . .), where fi is the number of i-dimensional cells in the
complex.

The theory of f -vectors can be discussed at two levels: (1) the numerical rela-
tions satisfied by the fi numbers, and (2) the algebraic, combinatorial, and topo-
logical facts and constructions that give rise to and explain these relations. This
chapter will summarize the main facts in the numerology of f -vectors (i.e., at level
1), with emphasis on cases of geometric interest.

The chapter is organized as follows. To begin with, we treat simplicial com-
plexes, first the general case (Section 17.1), then complexes with various Betti num-
ber constraints (Section 17.2), and finally triangulations of spheres, polytope bound-
aries, and manifolds (Section 17.3). Then we move on to nonsimplicial complexes,
discussing first the general case (Section 17.4) and then polytopes and spheres
(Section 17.5).

17.1 SIMPLICIAL COMPLEXES

GLOSSARY

The convex hull of any set of j + 1 affinely independent points in Rn is called a
j-simplex. See Chapter 15 for more about this definition, and for the notions
of faces and vertices of a simplex.

A geometric simplicial complex Γ is a finite nonempty family of simplices in
Rn such that (i) σ ∈ Γ implies that τ ∈ Γ for every face τ of σ, and (ii) if σ, τ ∈ Γ
and σ ∩ τ 6= ∅ then σ ∩ τ is a face of both σ and τ .

An abstract simplicial complex ∆ is a finite nonempty family of subsets of
some ground set V (the vertex set) such that if A ∈ ∆ and B ⊆ A then
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B ∈ ∆. (Note that always ∅ ∈ ∆.) The elements A ∈ ∆ are called faces.
Define the dimension of a face A and of ∆ itself by dimA = |A| − 1; dim ∆ =
maxA∈∆ dimA. By a d-complex we mean a d-dimensional complex.

With every geometric simplicial complex Γ we associate an abstract simplicial com-
plex by taking the family of vertex sets of its simplices. Conversely, every d-
dimensional abstract simplicial complex ∆ can be realized in Rn for n ≥ 2d+ 1
(and sometimes less) by some geometric simplicial complex. The latter is unique
up to homeomorphism, so it is correct to think of the realization map as a one-
to-one correspondence between abstract and geometric simplicial complexes. We
will therefore drop the adjectives “abstract” and “geometric” and speak only of
a simplicial complex.

For a simplicial complex ∆, let ∆i = {i-dimensional faces} and let fi = |∆i|. The
integer sequence f(∆) = (f0, f1, . . .) is called the f-vector of ∆. (The entry
f−1 = 1 is usually suppressed.) The subcomplex ∆≤i =

⋃
j≤i ∆j is called the

i-skeleton of ∆.

A simplicial complex ∆ is called pure if all maximal faces are of equal dimension. It
is called r-colorable if there exists a partition of the vertex set V = V1∪ . . .∪Vr
such that |A∩Vi| ≤ 1 for all A ∈ ∆ and 1 ≤ i ≤ r. Equivalently, ∆ is r-colorable
if and only if its 1-skeleton ∆≤1 is r-colorable in the standard sense of graph
theory. An (r−1)-complex that is both pure and r-colorable is sometimes called
balanced.

The clique complex of a graph is the collection of vertex sets of all its cliques
(complete induced subgraphs). These are also known as flag complexes.

For integers k, n ≥ 1, there is a unique way of writing

n =

(
ak
k

)
+

(
ak−1

k − 1

)
+ . . .+

(
ai
i

)
so that ak > ak−1 > . . . > ai ≥ i ≥ 1. Then define

∂k(n) =

(
ak
k − 1

)
+

(
ak−1

k − 2

)
+ . . .+

(
ai
i− 1

)
,

and

∂k(n) =

(
ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ . . .+

(
ai − 1

i− 1

)
.

Also let ∂k(0) = ∂k(0) = 0.

Let N∞ denote the set of sequences (n0, n1, . . .) of nonnegative integers, and N(∞)

the subset of sequences such that nk = 0 for all sufficiently large k. We call
n ∈ N(∞) a K-sequence if

∂k+1(nk) ≤ nk−1 for all k ≥ 1.

We call n ∈ N∞ an M-sequence if

n0 = 1 and ∂k(nk) ≤ nk−1 for all k ≥ 2.
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THE KRUSKAL-KATONA THEOREM AND SOME RELATIVES

The following basic result characterizes the f -vectors of simplicial complexes.

THEOREM 17.1.1 Kruskal-Katona Theorem

For f = (f0, f1, . . .) ∈ N(∞) the following are equivalent:

(i) f is the f -vector of a simplicial complex;

(ii) f is a K-sequence.

Theorem 17.1.1 has a generalization to colored complexes, whose statement
will require some additional definitions. Fix an integer r > 0. Then define

(
n
k

)
r

as follows: partition {1, . . . , n} into r subsets V1, . . . , Vr as evenly as possible (so
every subset Vi will have bnr c or bnr c+ 1 elements), and let

(
n
k

)
r

be the number of
k-subsets F ⊆ {1, . . . , n} such that |F ∩ Vi| ≤ 1 for 1 ≤ i ≤ r. For k ≤ r every
positive integer n can be uniquely written

n =

(
ak
k

)
r

+

(
ak−1

k − 1

)
r−1

+ . . .+

(
ai
i

)
r−k+i

,

where
aj
aj−1

> r−k+j
r−k+j−1 for j = k, k − 1, . . . , i+ 1, and ai ≥ i ≥ 1. Then define

∂
(r)
k (n) =

(
ak
k − 1

)
r

+

(
ak−1

k − 2

)
r−1

+ . . .+

(
ai
i− 1

)
r−k+i

,

and let ∂
(r)
k (0) = 0.

THEOREM 17.1.2

For f = (f0, . . . , fd−1), d ≤ r, the following are equivalent:

(i) f is the f -vector of an r-colorable simplicial complex;

(ii) ∂
(r)
k+1(fk) ≤ fk−1, for all 1 ≤ k ≤ d− 1.

Note that for r sufficiently large Theorem 17.1.2 specializes to Theorem 17.1.1.

THEOREM 17.1.3

The f -vector of any (r−1)-dimensional clique complex is the f -vector of some r-
colorable complex.

MULTICOMPLEXES AND MACAULAY’S THEOREM

A multicomplex M is a nonempty collection of monomials in finitely many vari-
ables such that if m is inM then so is every divisor of m. Let fi(M) be the number
of degree i monomials in M; f(M) = (f0, f1, . . .) is called the f-vector of M.

THEOREM 17.1.4 Macaulay’s Theorem

For f ∈ N∞ the following are equivalent:

(i) f is the f -vector of a multicomplex;
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(ii) f is an M -sequence;
(iii) fi = dimkRi, i ≥ 0, for some finitely generated commutative graded k-algebra

R = ⊕i≥0Ri such that R0
∼= k (a field) and R1 generates R.

A simplicial complex can be viewed as a multicomplex of squarefree monomials.
Hence, a K-sequence is (except for a shift in the indexing) an M -sequence: If
(f0, . . . , fd−1) is a K-sequence then (1, f0, . . . , fd−1) is an M -sequence. For this
reason (and others, see, e.g., Theorem 17.2.3), properties of M -sequences are of
interest also if one cares mainly about the special case of simplicial complexes.

A multicomplex is pure if all its maximal (under divisibility) monomials have
the same degree.

THEOREM 17.1.5

Let (f0, . . . , fr) be the f -vector of a pure multicomplex, fr 6= 0. Then fi ≤ fj for
all i < j ≤ r − i.

COMMENTS

Simplicial complexes (abstract and geometric) are treated in most books on al-
gebraic topology; see, e.g., [Mun84, Spa66]. The Kruskal-Katona theorem (inde-
pendently discovered by M.-P. Schützenberger, J.B. Kruskal, G.O.H. Katona, L.H.
Harper, and B. Lindström during the years 1959-1966) is discussed in many places
and several proofs have appeared; see, e.g., [And87, Zie95].

A Kruskal-Katona type theorem for simplicial complexes with vertex-transitive
symmetry group appears in [FK96].

Theorem 17.1.2 is from [FFK88]. (Remark: The definition of the ∂
(r)
k (·) opera-

tor is incorrectly stated in [FFK88], in particular the uniqueness claim in [FFK88,
Lemma 1.1] is incorrect. The version stated here was suggested to us by J. Eckhoff.)

Theorem 17.1.3 was conjectured by J. Eckhoff and G. Kalai and proved by
Frohmader [Fro08].

For Macaulay’s theorem we refer to [And87, Sta96]. There is a common gener-
alization of Macaulay’s theorem and the Kruskal-Katona theorem due to Clements
and Lindström; see [And87]. Theorem 17.1.5 is from [Hib89].

17.2 BETTI NUMBER CONSTRAINTS

GLOSSARY

The Euler characteristic χ(∆) of a simplicial complex ∆ with f -vector (f0, . . . ,

fd−1) is χ(∆) =
∑d−1
i=0 (−1)ifi.

The h-vector (h0, . . . , hd) of a (d−1)-dimensional simplicial complex is defined by

d∑
i=0

hix
d−i =

d∑
i=0

fi−1(x− 1)d−i.

The corresponding g-vector (g0, . . . , gbd/2c) is defined by g0 = 1 and gi = hi −
hi−1, for i ≥ 1.
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Chapter 17: Face numbers of polytopes and complexes 453

The Betti number βi(∆) is the dimension (as a Q-vector space) of the ith reduced

simplicial homology group H̃i(∆,Q); see any textbook on algebraic topology
(e.g., [Mun84]) for the definition. We call (β0, . . . , βdim ∆) the Betti sequence
of ∆.

The link `k∆(F ) of a face F is the subcomplex of ∆ defined by `k∆(F ) = {A ∈
∆ | A ∩ F = ∅, A ∪ F ∈ ∆}. Note that `k∆(∅) = ∆.

A simplicial complex ∆ is acyclic if βi(∆) = 0 for all i.

A simplicial complex ∆ is Cohen-Macaulay if βi(`k∆(F )) = 0 for all F ∈ ∆ and
all i < dim `k∆(F ).

A simplicial complex ∆ is m-Leray if βi(`k∆(F )) = 0 for all F ∈ ∆ and all i ≥ m.

FIXED BETTI NUMBERS

A simplicial complex is connected if its 1-skeleton is connected in the sense of
graph theory. This is equivalent to demanding β0 = 0.

THEOREM 17.2.1

For f ∈ N(∞) the following are equivalent:

(i) f is the f -vector of a connected simplicial complex;

(ii) f is a K-sequence and ∂3(f2) ≤ f1 − f0 + 1.

The most basic relationship between f -vectors and Betti numbers is the Euler-
Poincaré formula :

χ(∆) = f0 − f1 + f2 − . . . = 1 + β0 − β1 + β2 − . . .

This is in fact the only linear one in the following complete set of relations.

THEOREM 17.2.2

For f = (f0, f1, . . .) ∈ N(∞) and β = (β0, β1, . . .) ∈ N(∞) the following are equiva-
lent:

(i) f is the f -vector of some simplicial complex with Betti sequence β;

(ii) if χk−1 =
∑
j≥k(−1)j−k(fj − βj), k ≥ 0, then χ−1 = 1 and ∂k+1(χk + βk) ≤

χk−1 for all k ≥ 1.

By putting βi = 0 for all i one gets as a special case a characterization of the
f -vectors of acyclic simplicial complexes, viz.,

∑
i≥0 fi−1x

i = (1 + x)
∑
i≥0 f

′
i−1x

i,
where (f ′0, f

′
1, . . .) is a K-sequence.

COHEN-MACAULAY COMPLEXES

Examples of Cohen-Macaulay complexes are triangulations of manifolds whose Betti
numbers vanish below the top dimension, in particular triangulations of spheres and
balls. Other examples are matroid complexes (the independent sets of a matroid),
Tits buildings, and the order complexes (simplicial complex of totally ordered sub-
sets) of several classes of posets, e.g., semimodular lattices (including distributive
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and geometric lattices). Shellable complexes (see Chapters 16 and 19) are Cohen-
Macaulay. Cohen-Macaulay complexes are always pure.

The definition of h-vector given in the glossary shows that the h-vector and the
f -vector of a complex mutually determine each other via the formulas:

hi =

i∑
j=0

(−1)i−j
(
d− j
i− j

)
fj−1 , fi−1 =

i∑
j=0

(
d− j
i− j

)
hj ,

for 0 ≤ i ≤ d. Hence, we may state f -vector results in terms of h-vectors whenever
convenient.

THEOREM 17.2.3

For h = (h0, . . . , hd) ∈ Zd+1 the following are equivalent:

(i) h is the h-vector of a (d−1)-dimensional Cohen-Macaulay complex;

(ii) h is the h-vector of a (d−1)-dimensional shellable complex;

(iii) h is an M -sequence.

Since there are a total of
(
n+k−1

k

)
monomials of degree k in n variables, and by

Theorems 17.1.5 and 17.2.3 the h-vector of a (d−1)-dimensional Cohen-Macaulay
complex counts certain monomials in h1 = f0−d variables, we derive the inequalities

0 ≤ hi ≤
(
f0 − d+ i− 1

i

)
for the h-vectors of Cohen-Macaulay complexes. The lower bound can be improved
for complexes with fixed-point-free involutive symmetry.

THEOREM 17.2.4

Let h = (h0, . . . , hd) be the h-vector of a Cohen-Macaulay complex admitting an
automorphism α of order 2, such that α(F ) 6= F for all F ∈ ∆ \ {∅}. Then

hi ≥
(
d

i

)
for 0 ≤ i ≤ d.

Consequently, fd−1 = h0 + . . .+ hd ≥ 2d.

Another condition on a Cohen-Macaulay complex that forces stricter conditions
on its h-vector is being r-colorable.

THEOREM 17.2.5

For h = (h0, . . . , hd) ∈ Zd+1 the following are equivalent:

(i) h is the h-vector of a (d−1)-dimensional and d-colorable Cohen-Macaulay
complex;

(ii) (h1, . . . hd) is the f -vector of a d-colorable simplicial complex.

Hence in this case the h-vector is not only an M -sequence, but the special kind
of K-sequence characterized in Theorem 17.1.2.
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LERAY COMPLEXES

Examples of Leray complexes arise as follows. Let K = {K1, . . . ,Kt} be a family
of convex sets in Rm, and let ∆(K) = {A ⊆ {1, . . . , t} |

⋂
i∈AKi 6= ∅}. Then the

simplicial complex ∆(K) is m-Leray.
Fix m ≥ 0, and let f = (f0, . . . , fd−1) be the f -vector of a simplicial complex

∆. Define

h∗k =

{
fk for 0 ≤ k ≤ m− 1∑
j≥0

(−1)j
(
k+j−m

j

)
fk+j for k ≥ m.

The sequence h∗ = (h∗0, . . . , h
∗
d−1) is the h∗-vector of ∆. The two vectors f and

h∗ mutually determine each other.

THEOREM 17.2.6

For h∗ = (h∗0, h
∗
1, . . .) ∈ Z(∞) the following are equivalent:

(i) h∗ is the h∗-vector of an m-Leray complex;

(ii) h∗ is the h∗-vector of ∆(K) for some family K of convex sets in Rm;

(iii) 
h∗k ≥ 0 for k ≥ 0
∂k+1(h∗k) ≤ h∗k−1 for 1 ≤ k ≤ m− 1
∂m(h∗k) ≤ h∗k−1 − h∗k for k ≥ m.

COMMENTS

The Euler-Poincaré formula (due to Poincaré, 1899) is proved in most books on
algebraic topology.

A good general source on Cohen-Macaulay complexes is [Sta96]; it contains
Theorems 17.2.3, 17.2.4, and 17.2.5, as well as references to the original sources.
Theorem 17.2.2 is from [BK88]. A common generalization of Theorems 17.1.1,
17.2.2, and 17.2.3 is given in [Bjö96]. Theorem 17.2.1 is a special case. There
are several additional results about h-vectors of Cohen-Macaulay complexes. For
instance, for complexes with nontrivial automorphism groups, see [Sta96, Section
III.8]; for matroid complexes, see [Sta96, Section III.3]; and for Cohen-Macaulay
complexes that are r-colorable for r < d, see the references mentioned in [Sta96,
Section III.4].

Cohen-Macaulay complexes are pure. However, there is an extension of their
theory to a class of nonpure complexes, the so-called sequentially Cohen-Macaulay
complexes, introduced in [Sta96]. In [ABG17], to which we refer for definitions
and references, a numerical characterization is given of the so-called h-triangles
(doubly indexed h-numbers) of sequentially Cohen-Macaulay simplicial complexes.
This result characterizes the array of numbers of faces of various dimensions and
codimensions in such a complex, generalizing Theorem 17.2.3 to the nonpure case.

Cohen-Macaulay complexes are closely related to certain commutative rings
[Sta96], and via this connection such complexes have also been of use in the theory
of splines; see [Sta96, Section III.5] and also Chapter 56 of this Handbook.

Theorem 17.2.6 was conjectured by Eckhoff and proved by Kalai [Kal84, Kal86].
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17.3 SIMPLICIAL POLYTOPES, SPHERES, AND MANIFOLDS

GLOSSARY

A triangulated d-ball is a simplicial complex ∆ whose realization ‖∆‖ is home-
omorphic to the ball {x ∈ Rd | x2

1 + · · · + x2
d ≤ 1}. A triangulated (d –1)-

sphere is a simplicial complex whose realization is homeomorphic to the sphere
{x ∈ Rd | x2

1 + · · · + x2
d = 1}. Equivalently, it is the boundary of a triangu-

lated d-ball. Examples of triangulated (d−1)-spheres are given by the boundary
complexes of simplicial d-polytopes.

A pseudomanifold is a pure simplicial complex ∆ such that

(i) each face of codimension 1 is contained in precisely two maximal faces; and

(ii) the dual graph (whose vertices are the maximal faces of ∆ and whose edges
are the faces of codimension 1) is connected.

An Eulerian pseudomanifold is a pseudomanifold ∆ such that ∆ itself and the
link of each face have the Euler characteristic of a sphere of the corresponding
dimension.

A pure (d−1)-dimensional simplicial complex ∆ is a homology manifold if it is
connected and the link of each nonempty face has the Betti numbers of a sphere
of the same dimension. It is a homology sphere if, in addition, ∆ itself has the
Betti numbers of a (d−1)-sphere. Examples of homology manifolds are given by
triangulations of compact connected topological manifolds, i.e., spaces that are
locally Euclidean.

The cyclic d-polytope with n vertices Cd(n) is the convex hull of any n points
on the moment curve in Rd. (See Section 15.1.4.)

The following implications hold among these various classes, all of them strict:

polytope boundary ⇒ sphere ⇒ homology sphere ⇒
Eulerian pseudomanifold ⇒ pseudomanifold

homology sphere ⇒ homology manifold ⇒ pseudomanifold

homology sphere ⇒ Cohen-Macaulay complex

PSEUDOMANIFOLDS

The following results give the basic lower and upper bounds on f -vectors of pseu-
domanifolds.

THEOREM 17.3.1 Lower Bound Theorem

For a (d−1)-dimensional pseudomanifold ∆ with n vertices,

fk(∆) ≥
{(

d
k

)
n−

(
d+1
k+1

)
k for 1 ≤ k ≤ d− 2

(d− 1)n− (d− 2)(d+ 1) for k = d− 1.
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THEOREM 17.3.2 Upper Bound Theorem

Let ∆ be a (d−1)-dimensional homology manifold with n vertices, such that either

(i) d is even, or

(ii) d = 2k + 1 is odd, and either χ(∆) = 2 or βk ≤ 2βk−1 + 2
∑k−3
i=0 βi .

Then fk(∆) ≤ fk(Cd(n)) for 1 ≤ k ≤ d− 1.

This upper bound theorem applies when the homology manifold is Eulerian
(irrespective of dimension); in particular, it applies to all simplicial polytopes and
spheres. By the geometric operation of “pulling vertices” (Section 16.2), one can
extend this to all convex polytopes.

THEOREM 17.3.3

If P is any convex d-polytope with n vertices, then f(P ) ≤ f(Cd(n)).

The given lower and upper bounds are best possible within the class of simplicial
polytope boundaries. The lower bound is attained by the class of stacked polytopes
(Sections 16.4.2 and 19.2). To make the upper bound numerically explicit, we give
the formula for the f -vector of a cyclic polytope.

THEOREM 17.3.4

For d ≥ 2 and 0 ≤ k ≤ d − 1, the number of k-faces of the cyclic polytope Cd(n)
with n vertices is

fk(Cd(n)) =
n− δ(n− k − 2)

n− k − 1

bd/2c∑
j=0

(
n− 1− j
k + 1− j

)(
n− k − 1

2j − k − 1 + δ

)
,

where δ = d− 2bd/2c.
In particular,

fd−1(Cd(n)) =

(
n− dd2e
bd2c

)
+

(
n− dd+1

2 e
bd−1

2 c

)
,

which shows that for fixed d the number of facets is O(n[d/2]).

POLYTOPES AND SPHERES

For boundaries of simplicial d-polytopes and, more generally, for Eulerian pseudo-
manifolds, we have the following basic relations.

THEOREM 17.3.5 Dehn-Sommerville Equations

For d-dimensional Eulerian pseudomanifolds,

hi = hd−i for all 0 ≤ i ≤ d.

These equations give a complete description of the linear span of all f -vectors of
d-polytopes (equivalently, (d−1)-spheres). (The affine span is defined by including
the relation h0 = 1.)

One consequence of the Dehn-Sommerville equations is the following relation
between the h-vector of a triangulated ball K and the g-vector of its boundary ∂K.
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THEOREM 17.3.6

For a triangulated d-ball K and its boundary (d−1)-sphere ∂K,

gi(∂K) = hi(K)− hd+1−i(K) for i ≥ 1.

A complete characterization of the f -vectors of simplicial (and, by duality,
simple) convex polytopes is given in terms of the h-vector and g-vector.

THEOREM 17.3.7 g -Theorem

A nonnegative integer vector h = (h0, . . . , hd) is the h-vector of a simplicial convex
d-polytope if and only if

(i) hi = hd−i, and

(ii) (g0, . . . , gbd/2c) is an M -sequence.

One consequence of (ii) is that gi ≥ 0, which was known as the generalized
lower bound conjecture. The case of equality in this conjecture has only recently
been settled.

THEOREM 17.3.8

A simplicial d-polytope P satisfies gk(P ) = hk(P ) − hk−1(P ) = 0 for some k,
1 ≤ k ≤ bd2c, if and only if P is k-stacked, i.e., P can be triangulated so that every
face of dimension d− k or less is on the boundary of P .

For centrally symmetric polytopes, we get a better lower bound.

THEOREM 17.3.9

For centrally symmetric simplicial d-polytopes,

gi = hi − hi−1 ≥
(
d

i

)
−
(

d

i− 1

)
for i ≤ bd/2c.

The following arithmetic property of the numbers of k-faces of all simplicial
d-polytopes is a consequence of the g-theorem.

THEOREM 17.3.10

Given 0 ≤ k < d there exist positive integers G(k, d) and N(k, d) such that

(i) G(k, d) divides fk(P ) for every simplicial d-polytope P , and

(ii) if G(k, d) divides n and n > N(k, d), then n = fk(P ) for some simplicial
d-polytope P .

MANIFOLDS

For face numbers of triangulations of a (d−1)-dimensional manifold X we have the
following generalization of the Dehn-Sommerville equations.
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THEOREM 17.3.11

If X = |∆| is a (d− 1)-dimensional manifold, then

hd−i − hi = (−1)i
(
d

i

)
(χ(∆)− χ(Sd−1)).

If ∆ is a (d− 1)-dimensional simplicial complex, then define

h′i = hi +

(
d

i

)
(βi−2 − βi−3 + · · · ± β0) ,

where the βj = βj(∆) are the reduced homology Betti numbers of ∆.

THEOREM 17.3.12

If X = |∆| is a (d− 1)-dimensional manifold, then

h′i ≥
(
d

i

)
βi−1.

COMMENTS

The Lower Bound Theorem 17.3.1 is due to Kalai and Gromov in the generality
given here; see [Kal87] including the note added in proof. The k = d− 1 case had
earlier been done by Klee and the case of polytope boundaries by Barnette. See
[Kal87] for a discussion of the history of this result.

The Upper Bound Theorem 17.3.2 is due to Novik [Nov98]. See also [NS12].
The case of polytopes (Theorem 17.3.3) was first proved by McMullen (see [MS71]),
and extended to spheres by Stanley (see [Sta96]). The computation of the f -vector
of the cyclic polytope can be found in [Grü67, Sections 4.7.3 and 9.6.1] or [MS71].
More results on comparing face numbers of a simplicial polytope to those of the
cyclic polytope can be found in [Bjö07].

The Dehn-Sommerville equations for polytopes are classical; proofs can be
found in [Grü67, Sta86, Zie95]. The extension to Eulerian pseudomanifolds is due
to Klee [Kle64]; an equivariant version appears in [Bar92]. The D-S equations imply
an upper bound on the average number of j-faces contained in a k-face of a simple
polytope (roughly, the number of j-faces of a k-dimensional cube) due to Nikulin.
This has been useful in the theory of hyperbolic reflection groups. See [Nik87,
Theorem C] for references and ramifications; see also Theorem 17.5.17, which is a
similar result for arrangements and zonotopes.

The g-theorem was conjectured by McMullen and proved by Billera, Lee, and
Stanley [BL81a, Sta80]. Another proof of the necessity of these conditions was
given by McMullen [McM93]. More recently, a self-contained, elementary proof of
necessity was given by Fleming and Karu [FK08]. It is not known whether the
second condition of Theorem 17.3.7 holds for general triangulated spheres. The
g-theorem has a convenient reformulation as a one-to-one correspondence (via ma-
trix multiplication) between f -vectors of simplicial polytopes and M -sequences, see
[Bjö87, Zie95]. Theorem 17.3.8, the equality case of the generalized lower bound
theorem, was conjectured by McMullen and Walkup in 1971 and recently proved
by Murai and Nevo [MN13]. Theorem 17.3.9 was proved by Stanley [Sta87a]; for
another proof see [Nov99]. Theorem 17.3.10 is from Björner and Linusson [BL99],
where also an explicit expression for the modulus G(k, d) is given.
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Theorems 17.3.11 and 17.3.12 are due to Klee [Kle64] and Novik and Swartz
[NS09], respectively. For simplicity, they are here not stated in their maximal
generality. That h′i ≥ 0 for manifolds was originally shown by Schenzel in 1981.

The question of characterizing f -vectors for compact manifolds more general
than spheres is at the present far beyond our reach. However, much interesting work
has been done on the more restrictive question of minimizing the number of vertices
of triangulations for given manifolds, see e.g., [Küh90, Küh95, BL00, Lut05]. This
is of interest for efficient presentations of manifolds to computers. For information
about face numbers of manifolds, see [Swa09].

The study of f -vectors of unbounded polyhedra can be approached by studying
the f -vectors of polytope pairs (P, F ), where P is a polytope and F is a maximal
face of P . See [BL81b, BaL93] for a summary of such results.

17.4 CELL COMPLEXES

GLOSSARY

Convex polytopes and faces of such are defined in Chapter 15.

A polyhedral complex Γ is a finite collection of convex polytopes in Rn such that
(i) if π ∈ Γ and σ is a face of π, then σ ∈ Γ; and (ii) if π, σ ∈ Γ and π ∩ σ 6= ∅,
then π ∩ σ is a face of both. The space of Γ is ‖Γ‖ =

⋃
π∈Γ π, a subspace

of Rn. Examples of polyhedral complexes are given by boundary complexes
∂P of convex polytopes P (i.e., the collection of all proper faces). A geometric
simplicial complex (defined in Section 17.1) is a polyhedral complex all of whose
cells are simplices. A cubical complex is a polyhedral complex all of whose
cells are (combinatorially isomorphic to) cubes.

A regular cell complex Γ is a family of closed balls (homeomorphs of {x ∈
Rj
∣∣ |x| ≤ 1}) in a Hausdorff space ‖Γ‖ such that (i) the interiors of the balls

partition ‖Γ‖ and (ii) the boundary of each ball in Γ is a union of other balls in
Γ. The members of Γ are called (closed) cells or faces. The dimension of a
cell is its topological dimension and dim Γ = maxσ∈Γ dimσ.

A Gorenstein* complex is a regular cell complex whose poset of faces has an
order complex that is a homology sphere. These include all triangulations of
spheres.

A regular cell complex has the intersection property if, whenever the intersec-
tion of two cells is nonempty, then this intersection is also a cell in the complex.
Polyhedral complexes are examples of regular cell complexes with the inter-
section property. Regular cell complexes with the intersection property can be
reconstructed up to homeomorphism from the corresponding “abstract” complex
consisting of the family of vertex sets of its cells.

For a regular cell complex Γ, let fi be the number of i-dimensional cells, and
let βi = dimQ H̃i(‖Γ‖ ,Q). The latter denotes i-dimensional reduced singular
homology with rational coefficients of the space ‖Γ‖; see [Mun84, Spa66] for
explanations of this concept. Then we have the f-vector f = (f0, f1, . . .) and
the Betti sequence β = (β0, β1, . . .) of Γ. These definitions generalize those
previously given in the simplicial case.
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BASIC f -VECTOR RELATIONS

Among the classes of complexes

• simplicial complexes

• polyhedral complexes

• regular cell complexes with the intersection property

• regular cell complexes

each is a proper subclass of its successor. Thus one may wonder how many of the
relations for f -vectors of simplicial complexes given in Sections 17.1–17.3 can be
extended to these broader classes of complexes. Also, what new phenomena (not
visible in the simplicial case) arise? Some answers are given in this section and the
following one, but current knowledge is quite fragmentary. We begin here with the
most general relations.

THEOREM 17.4.1

(f0, . . . , fd) is the f -vector of a d-dimensional regular cell complex if and only if
fd ≥ 1 and fi ≥ 2 for all 0 ≤ i < d.

THEOREM 17.4.2

f is the f -vector of a regular cell complex with the intersection property if and only
if f is a K-sequence.

Let β = (β0, β1, . . .) ∈ N(∞) be fixed, and for every sequence f = (f0, f1, . . .)
let

χk−1 =
∑
j≥k

(−1)j−k(fj − βj) for k ≥ 0.

THEOREM 17.4.3

(f0, . . . , fd) is the f -vector of a d-dimensional regular cell complex with Betti se-
quence β if and only if χ−1 = 1 and χk ≥ 1 for 0 ≤ k < d.

THEOREM 17.4.4

For f ∈ N(∞) the following are equivalent:

(i) f is the f -vector of a regular cell complex with the intersection property and
with Betti sequence β;

(ii) χ−1 = 1 and ∂k+1(χk + βk) ≤ χk−1 for all k ≥ 1.

These results show that the f -vectors of regular cell complexes (with or with-
out Betti number constraints) are considerably more general than the f -vectors of
simplicial complexes, but that the two classes of f -vectors agree in the presence of
the intersection property.

COMMENTS

Regular cell complexes are known as regular CW complexes in the topological
literature [LW69]. The nonregular CW complexes offer an even more general class
of cell complexes [LW69, Mun84, Spa66], but there is very little one can say about
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f -vectors in that generality. See [BLS+93, Section 4.7] for a detailed discussion of
regular cell complexes from a combinatorial point of view.

For the results of this section see [BK88, BK91, BK89]. A characterization
of f -vectors of (cubical) subcomplexes of a cube can be found in [Lin71], and of
regular cell decompositions of spheres in [Bay88].

17.5 GENERAL POLYTOPES AND SPHERES

GLOSSARY

A flag of faces in a (polyhedral) (d−1)-complex ∆ is a chain F1 ( F2 ( · · · ( Fk
of faces Fi in ∆. It is an S-flag if

S = {dimF1, . . . ,dimFk} ⊆ {0, 1, . . . , d− 1}.

Let fS = fS(∆) denote the number of S-flags in ∆. The function S 7→ fS ,
S ⊆ {0, 1, . . . , d− 1}, is called the flag f-vector of ∆. If

hS =
∑
T⊆S

(−1)|S|−|T |fT ,

then the function S 7→ hS , S ⊆ {0, 1, . . . , d− 1}, is called the flag h-vector.

For S ⊆ {0, . . . , d− 1} and noncommuting symbols a and b, let uS = u0u1 · · ·ud−1

be the ab-word defined by ui = a if i /∈ S and ui = b otherwise. When ∆ is
spherical (or, more generally, Eulerian), then the ab-polynomial

∑
hSuS is also

a polynomial in c = a+ b and d = ab+ ba. (Note that the degree of c is 1 and
the degree of d is 2.) The resulting cd-polynomial∑

hSuS =
∑

φww,

where the right-hand sum is over all cd-words w of degree d, is called the cd-
index Φ(∆) of ∆. For 2-, 3-, and 4-polytopes, the cd-index is c2 + (f0 − 2)d,
c3 + (f0− 2)dc+ (f2− 2)cd, and c4 + (f0− 2)dc2 + (f1− f0)cdc+ (f3− 2)c2d+
(f02 − 2f2 − 2f0 + 4)d2, respectively.

For any convex d-polytope P , we define the toric h-vector and toric g-vector

recursively by h(P, x) =
∑d
i=0 hix

d−i and g(P, x) =
∑bd/2c
i=0 gix

i, where gi =
hi − hi−1 and the following relations hold:

(i) g(∅, x) = h(∅, x) = 1; and

(ii) h(P, x) =
∑
G face ofP,G 6=P g(G, x)(x− 1)d−1−dimG.

(Compare to Section 16.4.1, where this toric h-vector is defined for any poly-
hedral complex. In the notation given there, we have defined h and g for the
complex ∂P .) When P is simplicial, this definition coincides with that of the
usual h-vector, as defined in Section 17.2. For 2-, 3-, and 4-polytopes, the g-
polynomial is 1+(f0−3)x, 1+(f0−4)x, and 1+(f0−5)x+(10−3f0−3f3+f03)x2,
respectively.

A rational polytope is one whose vertices all have rational coordinates. Equiva-
lently, all maximal faces are determined by linear forms with rational coefficients.

A cubical polytope is one that has a cubical boundary complex. For any cubical
(d−1)-complex with f -vector (f0, . . . , fd−1), define the cubical h-vector hc =
(hc0, . . . , h

c
d) by
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hci = (−1)i2d−1 +

i∑
j=1

(−1)i−j2j−1fj−1

i−j∑
k=0

(
d− j
k

)
for i = 0, . . . , d.

The cubical g-vector gc = (gc0, . . . , g
c
bd/2c) is defined by gc0 = hc0 = 2d−1 and

gci = hci − hci−1 for i ≥ 1.

An Eulerian polyhedral complex is one whose first barycentric subdivision is an
Eulerian pseudomanifold. Examples are boundary complexes of polytopes and
spherical polyhedral complexes, i.e., those whose underlying space is homeo-
morphic to a sphere.

A (central) hyperplane arrangement is a collection H of n linear hyperplanes in
Rd, given by normal vectors x1, . . . , xn (see Section 6.1.3). The arrangement is
essential if the normals xi span Rd. The associated zonotope is the Minkowski
sum of the n line segments [−xi, xi], i.e., Z = {

∑
λixi | −1 ≤ λi ≤ 1} (see

Section 15.1.4).

LINEAR RELATIONS

We give the linear equalities on the invariants defined above that are known to
hold for all boundary complexes of polytopes and, more generally, for all Eulerian
polyhedral complexes.

THEOREM 17.5.1

For (d−1)-dimensional Eulerian polyhedral complexes, the following relations al-
ways hold for the flag h, the toric h, and the flag f :

(i) hS = h{0,...,d−1}rS for all S ⊆ {0, . . . , d− 1};
(ii) hi = hd−i for 0 ≤ i ≤ d; and

(iii)
∑k−1
j=i+1(−1)j−i−1fS∪{j} = (1 − (−1)k−i−1)fS whenever i, k ∈ S ∪ {−1, d}

with i ≤ k − 2 and S ∩ {i+ 1, . . . , k − 1} = ∅.
It is known that the relations in Theorem 17.5.1(iii), the generalized Dehn-

Sommerville equations, completely describe the linear span of all flag f -vectors
of Eulerian complexes, and so they imply those in (i). Since the toric h is known to
be a linear function of the flag f , they imply those in (ii) as well. The linear span of
flag f -vectors has dimension ed, where ed is the d th Fibonacci number (defined by
the recurrence ed = ed−1 + ed−2, e0 = e1 = 1). There are ed cd-words of degree d.
Furthermore, the coefficients φw of the cd-index, considered as linear expressions
in the fS , form a linear basis for the span of flag f -vectors of d-polytopes. The
affine span of all flag f -vectors is defined by including the relation f∅ = 1.

For cubical polytopes and spheres, the cubical h-vector satisfies the analogue
of the Dehn-Sommerville equations.

THEOREM 17.5.2

For cubical d-polytopes and cubical (d−1)-spheres,

hci = hcd−i for all 0 ≤ i ≤ d.

These give all linear relations satisfied by f -vectors of cubical polytopes and
spheres. The cubical h-vector satisfies, as well, the equations of Theorem 17.3.6,
linking the h of a cubical ball to the g of its boundary sphere.
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LINEAR INEQUALITIES

Some linear inequalities that hold for flag f -vectors of all polytope boundaries are
given in this section. The list is not thought to be complete, although there are no
conjectures for what the complete set might be.

For a Cohen-Macaulay polyhedral complex, i.e., one whose first barycentric
subdivision is a Cohen-Macaulay simplicial complex, the flag h is always nonnega-
tive.

THEOREM 17.5.3

For a Cohen-Macaulay polyhedral (d−1)-complex Γ, we have hS(Γ) ≥ 0 for all
S ⊆ {0, . . . , d− 1}.

For general convex polytopes, we also have nonnegativity of the cd-index. In
fact, the cd-index of any d-polytope is minimized termwise by the cd-index of the
d-simplex ∆(d).

THEOREM 17.5.4

(i) If P is a convex d-polytope (or, more generally a Gorenstein* complex), then

φw(P ) ≥ 0

for all cd-words w of degree d.

(ii) If P is a convex d-polytope (or, more generally a Gorenstein* complex whose
face poset is a lattice), then

φw(P ) ≥ φw(∆(d))

for all cd-words w of degree d.

Note that Theorem 17.5.4(i) gives the most general possible linear inequalities
for flag f-vectors of spherical regular cell complexes (i.e., regular cell complexes
homeomorphic to the sphere).

There are also relations between the cd-coefficients φw for any polytope.

THEOREM 17.5.5

For any d-polytope P
φudv(P ) ≥ φuc2v(P ),

for any cd-words u and v with deg u+ deg v = d− 2.

For all convex polytopes, it is known, further, that the toric h is unimodal.

THEOREM 17.5.6

For a convex d-polytope, gi ≥ 0 for i ≤ bd/2c.
Related to this is the following nonlinear inequality holding between the g-

vectors of a polytope P and any of its faces F . We denote by P/F the link of F
in P , i.e., the polytope whose lattice of faces is (isomorphic to) the interval [F, P ]
in the face lattice of P .
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THEOREM 17.5.7

For a polytope P and any face F , we have the polynomial inequality

g(P, t)− g(F, t)g(P/F, t) ≥ 0,

i.e., all coefficients of this polynomial are nonnegative.

We have a similar relation between the cd-index of a polytope and that of any
face.

THEOREM 17.5.8

For a polytope P and any face F , we have the polynomial inequalities

Φ(P ) ≥

 c · Φ(F ) · Φ(P/F )
Φ(F ) · c · Φ(P/F )
Φ(F ) · Φ(P/F ) · c

where Φ(P ), Φ(F ), and Φ(P/F ) are the cd-indices of P , F , and P/F , respectively.

As with f -vectors of polytopes, their flag f -vectors, flag h-vectors and cd-
indices satisfy the upper bound theorem.

THEOREM 17.5.9

If P is a d-dimensional polytope with n vertices, then for any S,

fS(P ) ≤ fS(Cd(n)),
hS(P ) ≤ hS(Cd(n)),

and termwise as polynomials

Φ(P ) ≤ Φ(Cd(n)),

where Cd(n) is the cyclic d-polytope with n vertices.

There are the following relations between invariants of a polytope P and its
dual polytope P ∗. If w = w1, . . . , wn is a cd-word, then w∗ := wn, . . . , w1, the
reverse word.

THEOREM 17.5.10

For a d-polytope P ,

(i) φw(P ∗) = φw∗(P ),

(ii) gk(P ) = 0 if and only if gk(P ∗) = 0 and

(iii)
∑
∅⊆F⊆P (−1)dimF g(F ∗, t) g(P/F, t) = 0.

For a (2k)-polytope P ,

(iv) gk(P ) = gk(P ∗).

Finally, we have the following lower bounds for the number of vertices of poly-
topes with no triangular faces (this includes the class of cubical polytopes), and for
the combined numbers of vertices and facets of centrally symmetric polytopes.

THEOREM 17.5.11

A d-polytope with no triangular 2-face has at least 2d vertices.
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THEOREM 17.5.12

There exists a constant c > 0 such that

log f0 · log fd−1 > cd,

for any centrally symmetric d-polytope.

HYPERPLANE ARRANGEMENTS AND ZONOTOPES

An essential hyperplane arrangementH defines a decomposition of Rd into polyhed-
ral cones (as in Section 6.1.3). This decomposition ΓH, a regular cell complex if in-
tersected with the unit sphere, has a flag f -vector dual to that of its associated zono-
tope Z, in the sense that fS(ΓH) = fd−S(Z), where S = {i1, . . . , ik} ⊆ {1, . . . , d}
and d− S = {d− ik, . . . , d− i1}.

THEOREM 17.5.13

The flag f -vector of an arrangement (or zonotope) depends only on the matroid
(linear dependency structure) of the underlying point configuration {x1, . . . , xn}.

Although a fairly special subclass of polytopes, the zonotopes nonetheless are
varied enough to carry all the linear information carried by flag numbers of general
polytopes.

THEOREM 17.5.14

The flag f -vectors of zonotopes (and thus of hyperplane arrangements) satisfy the
generalized Dehn-Sommerville equations, and there are no other linear relations not
implied by these.

When it comes to linear inequalities, however, a difference between zonotopes
and general polytopes emerges. As with general convex polytopes, we have non-
negativity of the cd-index for zonotopes. However, the cd-index of any d-zonotope
is minimized termwise by the cd-index of the d-cube C(d).

THEOREM 17.5.15

For a convex d-zonotope Z, φw(Z) ≥ φw(C(d)) ≥ 0 for all cd-words w of degree d.
Further, if the word w has k d’s, then 2k divides φw(Z).

There is also a strengthening of Theorem 17.5.5 for zonotopes.

THEOREM 17.5.16

For any d-zonotope Z

φudv(Z)− φuc2v(Z) ≥ φudv(C(d))− φuc2v(C(d))

for any cd-words u and v with deg u+ deg v = d− 2.

The following result has the most direct interpretation when it is stated for
arrangements, where it bounds the average number of {i1, . . . , ik}-flags in an ik-
face by the number of {i1−1, . . . , ik−1}-flags in an (ik−1)-cube.
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THEOREM 17.5.17

For a hyperplane arrangement H in Rd and S = {i1, . . . , ik} ⊆ {1, . . . , d} with
k ≥ 2,

fS(ΓH)

fik(ΓH)
<

(
ik − 1

i1 − 1, i2 − i1, . . . , ik − ik−1

)
2ik−i1 .

There is a straightforward reformulation of Theorem 17.5.17 for zonotopes that
is easily seen not to be valid for all polytopes.

GENERAL 3- AND 4-POLYTOPES

We describe here the situation for flag f -vectors of 3- and 4-polytopes. The equa-
tions in Theorem 17.5.1(iii) reduce consideration to (f0, f2) when d = 3 and to
(f0, f1, f2, f02) when d = 4.

THEOREM 17.5.18

For 3-polytopes, the following is known about the vector (f0, f2).

(i) An integer vector (f0, f2) is the f -vector of a 3-polytope if and only if f0 ≤
2f2 − 4 and f2 ≤ 2f0 − 4.

(ii) An integer vector (f0, f2) is the f -vector of a cubical 3-polytope if and only if
f2 = f0 − 2, f0 ≥ 8, and f0 6= 9.

(iii) If (f0, f2) = (f0(Z), f2(Z)) for a 3-zonotope Z, then f0 and f1 are both even
integers, f0 ≤ 2f2 − 4, and f2 ≤ f0 − 2.

For 4-polytopes, much less is known.

THEOREM 17.5.19

Flag f -vectors (f0, f1, f2, f02) of 4-polytopes satisfy the following inequalities.

(i) f02 ≥ 3f2

(ii) f02 ≥ 3f1

(iii) f02 + f1 + 10 ≥ 3f2 + 4f0

(iv) 6f1 ≥ 6f0 + f02

(v) f0 ≥ 5

(vi) f0 + f2 ≥ f1 + 5

(vii) 2(f02 − 3f2) ≤
(
f0
2

)
(viii) 2(f02 − 3f1) ≤

(
f2−f1+f0

2

)
(ix) f02 − 4f2 + 3f1 − 2f0 ≤

(
f0
2

)
(x) f02 + f2 − 2f1 − 2f0 ≤

(
f2−f1+f0

2

)
.

It is not known, for example, whether (i)–(vi) give all linear inequalities holding
for flag f -vectors of 4-polytopes.

COMMENTS

It is thought that the best route to an eventual characterization of f -vectors of
general polytopes lies in an understanding of their flag f -vectors. The latter inherit
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many of the algebraic properties of f -vectors of simplicial polytopes that led to their
characterization, while having a rich theory of their own.

The relations in Theorem 17.5.1 hold more generally for the case of enumeration
of chains in Eulerian posets; see the article by Stanley in [BMSW94]. The relations
in Theorem 17.5.1(iii) are proved in [BaB85]. An expression for the toric h in terms
of the flag f can be found in the article by Bayer in [BMSW94]. The article by
Kalai in the same volume contains an extensive discussion of g-vectors for both
simplicial and general polytopes. The existence of the cd-index was established in
[BaK91]. Expressions for the (toric) g and h-vectors in terms of the flag h-vector or
the cd-index can be found in [BaE00]. The form of the cubical Dehn-Sommerville
equations given in Theorem 17.5.2 appeared in [Adi96].

Theorem 17.5.3 can be found in [Sta96, Theorem III.4.4] (where hS is denoted
β(S)). The nonnegativity of the cd-index for polytopes in Theorem 17.5.4(i) was
proved as well for certain shellable spheres by Stanley (see [Sta96, Section III.4]);
it was extended to all Gorenstein* complexes (and so all spherical complexes) by
Karu [Kar06]. Theorem 17.5.4(ii), that the cd-index is minimized over polytopes
by simplices, is shown in [BE00]; the proof for Gorenstein* lattices is in [EK07].
Theorem 17.5.5 is proved in [Ehr05a], where one can find a list of the currently
best known inequalities for cd-coefficients of polytopes of low dimensions (through
d = 8). Theorem 17.5.6 was proved by Stanley [Sta87b] for rational polytopes, and
extended to all polytopes by Karu [Kar04]. Relationships between these classes
of inequalities and those that can be derived from them are discussed in [Ste04].
Nonnegativity of certain cd-coefficients for odd-dimensional simplicial manifolds is
shown in [Nov00].

The problem of determining all linear inequalities for flag f -vectors has been
considered for classes of partially ordered sets more general than the face posets
of polytopes and spheres. In [BH00a], the (Catalan many) extreme rays are deter-
mined for the closed convex cone determined by flag f -vectors of all graded posets
(posets with a rank function and having minimum and maximum elements). A
nice description of the finite minimum set of inequalities is lacking, however. In
[BaH01], a partial family of extreme rays is determined for the subcone determined
by all Eulerian posets. See [BH00b] for more such results.

There is a notion of convolution product of flag f numbers, originally due to
Kalai [Kal88], that can be used to produce new linear inequalities from given ones;
see, for example, [BaL93, Section 3.10]. The algebraic properties of this product
have been developed in [BiL00]; this has led to a deeper understanding of the
combinatorial and algebraic properties of the cd-index via duality of Hopf algebras
(see [BHW02]). For a discussion of these developments, including an extension to
enumeration in Bruhat intervals in Coxeter groups, see [Bil10] and [BiB11].

Theorem 17.5.7, due to Braden and MacPherson [BM99] (for rational polytopes
and [Kar04] in general), gives a connection between the g-vector of a polytope P and
that of one of its faces. The analogous Theorem 17.5.8 for cd-indices can be found
in [BE00] (as can the upper bound theorem, Theorem 17.5.9). These are examples
of “monotonicity theorems” related to face numbers. For similar theorems relating
h-vectors of subcomplexes and subdivisions of a simplicial complex ∆, see Sections
III.9–10 of [Sta96] and the references given there.

Theorem 17.5.10(i) and (iv) can be found in [BaK91]. Theorem 17.5.10(ii)
is proved in [Bra06, Theorem 4.5], where it is attributed to Kalai (unpublished).
Theorem 17.5.10(iii) is due to Stanley [Sta92, Proposition 8.1]; this form of it is
[Bra06, (20)].
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Theorems 17.5.11 and 17.5.12 are due to Blind and Blind [BB90] and Figiel,
Lindenstrauss, and Milman [FLM77], respectively.

For the fact that the flag f -vector of a zonotope or arrangement (or, more
generally, of an oriented matroid) depends only on the underlying matroid, see
[BLS+93, Cor. 4.6.3]. For expressions giving the cd-index of a zonotope in terms of
the flag h-vector of its underlying geometric lattice, see [BER97, Corollary 3.2] and
[BHW02, Proposition 3.5]. That the only linear relations satisfied by zonotopes are
the generalized Dehn-Sommerville equations of Theorem 17.5.1(iii), as well as the
divisibility property in Theorem 17.5.15, is proved in [BER98]. The bounds on the
cd-indices of zonotopes in Theorem 17.5.15 are proved in [BER97]; the bounds in
Theorem 17.5.16 can be found in [Ehr05b]. Theorem 17.5.17 is due to Varchenko
for the case k = 2 (see [BLS+93, Proposition 4.6.9]) and to Liu. The stronger
version given here is due to Stenson; in fact, [Ste05, Theorem 9] gives a stronger
inequality (see also [Ste01]).

Theorem 17.5.18(i) can be found in [Grü67, Section 10.3]; 17.5.18(ii) appears
in dual form (for 4-valent 3-polytopes) in [Bar83]; 17.5.18(iii) can be derived using
the methods of [Grü67, Section 18.2] (see also [BER98]). Theorem 17.5.19 can be
found in [Bay87]; see also [HZ00]. An interesting general discussion of f -vectors
of 4-polytopes (ordinary and flag) and an up-to-date survey of this topic is given
by Ziegler [Zie02]. In particular, a good case is made there that the situation
for f -vectors of 4-polytopes is much more complicated than that for polytopes in
dimension 3. One reason for this is that neighborly cubical d-polytopes begin to
exist for d = 4: for any n ≥ d ≥ 2r + 2, there is a cubical convex d-polytope
whose r-skeleton is combinatorially equivalent to that of the n-dimensional cube
[JZ00] (see also [BBC97], where spheres having this property are constructed). In
particular, for any n ≥ 4, there is a cubical 4-polytope with the graph of the n-cube.
These polytopes show that the ratio f3/f0 is not bounded over cubical 4-polytopes.

17.6 OPEN PROBLEMS

PROBLEM 17.6.1

Characterize the f -vectors of triangulations of the (d−1)-sphere. (It has been con-
jectured that the conditions of the g-theorem provide the answer. See [Swa14] for
recent results and an overview of the g-conjecture.)

PROBLEM 17.6.2

Characterize the f -vectors of triangulations of the d-ball. (See [Kol11a, Kol11b,
Kol11c, Mur13a, Mur13b] for recent results on this and related questions.)

PROBLEM 17.6.3

Characterize the f -vectors of triangulations of the d-torus. (It is known that
f(2-torus) = {(n, 3n, 2n) | n ≥ 7}, but the question is open for d ≥ 3.)
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PROBLEM 17.6.4

Characterize the f -vectors of d-polytopes. (The answer is known for d ≤ 3, cf. The-
orem 17.5.18(i), but for d ≥ 4 there is not even a conjectured answer.)

PROBLEM 17.6.5 I. Bárány

Does there exist a constant cd > 0 such that fi ≥ cd·min{f0, fd−1} for all d-polytopes
and all i? Will cd = 1 do?

PROBLEM 17.6.6

Characterize the f -vectors of centrally symmetric d-polytopes. (The question is
open in the simplicial as well as in the general case. For results and conjectures on
upper bounds, see [BN08, BLN13].)

PROBLEM 17.6.7 Conjecture of G. Kalai

The total number of faces (counting P but not ∅) of a centrally symmetric convex
d-polytope P is at least 3d. (Verified in the simplicial case as a consequence of
Theorem 17.3.8.)

PROBLEM 17.6.8

Characterize the f -vectors of clique complexes.

PROBLEM 17.6.9 Conjecture of Charney and Davis [Sta96, p. 100]

Let (g0, . . . , gk) be the g-vector of a clique complex homeomorphic to the sphere
S2k−1. Then gk − gk−1 + . . .+ (−1)kg0 ≥ 0. (The case k = 2 was proved by Davis
and Okun [DO01].)

PROBLEM 17.6.10 Conjecture of Ehrenborg

For d-polytopes P (and more generally for simplicial (d−1)-spheres) the cd-index
satisfies

φudv(P )− φuc2v(P ) ≥ φudv(∆(d))− φuc2v(∆(d)),

where deg u + deg v = d − 2, and ∆(d) is the d-simplex. (This is a special case of
[Ehr05a, Conj. 6.1].)

PROBLEM 17.6.11 Adin [Adi96]

The “generalized lower bound conjecture” for cubical d-polytopes and (d−1)-spheres:
gci ≥ 0 for i ≤ bd/2c. (This has been shown to be the best possible set of linear
inequalities for cubical (d−1)-spheres [BBC97]. The case i = 1 is implied by The-
orem 17.5.11.) More generally, characterize the f -vectors of cubical polytopes.

PROBLEM 17.6.12

Characterize the flag f -vectors of polytopes and of zonotopes. In particular, deter-
mine a complete set of linear inequalities holding for flag f -vectors of polytopes and
of zonotopes.

PROBLEM 17.6.13

Characterize (toric) h-vectors of general polytopes.
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PROBLEM 17.6.14

Characterize flag f -vectors of colored complexes (here fS is the number of simplices
with color set S) (see [Cho15, Fro12a, Fro12b, Wal07]); of pure colored complexes;
of graded posets (all linear inequalities are known here [BH00a]); of Eulerian posets
(see [BaH01]); of Eulerian lattices.

17.7 SOURCES AND RELATED MATERIAL

FURTHER READING

Surveys of f -vector theory are given in [Bil16, BaL93, Bjö87, BK89, KK95, Sta85].
Books treating f -vectors (among other things) include [And87, BMSW94, Grü67,
MS71, Sta96, Zie95].
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[Grü67] B. Grünbaum. Convex Polytopes. Interscience, London, 1967. Revised edition
(V. Kaibel, V. Klee, and G.M. Ziegler, editors), vol. 221 of Grad. Texts in Math.,
Springer, New York, 2003.

[Hib89] T. Hibi. What can be said about pure O-sequences? J. Combin. Theory Ser. A,
50:319–322, 1989.

Preliminary version (August 6, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



474 L.J. Billera and A. Björner
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