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INTRODUCTION

We are interested in the set of all subdivisions or triangulations of a given polytope
P and with a fixed finite set V of points that can be used as vertices. V must
contain the vertices of P , and it may or may not contain additional points; these
additional points are vertices of some, but not all, the subdivisions that we can
form. This setting has interest in several contexts:

In computational geometry there is often a set of sites V and one wants to find
the triangulation of V that is optimal with respect to certain criteria.

In algebraic geometry and in integer programming one is interested in triangu-
lations of a lattice polytope P using only lattice points as vertices.

Subdivisions of some particular polytopes using only vertices of the polytope
turn out to be interesting mathematical objects. For example, for a convex
n-gon and for the prism over a d-simplex they are isomorphic to the face posets
of two remarkable polytopes, the associahedron and the permutahedron.

Our treatment is very combinatorial. In particular, instead of regarding a
subdivision as a set of polytopes we regard it as a set of subsets of V , whose convex
hulls subdivide P . This may appear to be an unnecessary complication at first,
but it has advantages in the long run. It also relates this chapter to Chapter 6
(oriented matroids). For more application-oriented treatments of triangulations see
Chapters 27 and 29. A general reference for the topics in this chapter is [DRS10].

16.1 BASIC CONCEPTS

GLOSSARY

Affine span: The affine span of a set V ⊂ R
d is the smallest affine space, or flat,

containing V . It is denoted by aff (V ).

Convex hull: The convex hull of a set V ⊂ R
d is the smallest convex set con-

taining V . It is denoted by conv (V ).

Polytope: A polytope P is the convex hull of a finite set V of points. Its dimen-
sion is the dimension of its affine span aff (P ) = aff (V ). A face of P is the set
P f := {x ∈ P : f(x) ≥ f(y) ∀y ∈ P} that maximizes a linear functional f . The
empty set and P are considered faces and every face is a polytope, of dimension
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416 C.W. Lee and F. Santos

ranging from −1 (empty set), 0 (vertices), 1 (edges), 2, . . . , to d − 1 (facets),
and d (P itself). The set of vertices will be denoted by vert (P ). The boundary
of a d-dimensional polytope is the union of all its proper faces. See Chapter 15.

Polytopal complex: A polytopal complex is a finite, nonempty collection S =
{P1, . . . , Pk} of polytopes in R

d such that every face of each Pi ∈ S is in S,
and such that Pi ∩ Pj is always a common face of both (possibly empty). The
dimension of S, dim (S), is the largest dimension of Pi. S is pure if all maximal
polytopes in S have the same dimension [Zie95]. The k-skeleton of Pi is the
k-dimensional complex consisting of faces of dimension at most k.

Faces of a set: Let S be a subset of a finite set V of points in R
d. We say S is a

face of V if there is a face F of the polytope P = conv (V ) for which S = V ∩F .
Note that S may include points that are not vertices of F . The dimension of S
is the dimension of conv (S), and faces of dimension 0, 1, and dim (V ) − 1 are
referred to as vertices, edges, and facets, respectively, of the set V .

Subdivision: Suppose V is a finite set of points in R
d such that P = conv (V )

is d-dimensional. A subdivision of V is a finite collection S = {S1, . . . , Sm} of
subsets of V , called cells, such that:

(DP) for each i ∈ {1, . . . ,m}, Pi := conv (Si) is d-dimensional (a d-polytope);

(UP) P is the union of P1,. . . ,Pm; and

(IP) if i 6= j then F := Si ∩ Sj is a common (possibly empty) proper face of Si

and Sj and Pi ∩ Pj = conv (F ).

We will also say that S is a subdivision of the polytope P . The collection of
polytopes P1, . . . , Pm, together with their faces, is a pure polytopal complex.

Trivial subdivision: The trivial subdivision of V is the subdivision {V }.
Simplex: A d-dimensional simplex is a d-polytope with exactly d + 1 vertices.

Equivalently, it is the convex hull of a set of affinely independent points in R
d.

We will also refer to the set of vertices of a d-simplex as a d-simplex.

Triangulation: A subdivision of V is a triangulation if every cell is a simplex.

Faces: The faces of a subdivision {S1, . . . , Sm} are S1, . . . , Sm and all their faces.

EXAMPLES

In Figure 16.1.1, (a) shows a set of six points in R
2. The collection of three polygons

in (b) is not a subdivision of that set since not every pair of polygons meets along
a common edge or vertex; (c) shows a subdivision that is not a triangulation; and
(d) gives a triangulation.

FIGURE 16.1.1

(a) A set of points.
(b) A nonsubdivision.
(c) A subdivision.
(d) A triangulation. (a) (b) (c) (d)
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16.2 BASIC CONSTRUCTIONS AND PROPERTIES

GLOSSARY

The size of a subdivision is its number of cells (full dimensional faces). That is,
the size of S = {S1, . . . , Sm} is m.

Diameter of a subdivision: Let S = {S1, . . . , Sm} be a subdivision and let
Pi = conv (Si), 1 ≤ i ≤ m. Polytopes Pi 6= Pj are adjacent if they share a
common facet. A sequence Pi0 , . . . , Pik is a path if Pij and Pij−1 are adjacent
for each j, 1 ≤ j ≤ k. The length of such a path is k. The distance between
Pi and Pj is the length of the shortest path connecting them. The diameter of
S is the maximum distance occurring between pairs of polytopes Pi, Pj .

Refinement of a subdivision: Suppose S = {S1, . . . , Sl} and T = {T1, . . . , Tm}
are two subdivisions of V . Then T is a refinement of S if for each j, 1 ≤ j ≤ m,
there exists i, 1 ≤ i ≤ l, such that Tj ⊆ Si. In this case we will write T ≤ S.

Visible facet: Let P = conv (V ) be a d-polytope in R
d, F a facet of P , and v

a point in R
d. We say that F (or that F ∩ V , as a facet of V ) is visible from

v if the unique hyperplane containing F has v and the interior of P in opposite
sides. If P is a k-polytope in R

d with k < d and v ∈ aff (P ), then the above
definition is modified in the obvious way, taking aff (P ) as the ambient space.

Placing a vertex: Suppose S = {S1, . . . , Sm} is a subdivision of V and v 6∈ V .
The subdivision T of V ∪ {v} that results from placing v is obtained as follows:

If v 6∈ aff (V ), then T = {Si ∪ {v} : Si ∈ S} (cone over S with apex v).

If v ∈ aff (V ), then T equals S together with the faces F ∪ {v} for each
(d− 1)-face F in S that is contained in a facet of conv (V ) visible from v.

Note that if v ∈ conv (V ), then S = T (that is, T does not use v).

Pulling a vertex: Suppose S = {S1, . . . , Sm} is a subdivision of V and v ∈
S1 ∪ · · · ∪ Sm. The result of pulling v is the refinement T of V obtained by
modifying each Si ∈ S as follows. It was described in [Hud69, Lemma 1.4].

If v 6∈ Si, then Si ∈ T .

If v ∈ Si, then for every facet F of Si not containing v, F ∪ {v} ∈ T .

Pushing a vertex: Suppose S = {S1, . . . , Sm} is a subdivision of V (where
dim (conv (V )) = d) and v ∈ S1 ∪ · · · ∪ Sm. The result of pushing v is the
refinement T of V obtained by modifying each Si ∈ S as follows:

If v 6∈ Si, then Si ∈ T .

If v ∈ Si and Si \ {v} is (d−1)-dimensional (i.e., conv (Si) is a pyramid with
apex v), then Si ∈ T .

If v ∈ Si and Si \ {v} is d-dimensional, then Si \ {v} ∈ T and for every facet
F of Si \ {v} that is visible from v, F ∪ {v} ∈ T .
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Lexicographic subdivisions: A subdivision T of V is lexicographic if it can
be obtained from the trivial subdivision by pushing and/or pulling some of the
points in V in some order. If only pushings (resp. pullings) are used, we call it
a pushing (resp. pulling) subdivision.

16.2.1 LEXICOGRAPHIC SUBDIVISIONS

Refinement of subdivisions of V is a partial order with a unique maximal element,
the trivial subdivision, and whose minimal elements are the triangulations of V :
Every subdivision that is not a triangulation can be lexicographically refined.

Lexicographic triangulations were introduced by Sturmfels [Stu91] and studied
in detail by Lee [Lee91]. The following results show that they are a quite versatile
way of constructing subdivisions. For more details see [DRS10, Sect. 4.3]:

1. Placing and pushing are closely related: the triangulation obtained by placing
the points of V in a certain order is the same as obtained starting with the
trivial subdivision of V and pushing the points of V in the opposite order.

2. Placing all elements of V in any given order produces a triangulation of V .
If the order is chosen so that no point is in the convex hull of the previously
placed ones (e.g., ordering the points with respect to a generic linear func-
tional) then the triangulation obtained uses all points of V as vertices. This
shows that every finite set V is the vertex set of some triangulation of V .

3. Pulling or pushing a vertex v in a lexicographic subdivision in which v had
already been pushed or pulled produces no effect. Hence, every lexicographic
subdivision can be determined as an ordered subset of V indicating, for each
point in it, whether it is to be pulled or pushed.

4. After all but an affinely independent subset of V have been pulled or pushed
the lexicographic subdivision is a triangulation. For pullings the converse
does not hold, but for pushings it does: For every ordering {v1, . . . , vn} of the
points in V such that the last d+1 are affinely independent, each of the first
n− d − 1 pushings produces a proper refinement. In particular, the poset of
subdivisions of V has chains of length at least n− d− 1, for every V .

5. In a pulling subdivision, all cells contain the first point that is pulled.

6. In a pushing subdivision S, if all points except those of a subset F ⊂ V are
pushed, then F is a face of S.

7. Both operations may produce subdivisions that do not use all the points of
V : if a v ∈ V is pushed before it is a vertex, then it disappears from all cells
containing it. The same happens if v ∈ V is in the relative interior of a face F
of a subdivision and another point of F is pulled. In particular, in a pulling
triangulation at most one point in the interior of conv (V ) is used.

8. If card (V ) ≤ d+ 3, then every triangulation of V is lexicographic [Lee91]:

If card (V ) = d+ 1, then V has a unique triangulation, the trivial one.

If card (V ) = d + 2, let (λ1, . . . , λd+2) be the unique (up to rescaling)
affine dependence among V = {v1, . . . , vd+2}. (That is, the solution to∑

i λi = 0 and
∑

i λivi = 0.) Then, V has exactly two triangulations

T+ = {V \ {vi} | λi > 0} and T− = {V \ {vi} | λi < 0}.
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T+ (resp. T−) is obtained by pushing any vi with λi > 0 (resp. λi < 0)
or by pulling any vi with λi < 0 (resp. λi > 0). See Figure 16.3.1.

If card (V ) = d+3, then V has at most d+3 triangulations, with equality
if (but not only if) no d + 1 points lie in a hyperplane. They can all
be obtained by pushing the points in specific orders, but not always by
pulling them. See an example in Figure 16.4.1.

The triangulations in Figure 16.3.2, with d+ 4 points, are not lexicographic.

EXAMPLES

FIGURE 16.2.1

(a) Pulling point 1 already gives a trian-
gulation.
(b) Pushing triangulation for the order
1234567. Equivalently, placing triangu-
lation for the order 7654321.
(c) Pushing at 1 then pulling at 2. (c)(a) (b)
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Figure 16.2.1 gives three lexicographic triangulations. (a) is obtained by pulling
point 1, but cannot be obtained by pushing alone. (b) is obtained by pushing the
points in the indicated order, but cannot be obtained by pulling points alone. (c)
is obtained by pushing point 1 and then pulling point 2.

16.2.2 NUMBER, SIZE, AND DIAMETER OF TRIANGULATIONS

Size and diameter of subdivisions are monotone with respect to refinement, so the
maximum is always achieved at a triangulation.

Every d-dimensional triangulation with n vertices has size bounded above by
O(n⌈d/2⌉), achieved for example for (some) triangulations of cyclic polytopes. See
Section 16.7. Note that asymptotic bounds in this section consider d fixed.

Every set V has triangulations of diameter at most 2(n−d−1), since pushing a
point in a subdivision increases its diameter by at most two units [Lee91]. No good
upper bound is known for the diameters of all triangulations. In particular, no upper
bound for the diameter that is polynomial in both d and n is known (obtaining them
is essentially as difficult as solving the polynomial Hirsch conjecture for polytopes),
and no construction of triangulations with diameter greater than a small constant
times n− d is known. See [San13] and the references therein.

A triangulation of V is completely determined if we know its faces up to di-
mension d/2 [Dey93]. Hence the number of different triangulations V can have is

bounded above by 2(
n

d/2+1). This bound is not far from the number of triangulations

of a cyclic d-polytope with n vertices, which is in 2Ω(n⌊d/2⌋) [DRS10, Sect. 6.1.6].

16.2.3 TRIANGULATIONS AND ORIENTED MATROIDS

Checking whether a given collection S of subsets of V is a subdivision (or a trian-
gulation) can be done knowing the oriented matroid M of V alone. (We refer to
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Chapter 6 or to [BLS+99] for details on oriented matroids). Indeed, properties (1)
and (2) of the following theorem are respectively equivalent to (DP) and (IP) in
the definition of subdivision. Once (IP) and (DP) hold, (3) is equivalent to (UP).

THEOREM 16.2.1 [DRS10, Theorems 4.1.31 and 4.1.32]

A collection S = {S1, . . . , Sm} of subsets of V ⊂ R
d is a subdivision if and only if:

1. Every Si is spanning in (that is, contains a basis of) M .

2. For every oriented circuit C = (C+, C−) in M with C+ ⊂ Si for some Si ∈ S,
either C− ⊂ Si or C− is not contained in any Sj ∈ S.

3. S is not empty and for every Si in S and facet F of Si, either F is contained
in a facet of M or there is another Sj ∈ M having F as a facet and lying in
the other side of F . (Facets of V can easily be detected via cocircuits of M .)

This led Billera and Munson to introduce triangulations of (perhaps not realiz-
able) oriented matroids [BM84], including notions of placing, pulling and pushing
for them. See also [BLS+99, Ch. 9] and [San02]. The oriented matroid approach to
triangulations is implemented in the software package TOPCOM [PR03, Ram02],
which is currently part of the distribution of polymake (see Chapter 67).

16.3 REGULAR TRIANGULATIONS AND SUBDIVISIONS

One way to construct a subdivision of a point set V ⊂ R
d is to lift it to R

d+1 and
then look at the projection of the lower facets (facets visible from below) of the
lifted point set. This allows any convex hull algorithm in R

d+1 (see Chapter 26
of this Handbook) to be used to compute subdivisions in R

d. The subdivisions
obtained in this way are called regular, and they have some special properties.

GLOSSARY

Regular subdivision: Let V = {v1, . . . , vn} ⊂ R
d and let α = (α1, . . . , αn) ∈ R

n

be any vector. The regular subdivision of V obtained by the lifting vector
α is defined as follows [GKZ94, Lee91, Zie95, DRS10]:

(i) Let ṽi = (vi, αi) for each i and compute the facets of Ṽ = {ṽ1, . . . , ṽn}.
(ii) Project the lower facets of Ṽ onto R

d.

Here, a lower facet of Ṽ is a facet that is visible from below. That is, a facet
whose outer normal vector has its last coordinate negative. Observe that the
“projection” step is combinatorially trivial. For each lower facet {ṽi1 , . . . , ṽik}
of Ṽ we simply make {vi1 , . . . , vik} a cell in the subdivision.

Combinatorially isomorphic subdivisions: Let V and V ′ be point sets. A
subdivision S of V and a subdivision S′ of V ′ are combinatorially isomorphic
if there is a bijection between V and V ′ such that for every face F of S the
corresponding subset F ′ ⊆ V ′ is a face of S′, and vice-versa. See Figure 16.3.2.

Shellable: A pure polytopal complex S is shellable if it is 0-dimensional (i.e.,
a nonempty finite set of points) or else dim (S) = k > 0 and S has a shelling,
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i.e., an ordering P1, . . . , Pm of its maximal faces such that for 2 ≤ j ≤ m the
intersection of Pj with P1∪· · ·∪Pj−1 is nonempty and is the beginning segment
of a shelling of the (k−1)-dimensional boundary complex of Pj [Zie95].

Nonconvex polytope: The region of Rd enclosed by a (d− 1)-dimensional pure
polytopal complex homeomorphic to a sphere.

16.3.1 PROPERTIES AND EXAMPLES OF REGULAR SUBDIVISIONS

All regular subdivisions are shellable. To see this, consider a ray in the direction
(0, . . . , 0,−1) emitted from a point in the interior of conv (Ṽ ) and in sufficiently
general position. The order in which the ray crosses the supporting hyperplanes
of the lower facets of Ṽ is a shelling order. (This is an example of a line shelling
of conv (Ṽ ); see [BM71, Zie95]). In contrast, there exist nonshellable subdivisions,
starting in dimension 3. The first example was Rudin’s nonshellable triangulation
of a tetrahedron [Rud58]. For some additional discussion, including a nonshellable
triangulation of the 3-cube, see Ziegler [Zie95].

Regular subdivisions include all lexicographic ones. The subdivision obtained
by pushing/pulling vi1 , . . . , vik in that order coincides with the regular subdivision
constructed by choosing |αi1 | ≫ · · · ≫ |αik | ≫ 0, where αi > 0 if vi is pushed and
αi < 0 if vi is pulled, and choosing αi = 0 if vi is neither pulled nor pushed. Pulling
or pushing points in a regular subdivision produces a regular subdivision.

Non-regular subdivisions exist for all dimensions d ≥ 2 and number of points
n ≥ d + 4 [Lee91] (see Figure 16.3.2(b) for a smallest example). In dimension 2
all subdivisions are combinatorially isomorphic to regular ones as a consequence
of Steinitz’s Theorem (see [Grü67, Zie95] and Chapter 15 of this Handbook). For
d ≥ 3 and n ≥ 7 the same is not true [Lee91] (see Figure 16.3.3(b)).

There are, in general, many fewer regular than nonregular triangulations:

For fixed n− d, the number of regular subdivisions of V is bounded above by a
polynomial of degree (n−d−1)2 in d [BFS90]. In contrast, the number of non-
regular triangulations can grow exponentially, even fixing n− d = 4 [DHSS96].

For fixed d, the number of regular triangulations is bounded above by 2O(n logn)

while the number of nonregular ones can grow as 2Ω(n⌊d/2⌋) [DRS10, Sec. 6.1].

A prime example of a regular subdivision is the Delaunay subdivision, obtained
with αi = ‖vi‖2. In fact, regular subdivisions are sometimes called weighted De-
launay subdivisions. The regular subdivision obtained with αi = −‖vi‖2 is the
“farthest site” Delaunay subdivision. See Chapter 27 of this Handbook.

Regularity of a subdivision of V cannot be decided based only on the oriented
matroid of V : the two point sets in Figure 16.3.2 have the same oriented matroid,
yet the triangulation in (a) is regular and the triangulation in (b) is not.

Checking regularity is equivalent to feasibility of a linear program on n variables
(the αi’s) with one constraint for each pair of adjacent cells (local convexity of the
lift) [DRS10, Sec. 8.2]. On the other hand, checking whether a triangulation or
subdivision is combinatorially isomorphic to a regular one is very hard, as difficult
as the existential theory of the reals (determining feasibility of systems of real
polynomial inequalities). See comments on the Universality Theorem in Chapters 6
and 15 of this Handbook, and in [Zie95]).
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EXAMPLES

Figure 16.3.1 shows the two triangulations (both regular) of the vertices of a 3-
dimensional bipyramid over a triangle. In (a) there are two tetrahedra, sharing a
common internal triangle; in (b) there are three, sharing a common internal edge.

FIGURE 16.3.1

The two triangulations of a set of 5 points in R
3. (b)(a)

Figure 16.3.2 shows the same triangulation for two different sets of 6 points in
R

2 having the same oriented matroid. Only the first triangulation is regular.

FIGURE 16.3.2

A regular and a nonregular (but combinatorially
isomorphic) triangulation. (b)(a)

Figure 16.3.3 shows two 3-polytopes, both with 7 vertices. The “capped trian-
gular prism” in (a) admits two nonregular triangulations: {1257, 1457, 1236, 1267,
1345, 1346, 1467} and {1245, 1247, 1237, 1367, 1356, 1456, 1467}. Both triangula-
tions are combinatorially isomorphic to regular ones. The polytope in (b) is ob-
tained from the capped triangular prism by slightly rotating the top triangle. It
has one nonregular triangulation, not combinatorially isomorphic to a regular one:
{1245, 1247, 1237, 1367, 1356, 1456, 1467, 2457, 2367, 2345}. See [Lee91].

FIGURE 16.3.3

Two polytopes with nonregular triangulations. (b)(a)
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16.3.2 TRIANGULATING REGIONS BETWEEN POLYTOPES

Not every nonconvex polytope can be triangulated without additional vertices.
One classical example is Schönhardt’s 3-polytope [Sch28] [DRS10, Example 3.6.1]:
a nonconvex octahedron obtained by slightly rotating with respect to one another
the two triangular facets of a triangular prism. However, regular triangulations can
sometimes be used to triangulate nonconvex regions:

• Suppose P and Q are two d-polytopes in R
d with Q contained in P . If we

start with the trivial subdivision and push all vertices of P , then we get a
subdivision in which the region of P outside Q is triangulated [GP88].

• Now suppose P and Q are two disjoint d-polytopes in R
d with vertex sets V

and W , respectively. One can triangulate the region in conv (P ∪ Q) that is
exterior to both P and Q by the following procedure [GP88]:

1. Let H be a hyperplane for which P and Q are contained in opposite
open halfspaces. Construct a regular subdivision of V ∪W by setting αi

equal to the distance of vi to H for each vi ∈ V ∪W . For example, if
H = {x | a · x = β}, then αi can be taken to equal |a · vi − β|.

2. Refine this arbitrarily and ignore the simplices within P or Q.

However, if we are given three mutually disjoint polytopes P , Q and R it may
be impossible to triangulate, without additional vertices, the region in conv (P ∪
Q ∪ R) that is exterior to the three. As an example, removing the three tetra-
hedra 2457, 2367, 2345 from the convex hull of 234567 in Figure 16.3.3(b) gives
Schönhardt’s nontriangulable 3-polytope [Sch28].

16.4 SECONDARY AND FIBER POLYTOPES

This section deals with the structure of the collection of all regular subdivisions of a
given finite set of points V = {v1, . . . , vn} ⊂ R

d. The main result is that the poset
of regular triangulations of V is isomorphic to the face poset of a certain polytope,
the secondary polytope of V . This polytope plays an important role in the study
of generalized discriminants and determinants [GKZ94] and Gröbner bases [Stu96].
Secondary polytopes are studied in detail in [DRS10, Ch. 5].

16.4.1 SECONDARY POLYTOPES

GLOSSARY

Volume vector: Suppose T is a triangulation of V = {v1, . . . , vn}. Define the
volume vector z(T ) = (z1, . . . , zn) ∈ R

n by zi =
∑

vi∈F∈T vol (F ), where the
sum is taken over all d-simplices F in T having vi as a vertex. z(T ) is sometimes
called the GKZ-vector of T , to honor Gelfand, Kapranov, and Zelevinsky.

Secondary polytope: The secondary polytope Σ(V ) is the convex hull of the
volume vectors of all triangulations of V .
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Link: The link of a face F of a triangulation T is {G | F ∪G ∈ T, F ∩G = ∅}.

THEOREM 16.4.1 Gelfand, Kapranov, and Zelevinsky [GKZ94]

1. Σ(V ) has dimension n−d−1. Its affine span is defined by the d+1 equations

n∑

i=1

zi = (d+ 1)vol (P ), and
n∑

i=1

zivi = (d+ 1)vol (P )c, (16.4.1)

where c is the centroid of P = conv (V ).

2. The poset of (nonempty) faces of Σ(V ) is isomorphic to the poset of all regular
subdivisions of V , partially ordered by refinement:

• For a given regular subdivision S of V , the volume vectors of all regu-
lar triangulations that refine S are the vertices of a face FS of Σ(V ).
This face contains also the volume vectors of nonregular triangulations
refining S, but these are never vertices of it.

• A lifting vector (α1, . . . , αn) produces S as a regular subdivision if and
only if it lies in the relatively open normal cone of FS in Σ(V ).

The secondary polytope Σ(V ) can also be expressed as a discrete or continuous
Minkowski sum of polytopes coming from a representation of V as a projection of
the vertices of an (n−1)-dimensional simplex. See Section 16.4.3.

The following are consequences of Theorem 16.4.1:

1. The vertices of Σ(V ) are the volume vectors of the regular triangulations.

2. Two nonregular triangulations can have the same volume vector, but two
regular ones, or a regular and a nonregular one, cannot. This implies that
the triangulation of Figure 16.3.2(b) is nonregular: Flipping three diagonals
in it produces another triangulation with the same volume vector.

Lifting vectors, as used in the definition of regular subdivision, correspond to
linear functionals in the ambient space of Σ(V ): Suppose S = {S1, . . . , Sm} is
a regular subdivision of V = {v1, . . . , vn} ⊂ R

d determined by lifting numbers
α1, . . . , αn. Let f : conv (V ) → R be the piecewise-linear convex function whose
graph is given by the lower facets of Q = conv ({(v1, α1), . . . , (vn, αn)}). Define cj
to be the centroid of the polytope Pj = conv (Sj), 1 ≤ j ≤ m. Then the inequality

n∑

i=1

αizi ≥ (d+ 1)

m∑

j=1

vol (Pj)f(cj)

is valid on the secondary polytope and holds with equality at the volume vector of a
triangulation T if and only if T refines S. This allows for a local monotone algorithm
to construct the regular triangulation corresponding to a certain lifting vector α:
start with any regular triangulation T of V (for example, a lexicographic one) and do
flips in it (see Section 16.4.2) always decreasing

∑n
i=1 αizi and keeping the regularity

property. When such flips no longer exist we have the desired regular triangulation.
For Delaunay triangulations this procedure was first described in [ES96].

There are two ubiquitous polytopes that can be constructed as secondary poly-
topes (see Chapter 15 of this Handbook):
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• When V is the set of vertices of a convex n-gon, Σ(V ) is the associahedron
of dimension n−3 [Lee89]. Explicit coordinates and inequalities for Σ(V ) can
be found in [Zie95]. See also Section 16.7.3.

• When V is the vertex set of the Cartesian product of a d-simplex and a
segment, Σ(V ) is a d-dimensional permutahedron , affinely isomorphic to
the convex hull of the (d+1)! vectors obtained by permuting the coordinates
in (1, 2, 3, . . . , d). See Section 16.7.1.

16.4.2 THE GRAPH OF TRIANGULATIONS OF V

GLOSSARY

(Oriented) circuits, Radon partitions: A circuit is a set C = {c1, . . . , ck} of
affinely dependent points such that every proper subset is affinely independent.
This implies, in particular, that k = dim(C) + 2 and that there is a unique (up
to rescaling) affine dependence λ = (λ1, . . . , λk) of C. (That is, a solution to∑

i λi = 0 and
∑

i λici = 0.) Since λ has no zero entries, this produces a natural
(and unique) way of partitioning C as the disjoint union of C+ = {ci | λi > 0}
and C− = {ci | λi < 0} with the property that conv (C+) ∩ conv (C−) 6= ∅. The
pair (C+, C−) is the oriented circuit or Radon partition of C.

Triangulations of a circuit: A circuit C with Radon partition (C+, C−) has
exactly two triangulations

T+ = {C \ {ci} | ci ∈ C+} and T− = {C \ {ci} | ci ∈ C−}.

See Figure 16.3.1 for an example.

Adjacent triangulations, bistellar flips, graph of triangulations: Let T
be a triangulation of V . Suppose there is a circuit C in V such that T contains
one of the two triangulations, say T+, of C, and suppose further that the links
in T of all the cells of T+ are identical. Then it is possible to construct a new
triangulation T ′ of V by removing T+ (together with its link) and inserting T−

(with the same link). This operation is called a (geometric bistellar) flip,
and T ′ is said to be adjacent to T . The set of all triangulations of V , under
adjacency by flips, forms the graph of triangulations, or flip-graph, of V .

Flips correspond to “next-to-minimal” elements in the refinement poset of subdi-
visons of V : If T1 and T2 are two adjacent triangulations of V , then there is a
subdivision S whose only two proper refinements are T1 and T2. Conversely, if all
proper refinements of a subdivision S are triangulations then S has exactly two
such refinements, which are adjacent triangulations [DRS10, Sec. 2.4].

In particular, all edges of the secondary polytope Σ(V ) correspond to adjacency
between regular triangulations. That is, the 1-skeleton of Σ(V ) is a subgraph of the
graph of triangulations of V . But it may not be an induced subgraph: sometimes
two regular triangulations T1 and T2 are adjacent but the intermediate subdivision
S is not regular, hence the flip between T1 and T2 does not correspond to an edge
of Σ(V ) [DRS10, Examples 5.3.4 and 5.4.16].
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Since the 1-skeleton of every (n− d− 1)-polytope is (n− d− 1)-connected and
has all vertices of degree at least n − d − 1, all regular triangulations of V have
at least n − d − 1 flips and the adjacency graph of regular triangulations of V is
(n− d− 1)-connected. For general triangulations the following is known:

• When |V | ≤ dim(V ) + 3 all triangulations are regular [Lee91]. When |V | =
dim(V ) + 4 every triangulation has at least three flips and the graph of all
triangulations of V is 3-connected [AS00].

• When dim(V ) ≤ 2 the graph of triangulations is known to be connected [Law72],
and triangulations are known to have at least n − 3 flips. Whether the flip-
graph is (n− 3)-connected for every V is an open question.

• Flip-deficient triangulations (that is, triangulations with fewer than n− d− 1
flips) exist starting in dimension three and with |V | = 8 [DRS10, Ex. 7.1.1].
Triangulations exist in dimension three with O(

√
n) flips, in dimension four

with O(1) flips, and in dimension six without flips [San00].

• Point sets exist with disconnected graphs of triangulations in dimension five
and higher [San05b]. In dimension six they can be constructed in general
position [San06]. Whether they exist in dimensions three and four is open.

The graph of triangulations of V is known to be connected for the vertex sets
of cyclic polytopes [Ram97], of Cartesian products of two simplices if one of them
has dimension at most three [San05a, Liu16a] and of regular cubes up to dimension
four [Pou13]. It is known to be disconnected for the vertex set of the Cartesian
product of a 4-simplex and a k-simplex, for sufficiently large k [Liu16b].

Figure 16.4.1 shows the five regular triangulations of a set of 5 points in R
2,

marking which pairs of triangulations are adjacent.

FIGURE 16.4.1

A polygon of regular triangulations.

See [DHSS96] for properties of the polytope that is the convex hull of the (0, 1)
incidence vectors of all triangulations of V , and for the relationship of it to Σ(V ).
For the vertex-set of a convex n-gon this polytope was first described in [DHH85].
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16.4.3 FIBER POLYTOPES

GLOSSARY

Fiber polytope: Let π : P → Q be an affine surjective map (a projection) from
a polytope P to a polytope Q. A section of π is a continuous map γ : Q → P
with π(γ(x)) = x for all x ∈ Q. The fiber polytope of π is defined to be the set
of all average values of the sections of π:

Σ(P,Q) =

{
1

vol (Q)

∫

Q

γ(x)dx | γ is a section of π

}
.

Equivalently, Σ(P,Q) equals the Minkowski average of all fibers of the map π.

π-induced and π-coherent subdivisions: A subdivision S of Q is π-induced if
each cell in S equals the image of the vertex set of a face of P . It is π-coherent
if π factors as Q → P ′ → P for a polytope P ′ of dimension dim(P ) + 1 and S
equals the lower part of the convex hull of P ′.

Baues poset: The poset of all nontrivial π-induced subdivisions, under refine-
ment, is called the Baues poset of π.

The fiber polytope Σ(P,Q) has dimension dim (P ) − dim (Q), and its face poset
equals the refinement poset of π-coherent subdivisions. Billera, Kapranov and
Sturmfels [BKS94] conjectured the Baues poset to be homotopy equivalent to a
(dimP−dimQ−1)-sphere, and they proved the conjecture for dimQ = 1. Although
the conjecture in its full generality was soon disproved [RZ96], the following so-
called Generalized Baues Problem received attention: When is the Baues poset
homotopy equivalent to a sphere of dimension dimP − dimQ − 1? See [Rei99] for
a survey of this problem and [BS92, BKS94, DRS10, HRS00, RGZ94, Zie95] for
general information on fiber polytopes. The following three cases are of special
interest:

1. When P is a simplex all the subdivisions of V = π(vert(P )) are π-induced
subdivisions, and π-coherent ones are the regular ones [BFS90, BS92, Zie95].
Σ(P,Q) is the secondary polytope of V . Examples in which the Baues poset
is disconnected exist [San06].

2. When dim(Q) = 1 the finest π-induced subdivisions are monotone paths
in the 1-skeleton of P with respect to the linear functional that is constant
on each fiber of π. Σ(P,Q) is the monotone path polytope of P and the
Baues complex is homotopy equivalent to a (dim(P )− 2)-sphere [BKS94].

3. When P is a regular k-cube, Q is a zonotope (a Minkowski sum of segments).
π-induced subdivisions are the zonotopal tilings of Q, the finest ones being
cubical tilings. The Bohne-Dress Theorem [RGZ94, HRS00] states that the
Baues poset coincides with the extension space of the oriented matroid dual
to that of Q. Examples of disconnected extension spaces (with dim(Q) = 3)
have been recently announced [Liu16c].

The d-dimensional permutahedron stands out as a fiber polytope belonging to
the three cases above: it is the monotone path polytope of the (d+1)-cube projected
to a line via the sum of coordinates, and it is the secondary polytope of the vertex
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set of ∆d × I for a d-simplex ∆d and a segment I. This coincidence is a special
instance of the combinatorial Cayley Trick: If πi : Pi → Qi, i = 1, . . . , k are
polytope projections with Qi ∈ R

d for all i then the fiber polytopes of the following
two projections, defined from the πi’s in the natural way, coincide [HS95, HRS00]:

ΠC : P1 ∗ · · · ∗ Pk → conv (Q1 × {e1} ∪ · · · ∪Qk × {ek}) ⊂ R
d+k,

ΠM : P1 × · · · × Pk → Q1 + · · ·+Qk ⊂ R
d.

Here Q1 + · · ·+Qk is a Minkowski sum, P1 × · · · × Pk is a Cartesian product,
P1∗· · ·∗Pk := conv ((P1×· · ·×{0}×{e1})∪· · ·∪({0}×· · ·×Pk×{ek})) ⊂ R

d1+···+dk+k

is the join of the polytopes Pi ⊂ R
di and conv (Q1 × {e1} ∪ · · · ∪ Qk × {ek}) is

called the Cayley polytope or Cayley sum of Q1, . . . , Qk.
When all the Pi’s are simplices we have that P1 ∗ · · · ∗ Pk is a simplex, so

that all subdivisions of the Cayley polytope are ΠC -induced, and the ΠM -induced
subdivisions of Q1 + · · ·+Qk are the mixed subdivisions, of interest in algebraic
geometry [HS95]. Hence, the Cayley Trick gives a bijection between all subdivisions
of a Cayley polytope and mixed subdivisions of the corresponding Minkowski sum.

If we further assume that all Pi’s are segments then ΠM -induced subdivisions
are zonotopal tilings Q1 + · · · +Qk, and the Cayley polytope of a set of segments
is called a Lawrence polytope. (Equivalently, a Lawrence polytope is a polytope
with a centrally symmetric Gale diagram. See Chapters 6 and 15 for the definition
of Gale diagrams). In particular, the Cayley Trick and the Bohne-Dress Theorem
imply the following three posets to be isomorphic, for a set Q1, . . . , Qk of segments:

The Baues poset of the Lawrence polytope conv (Q1 ×{e1} ∪ · · · ∪Qk × {ek}).
The poset of zonotopal tilings of the zonotope Q1 + · · ·+Qk.

The poset of extensions of the oriented matroid dual to {Q1, . . . , Qk}.

16.5 FACE VECTORS OF SUBDIVISIONS

In this section we examine some properties of the numbers of faces of different
dimensions of a triangulation or subdivision. More information on f -vectors, g-
vectors, and h-vectors can be found in Chapter 17 of this Handbook. But note that
the symbol d is here shifted by one unit with respect to the conventions there, since
there the h- and g-vector are usually meant for the boundary of a d-polytope.

GLOSSARY

Boundary and interior: Every face of dimension d−1 of a pure d-dimensional
complex S ⊂ R

d is contained in exactly one or two cells. Those contained in
one cell, together with their faces, form the boundary ∂S of S, which is a pure
polytopal (d− 1)-complex. The faces of S that are not in the boundary form the
interior of S, which is not a polytopal complex. The boundary complex of a
subdivision S of V equals {F | is a face of S and F ⊆ G for some facet G of V }.

f-vector: Let fj(S) denote the number of j-dimensional faces of S, −1 ≤ j ≤ d.
Note that f−1(S) = 1 since the empty set is the unique face of S of dimension
−1. The f -vector of S is f(S) = (f0(S), . . . , fd(S)). In an analogous way we
define f(∂S) and f(intS). Note that f−1(∂S) = 1 and f−1(intS) = 0.
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Simplicial polytope: A polytope all of whose faces are simplices.

(Geometric) simplicial complex: A polytopal complex all of whose faces are
simplices.

h-vector and g-vector: For a d-dimensional simplicial complex S we define
the h-vector h(S) = (h0(S), . . . , hd+1(S)) with generating function h(S, x) =∑d+1

i=0 hix
d+1−i as

d+1∑

i=0

hix
d+1−i =

d+1∑

i=0

fi−1(S)(x− 1)d+1−i.

We define the g-vector g(S) = (g0(S), . . . , g⌊(d+1)/2⌋(S)) as

gi(S) = hi(S)− hi−1(S), 1 ≤ i ≤ ⌊(d+ 1)/2⌋.

Take hi(S) = 0 if i < 0 or i > d+ 1, and gi(S) = 0 if i < 0 or i > ⌊(d+ 1)/2⌋.

16.5.1 h -VECTORS and g -VECTORS

The f -vector and the h-vector of a simplicial complex carry the same information
on S, since the definition of the h-vector can be inverted to give

d+1∑

i=0

fi−1x
d+1−i =

d+1∑

i=0

hi(S)(x + 1)d+1−i.

But the h-vector more directly captures topological properties of S. For example:

(−1)dhd+1 = −f−1 + f0 − f1 + · · ·+ (−1)d−1fd−1 + (−1)dfd = χ(S)− 1,

where χ(S) is the Euler characteristic of S. In particular, hd+1 = 0 if S is a ball
and hd+1 = 1 if S is a sphere, of whatever dimension.

For every triangulation T of a point configuration the following hold:

1. The sum
∑d+1

i=0 hi(T ) of the components of the h-vector equals fd(T ).

2. h0(T ) = f−1(T ) = 1 and hi(T ) ≥ 0 for all i [Sta96].

3. The h-vector of ∂T is symmetric; i.e., hi(∂T ) = hd−i(∂T ), 0 ≤ i ≤ d. These
are the Dehn-Sommerville equations; see [MS71, Sta96, Zie95] and Chapter 17
of this Handbook. The case hd(∂T ) = h0(∂T ) = 1 is Euler’s formula.

4. The h-vectors of T , ∂T , and intT are related in the following ways [MW71]:

hi(T )− hd+1−i(T ) = hi(∂T )− hi−1(∂T ) = gi(∂T ), 0 ≤ i ≤ d+ 1.

hi(T ) = hd+1−i(intT ), 0 ≤ i ≤ d+ 1.

In particular, the h-vectors and the f -vectors of ∂T and intT are completely
determined by the h-vector (and hence the f -vector) of T .

5. Assume further that T is shellable and that P1, . . . , Pm is a shelling order of
the d-dimensional simplices in T . In particular, each Pj meets

⋃j−1
i=1 Pi in

some positive number sj of facets of Pj , 2 ≤ j ≤ m. Define also s1 = 0. Then
hi(T ) equals card {j | sj = i}, 0 ≤ i ≤ d+ 1 [McM70, MS71, Sta96].
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6. Assume further that T is regular. Then, for every integer 0 ≤ k ≤
d+2, the vector (h0(T )−hd+k+1(T ), h1(T )−hd+k(T ), h2(T )−hd+k−1(T ), . . . ,
h⌊(d+k+1)/2⌋(T )−h⌊(d+k+2)/2⌋(T )) is an M -sequence [BL81]. (See Chapter 17
of this Handbook for the definition of M -sequence.)

Properties (1) to (5) above hold for any simplicial ball (simplicial complex
that is topologically a d-ball). Property (6) follows from the g-theorem, and it
would hold for all simplicial balls if the g-conjecture holds for simplicial sphere (see
Chapter 17 for details). In the other direction, Billera and Lee [BL81] conjectured
the conditions in part (6) to be also sufficient for a vector to be the h-vector of a
regular triangulation. In dimensions up to four the conditions indeed characterize
h-vectors of balls [LS11, Kol11], but in dimensions five and higher Kolins [Kol11]
has shown that some vectors satisfying property (6) are not the h-vectors of any
ball, let alone regular triangulation.

TABLE 16.5.1 h- and g-vectors of polytopal complexes.

S h-vector g-vector

{∅} (1) (1)

Set of n points (1, n− 1) (1)

Line segment (1, 0, 0) (1,−1)

Boundary of convex n-gon (1, n− 2, 1) (1, n− 3)

Trivial subdivision of convex n-gon (1, n− 3, 0, 0) (1, n− 4)

Boundary of tetrahedron (1, 1, 1, 1) (1, 0)

Trivial subdivision of tetrahedron (1, 0, 0, 0, 0) (1,−1, 0)

Boundary of cube (1, 5, 5, 1) (1, 4)

Trivial subdivision of cube (1, 4, 0, 0, 0) (1, 3,−4)

Triangulation of cube into 6 tetrahedra (1, 4, 1, 0, 0) (1, 3,−3)

(See Figure 16.7.3(a))

Boundary of triangular prism (1, 3, 3, 1) (1, 2)

Trivial subdivision of triangular prism (1, 2, 0, 0, 0) (1, 1,−2)

Triangulation of triangular prism (1, 2, 0, 0, 0) (1, 1,−2)

into 3 tetrahedra (See Figure 16.7.1)

The definitions of h- and g-vectors can be extended to arbitrary polytopal
complexes in the following recursive way:

1. g0(S) = h0(S).

2. gi(S) = hi(S)− hi−1(S), 1 ≤ i ≤ ⌊(d+ 1)/2⌋.
3. g(∅, x) = h(∅, x) = 1. (Here ∅ denotes the empty polytopal complex, not to

be confused with {∅}, the polytopal complex consisting of a the empty set.)

4. h(S, x) =
∑

G face of S

g(∂G, x)(x− 1)d−dim (G).

This restricts to the previous definition since g(∂∆, x) = 1 for every simplex ∆.
For example, the h-vector of the trivial subdivision of a point set V equals:

hi({V }) =






gi(∂({V })), 1 ≤ i ≤ ⌊d/2⌋,

0, ⌊d/2⌋ < i ≤ d.
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where ∂({V }) denotes the complex of proper faces of V [Bay93]. For any subdivision
S of V one has: hi(S) ≥ hi(P ) and hi(∂S) ≥ hi(∂P ) for all i. In particular,
fd(S) ≥ h⌊d/2⌋(∂S) ≥ h⌊d/2⌋(∂P ) [Bay93, Sta92, Kar04].

Table 16.5.1 lists the h-vectors and g-vectors of some polytopal complexes.

16.5.2 STACKED AND EQUIDECOMPOSABLE POLYTOPES

GLOSSARY

In the following definitions V is the vertex set of a convex d-polytope P .

Shallow triangulation: A triangulation T of V is called shallow if every face
F of T is contained in a face of P of dimension at most 2 dim (F ).

Weakly neighborly: A polytope P is weakly neighborly if every set of k + 1
vertices is contained in a face of dimension at most 2k for all k ≤ d/2.

Equidecomposable: If all triangulations of V have the same f -vector, then P is
equidecomposable.

Stacked, k-stacked: If P is simplicial and it has a triangulation in which there
are no interior faces of dimension smaller than d − k, then P is k-stacked. A
1-stacked polytope is simply called stacked.

Shallow triangulations were introduced in order to understand the case of equality
in the last result mentioned in Section 16.5.1: a shallow triangulation T has h(T ) =
h(P ) and h(∂T ) = h(∂P ). See [Bay93, BL93]. Stackedness and neighborliness are
somehow opposite properties for a polytope: if P is stacked then its f -vector is as
small as can be (for a given dimension and number of vertices) and if it is neighborly
(and simplicial, see Chapter 15) then it is as big as can be. Both properties have
implications for triangulations of P , in particular for shallow ones.

A polytope P is weakly neighborly if and only if all its triangulations are
shallow [Bay93]. In this case P is equidecomposable. Equidecomposability admits
the following characterization via circuits.

THEOREM 16.5.1 [DRS10, Section 8.5.3]

The following are equivalent for a point configuration V :

1. All triangulations of V have the same f -vector (V is equidecomposable).

2. All triangulations of V have the same number of d-simplices.

3. Every circuit (C+, C−) of V is balanced: card (C+) = card (C−).

The following are examples of weakly neighborly, hence equidecomposable,
polytopes [Bay93]: Cartesian products of two simplices of any dimensions, Lawrence
polytopes (see Section 16.4 for the definition), pyramids over weakly neighborly
polytopes, and subpolytopes of weakly neighborly polytopes. The only simplicial
weakly neighborly polytopes are simplices and even-dimensional neighborly poly-
topes (those for which every d/2 vertices form a face of the polytope; see Chap-
ter 15). The only weakly neighborly 3-polytopes are pyramids and the triangular
prism. Regular octahedra are equidecomposable, but not weakly neighborly.
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Assume now that P is simplicial. In this case having a shallow triangulation is
equivalent to being ⌊d/2⌋-stacked [Bay93]. McMullen [McM04] calls a triangulation
of P small-face-free, abbreviated sff, if it has no interior faces of dimension less
than d/2. That is, P has an sff triangulation if and only if it is (⌈d/2⌉− 1)-stacked.
Observe that shallow and sff are the same if d is odd, but they differ by one unit
in the dimension of the allowed interior faces if d is even. The sff-triangulation of
P is unique, in case it exists [McM04]. Its existence and the minimum size of its
interior feces are related to the g-vector of ∂P :

THEOREM 16.5.2 Generalized lower bound theorem [MW71, Sta80, MN13]

For any simplicial d-polytope P and any k ∈ {2, . . . , ⌊d/2⌋} one has gk(∂P ) ≥ 0,
with equality if and only if P is (k − 1)-stacked.

The inequality was proved by Stanley [Sta80] and the ‘if’ part of the equality
was already established in [MW71]. The ‘only if’ part was recently proved by Murai
and Nevo. The case k = 2 is the lower bound theorem, proved by Barnette [Bar73].

16.6 TRIANGULATIONS OF LATTICE POLYTOPES

A lattice polytope or an integral polytope is a polytope with vertices in Z
d (or,

more generally, in a lattice Λ ⊂ R
d). Lattice polytopes and their triangulations

have interest in algebraic geometry and in integer optimization. See [BR07, CLO11,
Stu96, BG09, HPPS14].

GLOSSARY

Normalized volume: The normalized volume of a lattice polytope P ⊂ R
d is

its Euclidean volume multiplied by d!. It is always an integer. All references to
volume in this section are meant normalized.

Empty simplex: A lattice simplex with no lattice points apart from its vertices.

Unimodular simplex: A lattice simplex ∆ ⊂ R
d whose vertices are an affine

lattice basis of Zd ∩ aff (∆). If dim(∆) = d this is equivalent to vol (∆) = 1.

Unimodular triangulation: A triangulation into unimodular simplices.

Flag triangulation: A triangulation (or a more general simplicial complex) in
which all minimal non-faces (i.e., minimal subsets of vertices that are not faces)
have at most size two. A flag triangulation is the clique complex of its 1-skeleton.

Width: The width of a lattice polytope P with respect to an integer linear func-
tional f : Zd → Z equals maxp∈P f(p) −minp∈P f(p). The width of P itself is
the minimum width taken over all non-zero integer linear functionals.

16.6.1 EMPTY SIMPLICES AND UNIMODULAR TRIANGULATIONS

Every lattice polytope P can be triangulated into empty simplices, via any trian-
gulation of A := P ∩ Z

d that uses all points (e.g., placing them with respect to a
suitable ordering). One central question on lattice polytopes is whether they have
unimodular triangulations, and how to construct them.
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In dimension two, every lattice polygon has unimodular triangulations since
every empty triangle is unimodular (by Pick’s Theorem, see [BR07]). The set of
unimodular triangulations of a lattice polygon is known to be connected under
bistellar flips, and the number of them is at most 23i+b−3, where i and b are the
numbers of lattice points in the interior and the boundary of P , respectively [Anc03].

In dimension three and higher there are empty non-unimodular simplices, which
implies that not every polytope has unimodular triangulations. Empty 3-simplices
are well understood, but higher dimensional ones are not:

1. Every 3-dimensional empty simplex is equivalent (modulo an affine integral
automorphism Z

d → Z
d) to the following ∆p,q, for some 0 ≤ p < q with

gcd(p, q) = 1 [Whi64]:

∆p,q := conv {(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)}.

In particular, they all have width one. Moreover, ∆p,q
∼= ∆p′,q′ if and only if

q′ = q and p′ = ±p±1 (mod q). Observe that vol (∆p,q) = q.

2. All but finitely many empty 4-simplices have width one or two [BHHS16]. The
exceptions have been computed up to volume 1000. The maximum volume
among them is 179 and the maximum width is 4, achieved at a unique empty
4-simplex [HZ00]. It is conjectured that no larger exceptions exist.

3. The quotient group of Zd by the sublattice generated by vertices of an empty
d-simplex is cyclic if d ≤ 4 but not always so if d ≥ 5 [BBBK11].

4. The maximumwidth of empty d-simplices lies between 2⌊d/2⌋−1 andO(d log d)
[Seb99, BLPS99] (see also Chapter 7).

The most general result about existence of unimodular triangulations is:

THEOREM 16.6.1 (Knudson-Mumford-Waterman [Knu73])

For each lattice polytope P there is an integer k ∈ N such that the dilation kP has
a unimodular triangulation.

The original proof of this theorem does not lead to a bound on k. That the
following k is valid for lattice d-polytopes of volume v was proved in [HPPS14]:

k = (d+ 1)!v!(d+1)(d+1)2v

.

It is easy to show that the set {k ∈ N | kP has some unimodular triangulation}
is closed under taking multiples, for every P [DRS10, Thm. 9.3.17]. But it is un-
known whether it contains all sufficiently large choices of k. It is also unknown
whether there is a global value kd that works for all polytopes of fixed dimension
d ≥ 4. These two open questions have a positive answer in dimension three, where
every k ∈ N\{1, 2, 3, 5} works for every lattice 3-polytope [KS03, SZ13], or if the re-
quirement is relaxed to kP having unimodular covers (sets of unimodular simplices
contained in P and covering it), which is weaker than unimodular triangulations:
there is a kd ∈ O(d6) such that kP has unimodular covers for every k ≥ kd and
every d-polytope P [BG99, Theorem 3.23].

There is some literature on the existence of unimodular triangulations for par-
ticular lattice polytopes. See [HPPS14] for a recent survey. A notable open question
is the following (see definition of smooth polytope in Section 16.6.2):
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QUESTION 16.6.2

Does every smooth polytope have a (regular) unimodular triangulation?

16.6.2 RELATION TO TORIC VARIETIES AND GRÖBNER BASES

Let K[x1, . . . , xn] be the polynomial ring over an algebraically closed field. For a
nonnegative integer vector u ∈ N

n we denote as xu the monomial
∏

i x
ui

i and to
each u ∈ Z

n we associate the binomial xu+−xu− , where u = u+−u− is the minimal
decomposition of u with u+, u− ∈ N

n. (This minimal decomposition is the unique
one in which u+ and u− have disjoint supports.) General references for the topics
in this section are [CLO11, Stu96]. See also Chapter 7 in this Handbook.

GLOSSARY

Let A ∈ Z
k×n be an integer matrix.

Toric ideal: The toric ideal of A, denoted IA, is the ideal generated by the
binomials {xu+ − xu− : Au = 0}. The variety cut out by IA is the (perhaps not
normal) affine toric variety of A, denoted XA.

Smooth polytope: A lattice polytope P is smooth if it is simple and the primitive
normals to the facets at each vertex form a lattice basis. Equivalently, if each
vertex v of P together with the first lattice point along each edge incident to v
forms a unimodular simplex.

Normal polytope: P is normal or integrally closed if every integer point in
k · conv (V ) can be written as the sum of k (perhaps repeated) points of V .

To emphasize the relations to triangulations of point sets, we assume that the
columns of A are {(a1, 1), . . . , (an, 1)} for a point set V = {a1, . . . , an} ∈ Z

d. Then
all binomials defining IA are homogeneous, so besides the affine toric variety XA

we have a projective variety YA. We also assume that V generates Zd as an affine
lattice (it is not contained in a proper sublattice). In these conditions:

1. The normalizations X̃A and ỸA ofXA and YA are the toric varieties associated
in the standard way to R≥0(A)

∨ and to the normal fan of conv (V ) [Stu96,
Cor. 13.6]. Here R≥0(A) is the cone generated by the columns of A and

R≥0(A)
∨ is its polar cone. ỸA is smooth if and only if conv (V ) is smooth.

2. XA is normal if and only if the semigroup Z≥0(A) is normal (that is, R≥0A∩
ZA = Z≥0A). Equivalently, if V = conv (V ) ∩ Z

d and conv (V ) is normal. In
this case YA is called projectively normal.

3. YA is normal if the same happens for sufficiently large k [Stu96, Thm. 13.11].

If V has a unimodular triangulation then the condition in (2) holds. Hence, a
positive answer to Question 16.6.2 is weaker than a positive answer to the following:

QUESTION 16.6.3 (Oda’s question)

Is every smooth projective toric variety projectively normal? That is, is every
smooth lattice polytope normal?
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Reduced Gröbner bases of IA are related to regular triangulations of V as
follows: Let α = (α1, . . . , αn) ∈ R

n be a generic weight vector. We can use α
to define a regular triangulation Tα of V , and also to define a monomial order in
K[x1, . . . , xn], which in turn defines a monomial initial ideal inα(IA) (and a Gröbner
basis) of IA. Then:

THEOREM 16.6.4 Sturmfels [Stu91], see also [Stu96, Chapter 8]

For every subset S ⊂ V we have that S is not a face in Tα if and only if S is the
support of a monomial in inα(IA). Said in a more algebraic language: the radical
of inα(IA) equals the Stanley-Reisner ideal of Tα.

Moreover, if Tα is unimodular, then inα(IA) is square-free (it equals its own
radical). In particular, the maximum degree of a generator in inα(IA) (and in the
associated reduced Gröbner basis) equals the maximum size of a set S that is not a
face in Tα but such that every proper subset of S is a face.

For example, if V has a regular, unimodular and flag triangulation, then IA
has a Gröbner basis consisting of binomials of degree two. For this reason regular
flag unimodular triangulations of lattice polytopes are called quadratic.

Observe that this theorem induces a surjective map from the monomial initial
ideals of IA to the regular triangulations of V . In case α is not generic then Tα may
be a subdivision instead of a triangulation, and inα(IA) may not be a monomial
ideal, but the above map extends to this case. That is to say, the Gröbner fan of
IA refines the secondary fan of V [Stu91].

In [Stu96, Ch. 10], Sturmfels further extends the correspondence in Theo-
rem 16.6.4 to a map from all the subdivisions of V to the set of A-graded ideals,
which generalize initial ideals of IA (see the definition in [Stu96]). This map is no
longer surjective, but its image contains all regular subdivisions and all unimodu-
lar triangulations. The set of all A-graded ideals has a natural algebraic structure
called the toric Hilbert scheme of A and, using a notion of “flip” between radical
monomial A-graded ideals, Maclagan and Thomas showed:

THEOREM 16.6.5 Maclagan and Thomas [MT02]

If two unimodular triangulations lie in different connected components of the graph
of triangulations of V then the corresponding monomial radical A-graded ideals lie
in different connected components of the toric Hilbert scheme of A.

Point configurations with unimodular triangulations not connected by a se-
quence of flips are known to exist [San05b]. Very recently Gaku Liu [Liu16b] has
announced that this happens also for the Cartesian product ∆4×∆N of a 4-simplex
and an N -simplex, which is a smooth polytope whose associated toric variety is the
Cartesian product P4×P

N of two projective spaces. That is to say, the toric Hilbert
scheme of P4 × P

N is disconnected, for sufficiently large N .

Another relation between triangulations and toric varieties comes from looking
at the affine toric variety UA associated to the cone R≥0(A) (recall XA was asso-
ciated to the dual cone R≥0(A)

∨). This can be defined for every integer matrix A
for which R≥0(A) is a pointed cone, but the case where the columns of A are of the
form (ai, 1) for a point configuration V = {a1, . . . , an} gives us the extra property
that UA is Gorenstein. Since this construction depends only on conv (V ) and not
V itself, we now assume V to be the set of all lattice points in conv (V ).

Then, every polyhedral subdivision T of V , considered as a polyhedral fan
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covering R≥0(A), induces an affine toric variety UT and a toric morphism UT → UA.
If T is a triangulation then UT only has quotient singularities, which are terminal if
T uses all lattice points in V . If T is a unimodular triangulation then UT is smooth;
that is, it is a resolution of the singularity of UA at the origin. These resolutions
are called crepant and they do not always exist (since not every lattice polytope
has unimodular triangulations). See [DHZ98, DHZ01] for more details on this.

16.6.3 RELATION TO COUNTING LATTICE POINTS

For an integral polytope P and a nonnegative integer n, let i(P, n) be the number
of integer points in nP . Equivalently, it is the number of points x ∈ P for which
nx has integer coordinates. Ehrhart (1962) showed that i(P, n) is a polynomial in
n of degree d. This implies that the generating function J(P, t) =

∑∞
n=0 i(P, n)t

n

can be rewritten as a rational function with denominator (1− t)d+1 and numerator
of degree at most d. That is:

J(P, t) =

∑d
j=0 h

∗
j t

j

(1− t)d+1
,

for a certain rational vector h∗(P ) = (h∗
0, . . . , h

∗
d). i(P, n) and J(P, t) are called,

respectively, the Ehrhart polynomial and Ehrhart series of P .
Stanley [Sta96] proved that h∗(P ) is a nonnegative integer vector and that:

THEOREM 16.6.6 Stanley [Sta96]

For every triangulation T of P one has h(T ) ≤ h∗(P ) coordinate-wise, with equality
if and only if T is unimodular. In particular, for a unimodular triangulation T :

i(P, n) =

d∑

i=0

(
n− 1

i

)
fi(T ).

See [Sta96, BR07] and Chapter 7 of this Handbook for more details on Ehrhart
polynomials. As an example, if P is the standard unit 3-cube, then its unimodular
triangulations have h(T ) = (1, 4, 1, 0, 0). Thus J(P, t) = (1 + 4t + t2)/(1 − t)4 =
(1+4t+t2)(1+4t+10t2+20t3+35t4+· · · ) = 1+8t+27t2+64t3+125t4+· · · , which
agrees with i(P, n) = (n+1)3. On the other hand, i(P o, n) = (n−1)3 = −i(P,−n).

16.7 TRIANGULATIONS OF PARTICULAR POLYTOPES

16.7.1 PRODUCT OF TWO SIMPLICES

Consider the (k+l)-polytope ∆k ×∆l, the product of a k-dimensional simplex ∆k

and an l-dimensional simplex ∆l. We look at triangulations of its vertex set Vk,l.
Triangulations of the product of two simplices have interest from several per-

spectives: They can be used as building blocks to triangulate more complicated
polytopes [Hai91, OS03, San00]. In toric geometry they correspond to Gröbner
bases of the toric ideal of the product of two projective spaces [Stu96]. Via the
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Cayley Trick, they correspond to mixed subdivisions of a dilated simplex [HRS00,
San05a]. This connection also relates them to tropical geometry, where they cor-
respond to tropical hyperplane arrangements, tropical convexity, and tropical ori-
ented matroids [AD09, Hor16]. In optimization, their regular triangulations are
closely related to dual transportation polytopes. See also [BCS88, DeL96, GKZ94]
or [DRS10, Sect. 6.2].

If ∆k and ∆l are taken unimodular then ∆k×∆l is totally unimodular; that
is, all maximal simplices with vertices in Vk,l are unimodular. This implies that
∆k×∆l is equidecomposable. In fact, for every triangulation T of ∆k×∆l, we have
fk+l(T ) = (k + l)!/(k!l!), and hi(T ) =

(
k
i

)(
l
i

)
for 0 ≤ i ≤ k + l (with hi(T ) taken

to be zero if i > min{k, l}) [BCS88]. For small values of k and/or l the following is
known. Most of it is proved via the Cayley Trick mentioned in Section 16.4:

1. All triangulations of ∆k × ∆1 are affinely equivalent. Hence, they are all
lexicographic. There are k! of them and the secondary polytope is (affinely
equivalent to) the k-dimensional permutahedron, the convex hull of the
points obtained permuting the coordinates of (1, 2, . . . , k+1). See Chapter 15.

2. All triangulations of ∆3 ×∆2 and ∆4 ×∆2 are regular. But all ∆k ×∆l with
min{k, l} ≥ 3 or k − 3 ≥ l = 2, have nonregular triangulations [DeL96].

3. The number of triangulations of ∆k ×∆2 grows as 2Θ(k2) [San05a].

4. The flip-graphs of ∆k ×∆2 and of ∆k ×∆3 are connected [San05a, Liu16a],
but that of ∆k ×∆4 is not, for large k [Liu16b].

The staircase triangulation of ∆k×∆l is easy to describe explicitly [BCS88,
GKZ94, San05a]: By ordering the vertices of ∆k and (independently) of ∆l we
have a natural bijection between Vk,l = {(vi, wj) : i = 0, . . . , k, j = 0, . . . , l} and

the integer points in [0, k]× [0, l]. Then, the vertices in each of the
(
k+l
k

)
monotone

paths from (0, 0) to (k, l) form a full-dimensional simplex in ∆k × ∆l, and these
simplices form a triangulation. The same triangulation is obtained starting with
the trivial subdivision of P and pulling the vertices in any order compatible with
the product order. That is, if i ≤ i′ and j ≤ j′, then (vi, wj) is pulled before
(vi′ , wj′ ). Figure 16.7.1 shows the staircase triangulation for ∆2 ×∆1, a triangular
prism. Its three tetrahedra are {00, 10, 20, 21}, {00, 10, 11, 21} and {00, 01, 11, 21},
where ij is an abbreviation for (vi, wj).

FIGURE 16.7.1

A triangulation of ∆2 ×∆1.

1101

21

10

20

00

The staircase triangulation generalizes to a product ∆l1 × · · · ×∆ln of n sim-
plices: consider the natural bijection between vertices of ∆l1 ×· · ·×∆ln and integer
points in [0, l1]×· · ·×[0, ln] and take as simplices the monotone paths from (0, . . . , 0)
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to (l1, . . . , ln). Staircase triangulations are the natural way to refine a Cartesian
product of simplicial complexes to become a triangulation, by triangulating each
individual product of simplices [ES52].

16.7.2 d -CUBES

The unit d-dimensional cube Id is the d-fold product of the unit interval I = [0, 1]
with itself. Here we consider triangulations of it using only its set V of ver-
tices. Up to d = 4 they have been completely enumerated: The 3-cube has
precisely 74 triangulations, all regular, falling into 6 classes modulo affine sym-
metries of the cube. Figure 16.7.2 shows the unique (modulo symmetry) triangu-
lation of size 5. The 4-cube has 92 487 256 triangulations in total (247 451 sym-

FIGURE 16.7.2

A minimum size triangulation of the 3-cube. 110
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metry classes) [PR03, Pou13] of which 87 959 448 are regular (235 277 symmetry
classes) [HSYY08]. Nonregular triangulations of it were first described in [DeL96].
Still, its graph of triangulations is connected [Pou13].

The maximum size of a triangulation of Id is d!, achieved by unimodular trian-
gulations. These include all pulling triangulations. Every unimodular triangulation
S of Id has hd(T ) = hd+1(T ) = 0 and hi(T ) = A(d, i), 0 ≤ i ≤ d− 1, where A(d, i)
is the Eulerian number (the number of permutations of {1, . . . , d} having exactly
i descents). Finding small triangulations of the d-cube is interesting in finite ele-
ment methods [Tod76]. The minimum possible size is called the simplexity of the
d-cube, which we denote ϕ(d). The following summarizes what we know about it:

Exact values are known up to dimension 7 [Hug93, HA96]. See Table 16.7.1.

TABLE 16.7.1 Minimal triangulations of d-cubes.

d 1 2 3 4 5 6 7

ϕ(d) 1 2 5 16 67 308 1493

Up to d = 5 a minimum triangulation can be obtained by Sallee’s corner
slicing idea [Hai91, Sal82]: if the 2d−1 vertices of Id with an odd number of
nonzero coordinates are sliced and the rest of Id is triangulated arbitrarily, a
triangulation T of Id arises in which all cells except the first 2d−1 have volume
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at least 2/d!. Hence, T has size at most (d! + 2d−1)/2. This equals ϕ(d) up to
d = 4 and is off by one for d = 5 (where a corner-slicing triangulation of size
ϕ(5) = 67 still exists). For d = 6, 7 the minimum corner-slicing triangulations
have sizes 324 and 1820 [Hug93, HA96], much greater than ϕ(d).

The Hadamard bound for matrices implies that no simplex contained in the
cube has volume greater than (d+ 1)(d+1)/2/(2dd!) [Hai91]. Hence,

ϕ(d) ≥ 2dd!(d+ 1)−(d+1)/2.

A better bound of

ϕ(d) ≥ 1

2

√
6
d
d!(d + 1)−(d+1)/2

is obtained with the same argument with respect to hyperbolic volume [Smi00].

For a triangulation S of size |S|, let

ρ(S) := (|S|/d!)1/d.

This parameter is called the efficiency of S [Tod76]. It is at most one for
every S, with equality if and only if S is unimodular. If Id has a triangulation
S of a certain efficiency then any triangulation of Ikd obtained by pulling re-
finement of the k-fold Cartesian product of S with itself has exactly the same
efficiency [Hai91]. This shows that limd→∞(ϕ(d)/d!)1/d exists, and that it is
less or equal than the efficiency of any triangulation of any Id. The best known
upper bound for this limit is [OS03]

lim
d→∞

(ϕ(d)/d!)1/d ≤ 0.816,

but no strictly positive lower bound is known. Observe, for example, that the
Hadamard bound only says (ϕ(d)/d!)1/d & 2√

d+1
. The improvement in [Smi00]

merely changes the constant 2 in the numerator to a
√
6.

SOME SPECIFIC TRIANGULATIONS OF I d

Standard or staircase triangulation: Consider the d! monotone paths from
(0, . . . , 0) to (1, . . . , 1) obtained by changing one coordinate from 0 to 1 at a
time. The vertices in each such path form a unimodular simplex, that we call
the monotone-path simplex corresponding to that permutation. The d! simplices
obtained in this way form a triangulation of Id, which is nothing but the staircase
triangulation of Id regarded as the product of d segments. It is also known as
Kuhn’s triangulation [Tod76] and it admits the following alternative descriptions:

It is the subdivision obtained slicing Id by all hyperplanes of the form xi = xj .

It is the pulling triangulation for any ordering of vertices with the following
property: for every face F of Id, the first vertex of F to be pulled is either the
vertex with minimum or maximum support.

It is the regular triangulation for the height function f(v) = −(
∑

vi)
2.

It is the flag triangulation containing the edge uv for two vertices u and v if
and only if u− v is nonnegative (or nonpositive).
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It is a special case of the triangulation of an order polytope by linear exten-
sions: the order polytope P (O) of a poset O on d elements {a1, . . . , ad} is the
subpolytope of Id cut by the inequalities xi ≤ xj for every ai < aj . (This is the
whole of Id when O is an antichain.) Linear extensions of O are in bijection to
permutations whose associated monotone-path simplex are contained in P (O),
and these simplices triangulate P (O).

Alcoved triangulation: If Id is sliced by all hyperplanes of the form xi+· · ·+xj =
m for 1 ≤ i < j ≤ d and m ∈ N another regular, unimodular triangulation of Id

is obtained. It was first described by Stanley, who showed a piecewise linear map
from Id to itself sending it to the standard triangulation. It was then studied in
detail in [LP07]. It is the flag triangulation whose edges are the pairs uv such that
the nonzero coordinates in u− v alternate between +1 and −1.

Sallee’s middle cut triangulation: Assume d ≥ 2. Slice the cube into two
polytopes by the hyperplane x1 + · · · + xd = ⌊d/2⌋. Refine this subdivision to a
triangulation by pulling the vertices in the following order: pull (v1, . . . , vd) in step

1 +
∑d−1

i=0 vi+12
i. This triangulation has size O(d!/d2) [Sal84].

EXAMPLES

Figure 16.7.3 shows two triangulations of the 3-cube: (a) the one resulting from
pulling the vertices in order of increasing distance to the origin, which equals the
standard triangulation. And (b), one resulting from pushing the following vertices
in order: 000, 100, 101, 001.

FIGURE 16.7.3

(a) A pulling triangulation of the 3-cube.
(b) A pushing triangulation of the 3-cube. 110
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16.7.3 CONVEX n -GONS

Let Vn be the set of vertices of a convex n-gon. A subdivision of Vn is determined
by a collection of mutually noncrossing internal diagonals, and vice versa. That
is, the Baues poset of Vn equals the poset of non-crossing sets of diagonals of the
n-gon (with respect to reverse inclusion). All subdivisions are regular (in fact, they
are all pushing), so this is also the face poset of the secondary polytope of Vn, the
associahedron of dimension n− 3. See [Lee89, GKZ94, Zie95, DRS10].

The number of triangulations of the n-gon is the Catalan number

Cn−2 =
1

n− 1

(
2n− 4

n− 2

)
∈ Θ

(
4n

n3/2

)
.
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This counts many other combinatorial structures, including the ways to parenthe-
size a string of n− 1 symbols, Dyck paths from (0, 0) to (n− 2, n− 2), and rooted
binary trees with n − 2 nodes. More generally, there are 1

n−1

(
n−3
j

)(
n+j−1
j+1

)
subdi-

visions of a convex n-gon having exactly j diagonals, 0 ≤ j ≤ n − 3. This equals
the number of (n− 3− j)-faces of the associahedron.

Two triangulations are adjacent if they share all but one diagonal. In particular,
the graph of triangulations is (n − 3)-regular. Its diameter equals 2n − 10 for all
n > 12 [STT88, Pou14]. The flip-distance between two triangulations equals the
rotation distance between the corresponding binary trees [STT88].

The associahedron is an ubiquitous polytope. It was first described by Tamari
(1951) and arose in works of Stasheff and Milnor in the 1960’s. The first explicit
constructions of it as a polytope (and not only as a cell complex) are by Haiman
(1984, unpublished) and Lee [Lee89]. Besides being a secondary polytope, it is a
generalized permutahedron, and dual to a cluster complex of type A. The latter
means that it can be realized with facet normals equal to the nonnegative roots
of type A in a way that captures the combinatorics of the corresponding cluster
algebra. See [CSZ15] and the references therein for more details.

16.7.4 CYCLIC POLYTOPES

Cyclic polytopes are neighborly polytopes with very nice combinatorial properties.
Being neighborly means their f -vectors and h-vectors are as big as can be, which
reflects in their triangulations having number, size and flip-graph diameter also
(asymptotically) as big as can be.

GLOSSARY

Cyclic polytope: The standard cyclic polytope Cd(n) of dimension d with n
vertices is the convex hull of the points c(1), . . . , c(n) on the d-dimensional mo-
ment curve, the parametrized curve c : R → R

d defined as

c(t) = (t, t2, . . . , td).

The convex hull of any n points in the curve has the same combinatorics (both as
a polytope and as an oriented matroid) as Cd(n). Depending on the context, one
calls cyclic polytope the convex hull of any n points in this curve, any polytope
with the same oriented matroid, or any polytope with the same face lattice.

Cyclic polytopes are simplicial and are the prime examples of neighborly poly-
topes: d-polytopes in which every ⌊d/2⌋ vertices form a face. For even d this implies
they are weakly neighborly in the sense of Section 16.5 (hence equidecomposable).

Consider the natural projection π : Cd+1(n) → Cd(n) that forgets the last
coordinate. Every triangulation T of Cd(n) is a section of this projection, and
every flip to another triangulation T ′ gives a section that is pointwise above or
below T . This allows us to speak of upward and downward flips, and to give
a structure of poset to the set of triangulations of Cd(n): T is below T ′ in the
poset if there is a sequence of upward flips from T to T ′. This poset is called the
first Stasheff-Tamari order, denoted T <1 T ′. The second Stasheff-Tamari
order is given by T <2 T ′ if the section produced by T is pointwise below that of
T ′. Clearly, T <1 T ′ implies T <2 T ′, but the converse is not known in general.
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The first Stasheff-Tamari order has a unique minimum and a unique maxi-
mum triangulation, which we denote T0̂ and T1̂: The lower and upper envelope of
Cd+1(n), which coincide with the pushing and pulling triangulations of Cd(n) with
respect to the natural ordering on the vertices. Other properties of this poset are
as follows (see [Ram97] or [DRS10, Ch. 6]):

Every triangulation of Cd(n) lies in some monotone path from the T0̂ to T1̂.

Every maximal chain of flips from T0̂ to T1̂ corresponds to a triangulation of
Cd+1(n), so that the length of the chain equals the size of the triangulation.

In odd dimension upward flips decrease size by exactly one, so that T0̂ and T1̂

are maximum and minimum in size, respectively.

These properties imply the following [DRS10, Corollary 6.1.20]:

1. The minimum and maximum sizes of triangulations of Cd(n) equal the num-
bers of upper and lower facets of Cd+1(n), which are:

(
n− ⌊(d+ 1)/2⌋ − 1

⌈(d+ 1)/2⌉ − 1

)
and

(
n− ⌈(d+ 1)/2⌉
⌊(d+ 1)/2⌋

)
.

2. If d is odd, the diameter of the flip graph of Cd(n) equals
(
n−(d+1)/2−1

(d+1)/2

)
(the

size of every triangulation of Cd+1(n)). Indeed, this is the length of every
monotone chain from T0̂ to T1̂, and for every two triangulations T and T ′

there is a cycle in the flip-graph going through them and of twice that length.

3. If d is even, every triangulation is at flip-distance at most
(n−d/2−2

d/2

)
from T1̂,

with equality for T0̂. Hence, the graph of flips of Cd(n) has diameter between(
n−d/2−2

d/2

)
and 2

(
n−d/2−2

d/2

)
.

Exact formulas exist for the number of triangulations of Cn−4(n) (the first
non-trivial case of few more vertices than the dimension). For even n, Cn−4(n) has

exactly (n+4)2(n−4)/2−n triangulations. Of these, at most 6
(
n/2
4

)
+3

(
n/2
3

)
+4

(
n/2
2

)
−

n/2+2 are regular, and this number is exact for sufficiently generic coordinatizations
of the oriented matroid of Cd(n) [AS02]. Similar but different formulas exist when
n is odd. For arbitrary number of vertices the following is proved in [DRS10]:

THEOREM 16.7.1 [DRS10, Thm. 6.1.22]

The cyclic polytope Cd(n) has at least Ω
(
2n

⌊d/2⌋)
triangulations, for d fixed.

16.8 SOURCES AND RELATED MATERIAL

FURTHER READING

Chapter 29 discusses triangulations of more general (e.g., nonconvex) objects. Chap-
ter 27 provides details on Delaunay triangulations and Voronoi diagrams. We refer
also to Chapter 15, on basic properties of convex polytopes. For the topics of
Sections 16.5 and 16.6; see also Chapters 17 and 7, respectively.
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A recent book covering the topics in this chapter is [DRS10]. A section on
triangulations and subdivisions of convex polytopes can be found in the survey
article [BL93]. The book [Zie95] and the article [Lee91] contain information on
regular subdivisions and triangulations; for their important role in generalized dis-
criminants and determinants see the book [GKZ94], and for their significance in
computational algebra see the book [Stu96]. Additional references can be found in
the above-mentioned sources, as well as the citations given in this chapter.
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Chapter 7: Lattice points and lattice polytopes
Chapter 15: Basic properties of convex polytopes
Chapter 17: Face numbers of polytopes and complexes
Chapter 20: Polyhedral maps
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Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 29: Triangulations and mesh generation
Chapter 36: Computational convexity
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[Stu96] B. Sturmfels. Gröbner Bases and Convex Polytopes. Vol. 8 of Univ. Lecture Ser., Amer.

Math. Soc., Providence, 1996.

[SZ13] F. Santos and G.M. Ziegler. Unimodular triangulations of dilated 3-polytopes. Trans.

Moscow Math. Soc., 74:293–311, 2013.

[Tod76] M.J. Todd. The Computation of Fixed Points and Applications. Vol. 124 of Lecture

Notes Econom. Math. Syst., Springer-Verlag, Berlin, 1976.

[Whi64] G.K. White. Lattice tetrahedra. Canadian J. Math., 16:389–396, 1964.

[Zie95] G.M. Ziegler. Lectures on Polytopes. Vol. 152 of Graduate Texts in Math., Springer-

Verlag, Berlin, 1995.

Preliminary version (August 7, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.


