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INTRODUCTION

Convex polytopes are fundamental geometric objects that have been investigated
since antiquity. The beauty of their theory is nowadays complemented by their im-
portance for many other mathematical subjects, ranging from integration theory,
algebraic topology, and algebraic geometry to linear and combinatorial optimiza-
tion.

In this chapter we try to give a short introduction, provide a sketch of “what
polytopes look like” and “how they behave,” with many explicit examples, and
briefly state some main results (where further details are given in subsequent chap-
ters of this Handbook). We concentrate on two main topics:

• Combinatorial properties: faces (vertices, edges, . . . , facets) of polytopes and
their relations, with special treatments of the classes of low-dimensional poly-
topes and of polytopes “with few vertices;”

• Geometric properties: volume and surface area, mixed volumes, and quer-
massintegrals, including explicit formulas for the cases of the regular simplices,
cubes, and cross-polytopes.

We refer to Grünbaum [Grü67] for a comprehensive view of polytope theory, and
to Ziegler [Zie95] respectively to Gruber [Gru07] and Schneider [Sch14] for detailed
treatments of the combinatorial and of the convex geometric aspects of polytope
theory.

15.1 COMBINATORIAL STRUCTURE

GLOSSARY

V-polytope: The convex hull of a finite set X = {x1, . . . , xn} of points in Rd,

P = conv(X) :=
{ n∑
i=1

λix
i
∣∣ λ1, . . . , λn ≥ 0,

n∑
i=1

λi = 1
}
.

H-polytope: The solution set of a finite system of linear inequalities,

P = P (A, b) :=
{
x ∈ Rd | aTi x ≤ bi for 1 ≤ i ≤ m

}
,

with the extra condition that the set of solutions is bounded, that is, such that
there is a constant N such that ||x|| ≤ N holds for all x ∈ P . Here A ∈ Rm×d is
a real matrix with rows aTi , and b ∈ Rm is a real vector with entries bi.
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Polytope: A subset P of some Rd that can be presented as a V-polytope or
(equivalently, by the main theorem below) as an H-polytope.

Affine hull aff(S) of a set S: The inclusion-minimal affine subspace of Rd that
contains S, which is given by

{∑p
j=1 λjx

j | p > 0, x1, . . . , xp ∈ S, λ1, . . . , λp ∈ R,∑p
j=1 λj = 1

}
.

Dimension: The dimension of an arbitrary subset S of Rd is defined as the
dimension of its affine hull: dim(S) := dim(aff(S)).

d-polytope: A d-dimensional polytope. The prefix “d-” denotes “d-dimensional.”
A subscript in the name of a polytope usually denotes its dimension. Thus “d-
cube Cd” will refer to a d-dimensional incarnation of the cube.

Interior and relative interior: The interior int(P ) is the set of all points x ∈ P
such that for some ε > 0, the ε-ball Bε(x) around x is contained in P .

Similarly, the relative interior relint(P ) is the set of all points x ∈ P such that
for some ε > 0, the intersection Bε(x) ∩ aff(P ) is contained in P .

Affine equivalence: For polytopes P ⊆ Rd and Q ⊆ Re, the existence of an
affine map π : Rd −→ Re, x 7−→ Ax+ b that maps P bijectively to Q. The affine
map π does not need to be injective or surjective. However, it has to restrict to a
bijective map aff(P ) −→ aff(Q). In particular, if P and Q are affinely equivalent,
then they have the same dimension.

THEOREM 15.1.1 Main Theorem of Polytope Theory (cf. [Zie95, Sect. 1.1])

The definitions of V-polytopes and of H-polytopes are equivalent. That is, every V-
polytope has a description by a finite system of inequalities, and every H-polytope
can be obtained as the convex hull of a finite set of points (its vertices).

Any V-polytope can be viewed as the image of an (n−1)-dimensional simplex
under an affine map π : x 7→ Ax+ b, while any H-polytope is affinely equivalent to
an intersection Rm≥0 ∩ L of the positive orthant in m-space with an affine subspace
[Zie95, Lecture 1]. To see the Main Theorem at work, consider the following two
statements. The first one is easy to see for V-polytopes, but not for H-polytopes,
and for the second statement we have the opposite effect:

1. Projections: Every image of a polytope P under an affine map is a polytope.

2. Intersections: Every intersection of a polytope with an affine subspace is a
polytope.

However, the computational step from one of the main theorem’s descriptions of
polytopes to the other—a “convex hull computation”—is often far from trivial.
Essentially, there are three types of algorithms available: inductive algorithms (in-
serting vertices, using a so-called beneath-beyond technique), projection algorithms
(known as Fourier–Motzkin elimination or double description algorithms), and re-
verse search methods (as introduced by Avis and Fukuda [AF92]). For explicit
computations one can use public domain codes as the software package polymake

[GJ00] that we use here, or sage [SJ05]; see also Chapters 26 and 67.
In each of the following definitions of d-simplices, d-cubes, and d-cross-polytopes

we give both a V- and an H-presentation. From this one can see that the H-
presentation can have exponential size (number of inequalities) in terms of the size
(number of vertices) of the V-presentation (e.g., for the d-cross-polytopes), and vice
versa (e.g., for the d-cubes).
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Definition: A (regular) d-dimensional simplex (or d-simplex) in Rd is given by

Td := conv
{
e1, e2, . . . , ed,

1−
√
d+ 1

d
(e1 + · · ·+ ed)

}
=

{
x ∈ Rd

∣∣ d∑
i=1

xi ≤ 1, −(1 +
√
d+ 1 + d)xk +

d∑
i=1

xi ≤ 1 for 1 ≤ k ≤ d
}
,

where e1, . . . , ed denote the coordinate unit vectors in Rd.

The simplices Td are regular polytopes (with a symmetry group that is flag-
transitive—see Chapter 18): The parameters have been chosen so that all edges of
Td have length

√
2. Furthermore, the origin 0 ∈ Rd is in the interior of Td: This is

clear from the H-presentation.
For the combinatorial theory one considers polytopes that differ only by an

affine change of coordinates or—more generally—a projective transformation to be
equivalent. Combinatorial equivalence is, however, still stronger than projective
equivalence. In particular, we refer to any d-polytope that can be presented as the
convex hull of d+1 affinely independent points as a d-simplex, since any two such
polytopes are equivalent with respect to an affine map. Other standard choices
include

∆d := conv{0, e1, e2, . . . , ed}

=
{
x ∈ Rd

∣∣ d∑
i=1

xi ≤ 1, xk ≥ 0 for 1 ≤ k ≤ d
}

and the (d−1)-dimensional simplex in Rd given by

∆′d−1 := conv{e1, e2, . . . , ed}

=
{
x ∈ Rd

∣∣ d∑
i=1

xi = 1, xk ≥ 0 for 1 ≤ k ≤ d
}
.

FIGURE 15.1.1
A 3-simplex, a 3-cube, and a 3-cross-polytope (octahedron).

Definition: A d-cube (a.k.a. the d-dimensional hypercube) is

Cd := conv
{
α1e

1 + α2e
2 + · · ·+ αde

d | α1, . . . , αd ∈ {+1,−1}
}

=
{
x ∈ Rd

∣∣ − 1 ≤ xk ≤ 1 for 1 ≤ k ≤ d
}
.
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Again, there are other natural choices, among them the d-dimensional unit cube

[0, 1]d = conv
{∑
i∈S

ei
∣∣ S ⊆ {1, 2, . . . , d}}

=
{
x ∈ Rd

∣∣ 0 ≤ xk ≤ 1 for 1 ≤ k ≤ d
}
.

A d-cross-polytope in Rd (for d = 3 known as the octahedron) is given by

C∆
d := conv{±e1,±e2, . . . ,±ed}

=
{
x ∈ Rd

∣∣ d∑
i=1

αixi ≤ 1 for all α1, . . . , αd ∈ {−1,+1}
}
.

To illustrate concepts and results we will repeatedly use the unnamed polytope
with six vertices shown in Figure 15.1.2.

FIGURE 15.1.2
Our unnamed “typical” 3-polytope. It has 6 vertices, 11 edges
and 7 facets.

1

3

46

2

5

This polytope without a name can be presented as a V-polytope by listing its
six vertices. The following coordinates make it into a subpolytope of the 3-cube
C3: The vertex set consists of all but two vertices of C3. Our list below (on the
left) shows the vertices of our unnamed polytope in a format used as input for the
polymake program, i.e., the vertices are given in homogeneous coordinates with
an additional 1 as first entry. From these data the polymake program produces
a description (on the right) of the polytope as an H-polytope, i.e., it computes
the facet-defining hyperplanes with respect to homogeneous coordinates. For in-
stance, the entries in the last row of the section FACETS describe the halfspace
1x0 − 1x1 + 1x2 − 1x3 ≥ 0, which with x0 ≡ 1 corresponds to the facet-defining
inequality x1 − x2 + x3 ≤ 1 of our 3-dimensional unnamed polytope.

POINTS FACETS

1 1 1 1 1 0 -1 0

1 -1 -1 1 1 -1 0 0

1 1 1 -1 1 1 0 0

1 1 -1 -1 1 0 1 0

1 -1 1 -1 1 0 0 1

1 -1 -1 -1 1 1 -1 -1

1 -1 1 -1

Any unbounded pointed polyhedron (that is, the set of solutions of a system
of inequalities, which is not bounded but does have a vertex) is, via a projective
transformation, equivalent to a polytope with a distinguished facet; see [Zie95,
Sect. 2.9 and p. 75]. In this respect, we do not lose anything on the combinatorial
level if we restrict the following discussion to the setting of full-dimensional convex
polytopes, that is, d-polytopes embedded in Rd.
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15.1.1 FACES

GLOSSARY

Support function: Given a polytope P ⊆ Rd, the function

h(P, ·) : Rd → R, h(P, x) := sup{〈x, y〉 | y ∈ P},

where 〈x, y〉 denotes a fixed inner product on Rd. Since P is compact one may
replace sup by max.

Supporting hyperplane of P : A hyperplane

H(P, v) := {x ∈ Rd | 〈x, v〉 = h(P, v)},

for v ∈ Rd \ {0}. Note that H(P, µv) = H(P, v) for µ ∈ R, µ> 0. For a vector
u of the (d−1)-dimensional unit sphere Sd−1, h(P, u) is the signed distance of
the supporting plane H(P, u) from the origin. For v = 0 we set H(P, 0) := Rd,
which is not a hyperplane.

Face: The intersection of P with a supporting hyperplane H(P, v). If P is full-
dimensional, then this is a nontrivial face of P . We call it a k-face if the
dimension of aff(P ∩H(P, v)) is k. Each face is itself a polytope.

The set of all k-faces is denoted by Fk(P ) and its cardinality by fk(P ).

The empty set ∅ and the polytope P itself are also defined to be faces of P , called
the trivial faces of P , of dimensions −1 and dim(P ), respectively. Thus the
nontrivial faces F of a d-polytope have dimensions 0 ≤ dim(F ) ≤ d − 1. All
faces other than P are referred to as proper faces.

The faces of dimension 0 and 1 are called vertices and edges, respectively. The
(d − 1)-faces and (d − 2)-faces of a d-polytope P are called facets and ridges,
respectively.

f-vector: The vector of face numbers f (P ) = (f0(P ), f1(P ), . . . , fd−1(P )) asso-
ciated with a d-polytope.

Facet-vertex incidence matrix: The matrix M ∈ {0, 1}fd−1(P )×f0(P ) that has
an entry M(F, v) = 1 if the facet F contains the vertex v, and M(F, v) = 0
otherwise.

Graded poset: A partially ordered set (P,≤) with a unique minimal element 0̂,
a unique maximal element 1̂, and a rank function r : P −→ N0 that satisfies

(1) r(0̂) = 0, and p < p′ implies r(p) < r(p′), and

(2) p < p′ and r(p′)− r(p) > 1 implies that there is a p′′ ∈ P with p < p′′ < p′.

Lattice L: A partially ordered set (P,≤) in which every pair of elements p, p′ ∈ P
has a unique maximal lower bound, called the meet p∧p′, and a unique minimal
upper bound, called the join p ∨ p′.

Atom, coatom: If L is a graded lattice, the minimal elements of L \ {0̂} (i.e.,
the elements of rank 1) are the atoms of L. Similarly, the maximal elements of
L\{1̂} (i.e., the elements of rank r(1̂)−1) are the coatoms of L. A graded lattice
is atomic if every element is a join of a set of atoms, and it is coatomic if every
element is a meet of a set of coatoms.
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Face lattice L(P): The set of all faces of P , partially ordered by inclusion.

Combinatorially equivalent: Polytopes whose face lattices are isomorphic as
abstract (i.e., unlabeled) partially ordered sets/lattices.

Equivalently, P and P ′ are combinatorially equivalent if their facet-vertex inci-
dence matrices differ only by column and row permutations.

Combinatorial type: An equivalence class of polytopes under combinatorial
equivalence.

THEOREM 15.1.2 Face Lattices of Polytopes (cf. [Zie95, Sect. 2.2])

The face lattices of convex polytopes are finite, graded, atomic, and coatomic lattices.
The meet operation G ∧ H is given by intersection, while the join G ∨ H is the
intersection of all facets that contain both G and H. The rank function on L(P ) is
given by r(G) = dim(G) + 1.

The minimal nonempty faces of a polytope are its vertices: They correspond
to atoms of the lattice L(P ). Every face is the join of its vertices, hence L(P )
is atomic. Similarly, the maximal proper faces of a polytope are its facets: They
correspond to the coatoms of L(P ). Every face is the intersection of the facets it is
contained in, hence face lattices of polytopes are coatomic.

FIGURE 15.1.3
The face lattice of our unnamed 3-polytope. The seven
coatoms (facets) and the six atoms (vertices) have been la-
beled in the order of their appearance in the lists on page
386. Thus, the downwards-path from the coatom “4” to the
atom “6” represents the fact that the fourth facet contains
the sixth vertex.

7 6 1 2 53 4

1 2 3 4 5 6

The face lattice is a complete encoding of the combinatorial structure of a
polytope. However, in general the encoding by a facet-vertex incidence matrix is
more efficient. The following matrix—also provided by polymake—represents our
unnamed 3-polytope:

M =



1 2 3 4 5 6

1 1 0 1 0 1 0
2 1 0 1 1 0 0
3 0 1 0 0 1 1
4 0 1 0 1 0 1
5 0 0 1 1 1 1
6 1 1 0 0 1 0
7 1 1 0 1 0 0


How do we decide whether a set of vertices {v1, . . . , vk} is (the vertex set of) a

face of P? This is the case if and only if no other vertex v0 is contained in all the
facets that contain {v1, . . . , vk}. This criterion makes it possible, for example, to
derive the edges of a polytope P from a facet-vertex matrix. The four 1’s printed
in boldface in the above matrix M thus certify that the vertices 1, 2 lie on a face in
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the unnamed polytope, which is contained in the intersection of the facets 6, 7. By
dimension reasons, the face in question is an edge that connects the vertices 1, 2.

For low-dimensional polytopes, the criterion can be simplified: If d ≤ 4, then
two vertices are connected by an edge if and only if there are at least d − 1 dif-
ferent facets that contain them both. However, the same is no longer true for
5-dimensional polytopes, where vertices may be nonadjacent despite being con-
tained in many common facets. The best way to see this is by using polarity, which
is discussed next.

15.1.2 BASIC CONSTRUCTIONS

GLOSSARY

Polarity: If P ⊆ Rd is a d-polytope with the origin in its interior, then the polar
of P is the d-polytope

P∆ := {y ∈ Rd | 〈y, x〉 ≤ 1 for all x ∈ P}.

Stacking onto a facet F : A polytope conv(P ∪xF ), where xF is a point of the
form yF − ε(yP − yF ), where yP is in the interior of P , yF is in the relative
interior of the facet F , and ε > 0 is small enough.

Note that this definition specifies the combinatorial type of the resulting polytope
completely, but not the geometric realization; similarly some of the following
constructions are not specified completely.

Vertex figure P/v: If v is a vertex of P , then P/v := P ∩ H is a polytope
obtained by intersecting P with a hyperplane H that has v on one side and all
the other vertices of P on the other side.

Cutting off a vertex: A polytope P ∩ H− obtained by intersecting P with a
closed halfspace H− that does not contain the vertex v, but contains all other
vertices of P in its interior.

Quotient of P: A k-polytope obtained from a d-polytope by repeatedly (d − k
times) taking a vertex figure.

Simplicial polytope: A polytope all of whose facets (equivalently, proper faces)
are simplices. Examples: the d-cross-polytopes.

Simple polytope: A polytope all of whose vertex figures (equivalently, proper
quotients) are simplices. Examples: the d-cubes.

Polarity is a fundamental construction in the theory of polytopes. One always
has P∆∆ = P , under the assumption that P has the origin in its interior. This
condition can always be obtained by a change of coordinates. In particular, we speak
of (combinatorial) polarity between d-polytopes Q and R that are combinatorially
equivalent to P and P∆, respectively.

Any V-presentation of P yields an H-presentation of P∆, and vice versa, via

P = conv{v1, . . . , vn} ⇐⇒ P∆ = {x ∈ Rd | 〈vi, x〉 ≤ 1 for 1 ≤ i ≤ n}.

There are basic relations between polytopes and polytopal constructions under
polarity. For example, the fact that the d-cross-polytopes C∆

d are the polars of the
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d-cubes Cd is built into our notation. More generally, the polars of simple polytopes
are simplicial, and vice versa. This can be deduced from the fact that the facets
F of a polytope P correspond to the vertex figures P∆/v of its polar P∆. In fact,
F and P∆/v are combinatorially polar in this situation. More generally, one has a
correspondence between faces and quotients under polarity.

At a combinatorial level, all this can be derived from the fact that the face
lattices L(P ) and L(P∆) are anti-isomorphic: L(P∆) may be obtained from L(P )
by reversing the order relations. Thus, lower intervals in L(P ), corresponding to
faces of P , translate under polarity into upper intervals of L(P∆), corresponding
to quotients of P∆.

15.1.3 BASIC CONSTRUCTIONS, II

GLOSSARY

For the following constructions, let
P ⊆ Rd be a d-dimensional polytope with n vertices and m facets, and

P ′ ⊆ Rd
′

a d′-dimensional polytope with n′ vertices and m′ facets.

Scalar multiple: For λ ∈ R, the polytope λP defined by λP := {λx | x ∈ P}.
Here P and λP are combinatorially (in fact, affinely) equivalent for all λ 6= 0.
In particular, (−1)P = −P = {−p | p ∈ P}, and (+1)P = P .

Minkowski sum: The polytope P + P ′ := {p+ p′ | p ∈ P, p′ ∈ P ′}.
It is also useful to define the difference as P − P ′ = P + (−P ′). The polytopes
P + λP ′ are combinatorially equivalent for all λ > 0, and similarly for λ < 0.

If P ′ = {p′} is one single point, then P − {p′} is the image of P under the
translation that takes p′ to the origin.

Product: The (d+d′)-dimensional polytope P × P ′ := {(p, p′) ∈ Rd+d′ | p ∈ P,
p′ ∈ P ′}. P × P ′ has n · n′ vertices and m+m′ facets.

Join: The (d+d′+1)-polytope obtained as the convex hull P ∗P ′ of P ∪P ′, after
embedding P and P ′ in a space where their affine hulls are skew. For example,

P ∗ P ′ := conv({(p, 0, 0) ∈ Rd+d′+1 | p ∈ P} ∪ {(0, p′, 1) ∈ Rd+d′+1 | p′ ∈ P ′}).
P ∗P ′ has dimension d+d′+1 and n+n′ vertices. Its k-faces are the joins of i-faces
of P and (k−i−1)-faces of P ′, hence fk(P ∗ P ′) =

∑k
i=−1 fi(P )fk−i−1(P ′).

Subdirect sum: The (d+d′)-dimensional polytope

P ⊕ P ′ := conv({(p, 0) ∈ Rd+d′ | p ∈ P} ∪ {(0, p′) ∈ Rd+d′ | p′ ∈ P ′}).
Thus the subdirect sum P ⊕P ′ is a projection of the join P ∗P ′. See McMullen
[McM76].

Direct sum: If both P and P ′ have the origin in their interiors—this is the
“usual” situation for creating subdirect sums—then P ⊕ P ′ is the direct sum of
P and P ′. It is (d+ d′)-dimensional, and has n+ n′ vertices and m ·m′ facets.

Prism: The product prism(P ) := P × I, where I denotes the real interval
I = [−1,+1] ⊆ R. It has dimension d+ 1, 2n vertices and m+ 2 facets.

Pyramid: The join pyr(P ) := P ∗ {0} of P with a point (a 0-dimensional
polytope P ′ = {0} ⊆ R0). It has dimension d + 1, n + 1 vertices and m + 1
facets.
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Bipyramid: The subdirect sum bipyr(P ) := P ⊕ I, where P must have the
origin in its interior. It has dimension d+ 1, n+ 2 vertices and 2m facets.

One-point suspension, obtained by splitting the vertex v: The subdirect
sum

ops(P, v) := conv(P × {0} ∪ {v} × [−1, 1]),

where v is a vertex of P . It has dimension d + 1, n + 1 vertices and 2m −mv

facets, if v lies in mv facets of P .

Lawrence extension: If p ∈ Rd is a point outside the polytope P , then the
subdirect sum (P − {p}) ⊕ [1, 2] is a Lawrence extension of P at p. For p ∈ P
this is just a pyramid.

Wedge over a facet F of P :

wedge(P, F ) := P × R ∩ {aTx+ |xd+1| ≤ b},

where F is a facet of P defined by aTx ≤ b. It has dimension d + 1, m + 1
facets, and 2n − nF vertices, if F has nF vertices. More generally, the wedge
construction can be performed (defined by the same formula) for a face F . If F
is not a facet, then the wedge will have m+ 2 facets.

In contrast to the other constructions in this section, the combinatorial type
of the Minkowski sum P + P ′ is not determined by the combinatorial types of its
constituents P and P ′, and the combinatorial type of a Lawrence extension depends
on the position of the extension point p with respect to P (see below).

Of course, the many constructions listed in the glossary above are not inde-
pendent of each other. For instance, some of these constructions are related by
polarity: for polytopes P and P ′ with the origin in their interiors, the product and
the direct sum are related by polarity,

P × P ′ = (P∆ ⊕ P ′∆)∆,

and this specializes to polarity relations among the pyramid, bipyramid, and prism
constructions,

pyr(P ) = (pyr(P∆))∆ and prism(P ) = (bipyr(P∆))∆.

Similarly, “cutting off a vertex” is polar to “stacking onto a facet.” The wedge
construction is a subdirect product in the sense of McMullen [McM76] and the polar
dual construction to a subdirect sum.

It is interesting to study—and this has not been done systematically—how the
basic polytope operations generate complicated convex polytopes from simpler ones.
For example, starting from a one-dimensional polytope I = C1 = [−1,+1] ⊂ R, the
direct product construction generates the cubes Cd, while direct sums generate the
cross-polytopes C∆

d .
Even more complicated centrally symmetric polytopes, the Hanner polytopes,

are obtained from copies of the interval I by using products and direct sums. They
are interesting since they achieve with equality the conjectured bound that all
centrally symmetric d-polytopes have at least 3d nonempty faces (see Kalai [Kal89]
and Sanyal, Werner and Ziegler [SWZ09]).

Every polytope can be viewed as a region of a hyperplane arrangement: For
this, take as AP the set of all hyperplanes of the form aff(F ), where F is a facet of P .
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For additional points, such as the points outside the polytope used for Lawrence
extensions, or those used for stackings, it is often enough to know in which region,
or in which lower-dimensional region, of the arrangement AP they lie.

The combinatorial type of a Lawrence extension depends on the position of p
in the arrangement AP . Thus the Lawrence extensions obtainable from P depend
on the realization of P , not only on its combinatorial type.

The Lawrence extension may seem like quite a simple little construction. How-
ever, it has the amazing property that it can encode crucial information about the
position of a point outside a d-polytope into the boundary structure of a (d+1)-
polytope, and thus is an essential ingredient in some remarkable constructions,
such as universality results (see e.g., Ziegler [Zie08], Richter-Gebert [Ric96], and
Adiprasito, Padrol and Theran [APT15]), and high-dimensional projectively unique
polytopes (Adiprasito and Ziegler [AZ15], Adiprasito and Padrol [AP16]).

15.1.4 MORE EXAMPLES

There are many interesting classes of polytopes arising from diverse areas of math-
ematics (as well as physics, optimization, crystallography, etc.). Some of these
are discussed below. More classes of examples appear in other chapters of this
Handbook. For example, regular and semiregular polytopes are discussed in Chap-
ter 18, while polytopes that arise as Voronoi cells of lattices appear in Chapters 3,
7, and 64.

GLOSSARY

Graph of a polytope: The graph G(P ) = (V (P ), E(P )) with vertex set V (P ) =
F0(P ) and edge set E(P ) = {{v1, v2} ⊆

(
V
2

)
| conv{v1, v2} ∈ F1(P )}.

Zonotope: Any d-polytope Z that can be represented as the image of an n-di-
mensional cube Cn (n ≥ d) under an affine map; equivalently, any polytope that
can be written as a Minkowski sum of n line segments (1-dimensional polytopes).
The smallest n such that Z is an image of Cn is the number of zones of Z.

Moment curve: The curve γ in Rd defined by γ : R −→ Rd, t 7−→ (t, t2, . . . , td)T .

Cyclic polytope: The convex hull of a finite set of points on a moment curve, or
any polytope combinatorially equivalent to it.

k-neighborly polytope: A polytope such that each subset of at most k vertices
forms the vertex set of a face. Thus every polytope is 1-neighborly, and a poly-
tope is 2-neighborly if and only if its graph is complete.

Neighborly polytope: A d-dimensional polytope that is bd/2c-neighborly.

(0,1)-polytope: A polytope all of whose vertex coordinates are 0 or 1, that is,
whose vertex set is a subset of the vertex set {0, 1}d of the unit cube.

ZONOTOPES

Zonotopes appear in quite different guises. They can equivalently be defined as the
Minkowski sums of finite sets of line segments (1-dimensional polytopes), as the
affine projections of d-cubes, or as polytopes all of whose faces (equivalently, all 2-
faces) exhibit central symmetry. Thus a 2-dimensional polytope is a zonotope if and
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only if it is centrally symmetric. By a classical result of McMullen, a d-dimensional
polytope is a zonotope if and only if its 2-faces are centrally symmetric.

FIGURE 15.1.4
A 2-dimensional and a 3-dimensional zonotope, each
with 5 zones, and thus obtainable as affine projections
of a 5-dimensional cube. The 2-dimensional one is a
projection of the 3-dimensional one. Every projection
of a zonotope is a zonotope.

Among the most prominent zonotopes are the permutohedra: The permu-
tohedron Πd−1 is constructed by taking the convex hull of all d-vectors whose
coordinates are {1, 2, . . . , d}, in any order. The permutohedron Πd−1 is a (d−1)-

dimensional polytope (contained in the hyperplane {x ∈ Rd |
∑d
i=1 xi = d(d+1)/2})

with d! vertices and 2d − 2 facets.

FIGURE 15.1.5
The 3-dimensional permutohedron Π3. The vertices are
labeled by the permutations that, when applied to the co-
ordinate vector in R4, yield (1, 2, 3, 4)T .
Note that the coordinates of each vertex are given by
reading the inverses (!) of the permutation that is used
to label the vertex.
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One unusual feature of permutohedra is that they are simple zonotopes: These
are rare in general, and the (unsolved) problem of classifying them is equivalent to
the problem of classifying all simplicial arrangements of hyperplanes (see Section
6.3.3).

Zonotopes are important because their theory is equivalent to the theories
of vector configurations (realizable oriented matroids) and of hyperplane arrange-
ments. In fact, the system of line segments that generates a zonotope can be
considered as a vector configuration, and the hyperplanes that are orthogonal to
the line segments provide the associated hyperplane arrangement. We refer to
[BLS+93, Section 2.2] and [Zie95, Lecture 7].

Finally, we mention in passing a surprising bijective correspondence between the
tilings of a zonotope with smaller zonotopes and oriented matroid liftings (realizable
or not) of the oriented matroid of a zonotope. This correspondence is known as the
Bohne–Dress theorem; we refer to Richter-Gebert and Ziegler [RZ94].
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CYCLIC POLYTOPES

Cyclic polytopes can be constructed by taking the convex hull of n > d points on
the moment curve in Rd. The “standard construction” is to define a cyclic polytope
Cd(n) as the convex hull of n integer points on this curve, such as

Cd(n) := conv{γ(1), γ(2), . . . , γ(n)}.

However, the combinatorial type of Cd(n) is given by the—entirely combinatorial—
Gale evenness criterion: If Cd(n) = conv{γ(t1), . . . , γ(tn)}, with t1 < · · · < tn,
then γ(ti1), . . . , γ(tid) determine a facet if and only if the number of indices in
{i1, ..., id} lying between any two indices not in that set is even. Thus, the combi-
natorial type does not depend on the specific choice of points on the moment curve
[Zie95, Example 0.6; Theorem 0.7].

FIGURE 15.1.6
A 3-dimensional cyclic polytope C3(6) with 6 vertices. (In a
projection of γ to the x1x2-plane, the curve γ and hence the
vertices of C3(6) lie on the parabola x2 = x2

1.)

The first property of cyclic polytopes to notice is that they are simplicial. The
second, more surprising, property is that they are neighborly. This implies that
among all d-polytopes P with n vertices, the cyclic polytopes maximize the number
fi(P ) of i-dimensional faces for i < bd/2c. The same fact holds for all i: This is part
of McMullen’s upper bound theorem (see below). In particular, cyclic polytopes
have a very large number of facets,

fd−1

(
Cd(n)

)
=

(
n− dd2e
bd2c

)
+

(
n− 1− dd−1

2 e
bd−1

2 c

)
.

For example, any cyclic 4-polytope C4(n) has n(n− 3)/2 facets. Thus C4(8) has 8
vertices, any two of them adjacent, and 20 facets. This is more than the 16 facets
of the 4-cross-polytope, which also has 8 vertices!

NEIGHBORLY POLYTOPES

Here are a few observations about neighborly polytopes. For more information, see
[BLS+93, Section 9.4] and the references quoted there.

The first observation is that if a polytope is k-neighborly for some k > bd/2c,
then it is a simplex. Thus, if one ignores the simplices, then bd/2c-neighborly
polytopes form the extreme case, which motivates calling them simply “neighborly.”
However, only in even dimensions d = 2m do the neighborly polytopes have very
special structure. For example, one can show that even-dimensional neighborly
polytopes are necessarily simplicial, but this is not true in general. For the latter,
note that, for example, all 3-dimensional polytopes are neighborly by definition, and
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that if P is a neighborly polytope of dimension d = 2m, then pyr(P ) is neighborly
of dimension 2m+1.

All simplicial neighborly d-polytopes with n vertices have the same number
of facets (in fact, the same f -vector (f0, f1, . . . , fd−1)) as Cd(n). They constitute
the class of polytopes with the maximal number of i-faces for all i: This is the
statement of McMullen’s upper bound theorem. We refer to Chapter 17 for a
thorough discussion of f -vector theory.

Every even-dimensional neighborly polytope with n ≤ d+ 3 vertices is combi-
natorially equivalent to a cyclic polytope. This covers, for instance, the polar of the
product of two triangles, (∆2 × ∆2)∆, which is easily seen to be a 4-dimensional
neighborly polytope with 6 vertices; see Figure 15.1.9. The first example of an even-
dimensional neighborly polytope that is not cyclic appears for d = 4 and n = 8.
It can easily be described in terms of its affine Gale diagram; see below.

Neighborly polytopes may at first glance seem to be very peculiar and rare
objects, but there are several indications that they are not quite as unusual as
they seem. In fact, the class of neighborly polytopes is believed to be very rich.
Thus, Shemer [She82] has shown that for fixed even d the number of nonisomorphic
neighborly d-polytopes with n vertices grows superexponentially with n (see also
[Pad13]). Also, many of the (0,1)-polytopes studied in combinatorial optimization
turn out to be at least 2-neighborly. Both these effects illustrate that “neighborli-
ness” is not an isolated phenomenon.

OPEN PROBLEMS

1. Can every neighborly d-polytope P ⊆ Rd with n vertices be extended by a
new vertex v ∈ Rd to a neighborly polytope P ′ := conv(P ∪ {v}) with n+1
vertices? This has been asked by Shemer [She82, p. 314]. It has been verified
only recently for small parameters d and n by Miyata and Padrol [MP15].

2. It is a classic problem of Perles whether every simplicial polytope is a quotient
of a neighborly polytope. For polytopes with at most d+4 vertices this was
confirmed by Kortenkamp [Kor97]. Adiprasito and Padrol [AP16] disproved a
related conjecture, that every polytope is a subpolytope of a stacked polytope.

3. Some computer experiments with random polytopes suggest that

• one obtains a neighborly polytope with high probability (which increases
rapidly with the dimension of the space),

• the most probable combinatorial type is a cyclic polytope,

• but still this probability of a cyclic polytope tends to zero.

However, none of this has been proved. See Bokowski and Sturmfels [BS89, p.
101], Bokowski, Richter-Gebert, and Schindler [BRS92], Vershik and Spory-
chev [VS92], and Donoho and Tanner [DT09].

(0,1)-POLYTOPES

There is a (0, 1)-polytope (given in terms of a V-presentation) associated with every
finite set system S ⊆ 2E (where E is a finite set, and 2E denotes the collection of
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all of its subsets), via

P [S] := conv
{∑
i∈F

ei
∣∣ F ∈ S} ⊆ RE .

The combinatorial optimization contains a multitude of extensive studies on (par-
tial) H-descriptions of special (0, 1)-polytopes, such as for example

• the traveling salesman polytopes Tn, where E is the edge set of a complete
graph Kn, and F is the set of all (n−1)! Hamilton cycles (simple circuits
through all the vertices) in E (see Grötschel and Padberg [GP85]);

• the cut and equicut polytopes, where E is the edge set of—for example—a
complete graph, and S represents the family of all cuts, or all equicuts (given
by a partition of the vertex set into two blocks of equal size) of the graph (see
Deza and Laurent [DL97]).

Besides their importance for combinatorial optimization, there is a great deal
of interesting polytope theory associated with such polytopes. It turns out that
some of these polytopes are so complicated that a complete H-description or any
other “full understanding” will remain out of reach. For example, Billera and
Sarangarajan [BS96] showed that every (0, 1)-polytope appears as a face of a trav-
eling salesman polytope. Cut polytopes seem to have particularly many facets,
though that has not been proven. Equicut polytopes were used by Kahn and Kalai
[KK93] in their striking disproof of Borsuk’s conjecture (see also [AZ98]).

Despite the detailed structure theory for the “special” (0, 1)-polytopes of com-
binatorial optimization, there is very little known about “general” (0, 1)-polytopes.
For example, what is the “typical,” or the maximal, number of facets of a (0, 1)-
polytope? Based on a random construction Bárány and Pór [BP01] proved the
existence of d-dimensional (0, 1)-polytopes with (c d/ log d)d/4 facets, where c is
a universal constant. This lower bound has been improved to (c d/ log d)d/2 by
Gatzouras et al. [GGM05]. The best known upper bounds are of order (d − 2)!.
Another question, which is not only intrinsically interesting but might also provide
new clues for basic questions of linear and combinatorial optimization, is: What
is the maximal number of faces in a 2-dimensional projection of a (0, 1)-polytope?
For a survey on (0, 1)-polytopes see [Zie00].

15.1.5 THREE-DIMENSIONAL POLYTOPES AND PLANAR GRAPHS

GLOSSARY

d-connected graph: A connected graph that remains connected if any d − 1
vertices are deleted.

Drawing of a graph: A representation in the plane where the vertices are rep-
resented by distinct points, and simple Jordan arcs (typically: polygonal, or at
least piecewise smooth) are drawn between the pairs of adjacent vertices.

Planar graph: A graph that can be drawn in the plane with Jordan arcs that
are disjoint except for their endpoints.

Realization space: The set of all coordinatizations of a combinatorial structure,
modulo affine coordinate transformations; see Section 6.3.2.
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Isotopy property: A combinatorial structure (such as a combinatorial type of
polytope) has the isotopy property if any two realizations with the same orienta-
tion can be deformed into each other by a continuous deformation that maintains
the combinatorial type. Equivalently, the isotopy property holds for a combina-
torial structure if and only if its realization space is connected.

THEOREM 15.1.3 Steinitz’s Theorem [Ste22, Satz 43, S. 77] [SR34]

For every 3-dimensional polytope P , the graph G(P ) is a planar, 3-connected graph.
Conversely, for every planar 3-connected graph with at least 4 vertices, there is a
unique combinatorial type of 3-polytope P with G(P ) ∼= G.

Furthermore, the realization space R(P ) of a combinatorial type of 3-polytope is

homeomorphic to Rf1(P )−6, and contains rational points. In particular, 3-polytopes
have the isotopy property, and they can be realized with integer vertex coordinates.

FIGURE 15.1.7
A (planar drawing of a) 3-connected, planar, unnamed graph. The
formidable task of any proof of Steinitz’s theorem is to construct a
3-polytope with this graph.

There are three essentially different strategies known that yield proofs of Steinitz’s
theorem. The first approach, due to Steinitz, provides a construction sequence for
any type of 3-polytope, starting from a tetrahedron, and using only local opera-
tions such as cutting off vertices and polarity. See [Zie95, Lecture 4]. The second
“Tutte type” of proof realizes any combinatorial type by a global minimization ar-
gument, which as an intermediate step provides a special planar representation of
the graph by a framework with a positive self-stress; see Richter-Gebert [Ric96].
The third approach, spear-headed by Thurston, derives Steinitz’s Theorem from the
Koebe–Andreev–Thurston circle packing theorem. It yields that every 3-polytope
has an (essentially unique!) realization with its edges tangent to the unit sphere.
This proof can be derived from a variational principle obtained by Bobenko and
Springborn [BS04]. For an exposition see Ziegler [Zie07, Lecture 1].

OPEN PROBLEMS

Because of Steinitz’s theorem and its extensions and corollaries, the theory of
3-dimensional polytopes is quite complete and satisfactory. Nevertheless, some
basic open problems remain.

1. It can be shown that every combinatorial type of 3-polytope with n vertices
and a triangular facet can be realized with integer coordinates belonging to
{1, 2, . . . , 29n}3 (Ribó Mor, Rote and Schulz [RRS11], improving upon previ-
ous bounds by Onn and Sturmfels [OS94] and Richter-Gebert [Ric96, Sect.
13.2]), but it is not clear whether this can be replaced by a polynomial upper
bound. No nontrivial lower bounds seem to be available.
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2. If P has a nontrivial group G of symmetries, then it also has a symmetric re-
alization (Mani [Man71]). However, it is not clear whether for all 3-polytopes
the space of all G-symmetric realizations RG(P ) is still homeomorphic to
some Rk. (It does not contain rational points in general, e.g., for the regular
icosahedron!)

15.1.6 FOUR-DIMENSIONAL POLYTOPES AND SCHLEGEL DIAGRAMS

GLOSSARY

Subdivision of a polytope P: A collection of polytopes P1, . . . , P` ⊆ Rd such
that P = P1 ∪ · · · ∪ P`, and for i 6= j we have that Pi ∩ Pj is a proper face of Pi
and Pj (possibly empty). In this case we write P = ]Pi.

Triangulation of a polytope: A subdivision into simplices. (See Chapter 16.)

Schlegel diagram: A (d−1)-dimensional representation D(P, F ) of a d-dimen-
sional polytope P given by a subdivision of a facet F , obtained as follows: Take
a point of view outside of P but very close to a relative interior point of the facet
F , and then let D(P, F ) be the decomposition of F given by all the other facets
of P , as seen from this point of view in the “window” F .

(d−1)-diagram: A subdivision D of a (d−1)-polytope F such that the intersec-
tion of any polytope in D with the boundary of F is a face of F (which may be
empty).

Basic primary semialgebraic set defined over Z: The solution set S ⊆ Rk of
a finite set of equations and strict inequalities of the form fi(x) = 0 or gj(x) > 0,
where the fi and gj are polynomials in k variables with integer coefficients.

Stable equivalence: Equivalence relation between semialgebraic sets generated
by rational changes of coordinates and certain types of “stable” projections with
contractible fibers. See Richter-Gebert [Ric96, Section 2.5].

In particular, if two sets are stably equivalent, then they have the same homotopy
type, and they have the same arithmetic properties with respect to subfields of
R; e.g., either both or neither of them contain a rational point.

The situation for 4-polytopes is fundamentally different from that for 3-dimen-
sional polytopes. One reason is that there is no similar reduction of 4-polytope
theory to a combinatorial (graph) problem.

The main results about graphs of d-polytopes are that they are d-connected
(Balinski [Bal61]), and that each contains a subdivision of the complete graph on
d+1 vertices, Kd+1 = G(Td) (Grünbaum [Grü67, p. 200]). In particular, all graphs
of 4-polytopes are 4-connected, and none of them is planar; see also Chapter 19.

Schlegel diagrams provide a reasonably efficient tool for the visualization of
4-polytopes: We have a fighting chance to understand some important properties
in terms of the 3-dimensional (!) geometry of Schlegel diagrams.

A (d−1)-diagram is a polytopal complex that “looks like” a Schlegel diagram,
although there are diagrams (even 2-diagrams) that are not Schlegel diagrams.

The situation is somewhat nicer for simple polytopes. The combinatorial struc-
ture of a simple polytope is entirely determined by the abstract graph: This is due
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FIGURE 15.1.8
Two Schlegel diagrams of our unnamed 3-polytope, the first
based on a triangle facet, the second on the “bottom square.”
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FIGURE 15.1.9
A Schlegel diagram of the product of two triangles. (This is a 4-dimensional
polytope with 6 triangular prisms as facets, any two of them adjacent!)

to Blind and Mani-Levitska [BM87], with a simple proof by Kalai [Kal88] and an ef-
ficient (polynomial-time) reconstruction algorithm by Friedman [Fri09]. Moreover,
the geometry of higher-dimensional simple d-polytopes can be understood in terms
of (d − 1)-diagrams: For d ≥ 4 all simple (d − 1)-diagrams “are Schlegel,” that is,
they represent genuine d-dimensional polytopes (Whiteley, see Rybnikov [Ryb99]).

The fundamental difference between the theories for polytopes in dimensions 3
and 4 is most apparent in the contrast between Steinitz’s theorem and the following
result, which states simply that all the “nice” properties of 3-polytopes established
in Steinitz’s theorem fail dramatically for 4-dimensional polytopes. Indeed, Richter-
Gebert showed that the realization spaces of 4-polytopes exhibit the same type of
“universality” that was established by Mnëv for the realization spaces of planar
point configurations/line arrangements, as well as for d-polytopes with d+4 vertices,
as discussed in Chapter 6 (see Thm. 6.3.3):

THEOREM 15.1.4 Universality for 4-Polytopes [Ric96]

The realization space of a 4-dimensional polytope can be “arbitrarily wild”: For
every basic primary semialgebraic set S defined over Z there is a 4-dimensional
polytope P [S] whose realization space R(P [S]) is stably equivalent to S.

In particular, this implies the following.

• The isotopy property fails for 4-dimensional polytopes.

• There are nonrational 4-polytopes: combinatorial types that cannot be realized
with rational vertex coordinates.

• The coordinates needed to represent all combinatorial types of rational
4-polytopes with integer vertices grow doubly exponentially with f0(P ).

The complete proof of this universality theorem is given in [Ric96]. One key
component of the proof corresponds to another failure of a 3-dimensional phe-
nomenon in dimension 4: For any facet (2-face) F of a 3-dimensional polytope P ,
the shape of F can be arbitrarily prescribed; in other words, the canonical map of
realization spaces R(P ) −→ R(F ) is always surjective. Richter-Gebert shows that
a similar statement fails in dimension 4, even if F is a 2-dimensional pentagonal
face: See Figure 15.1.10 for the case of a hexagon.
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FIGURE 15.1.10
Schlegel diagram of a 4-dimensional polytope with 8 facets and
12 vertices, for which the shape of the base hexagon cannot be
prescribed arbitrarily.

A problem that is left open is the structure of the realization spaces of simplicial
4-polytopes. All that is available now is a universality theorem for simplicial poly-
topes without a dimension bound, which had been claimed by Mnëv and by others
since the 1980s, but for which a proof was provided only recently by Adiprasito
and Padrol [AP17], and a single example of a simplicial 4-polytope that violates
the isotopy property, by Bokowski et al. [BEK84] (see [Bok06, p. 142] [Fir15b,
Sect. 1.3.4] for correct coordinates, as a rational inscribed polytope).

15.1.7 POLYTOPES WITH FEW VERTICES AND GALE DIAGRAMS

GLOSSARY

Polytope with few vertices: A polytope that has only a few more vertices than
its dimension; usually a d-polytope with at most d+4 vertices.

(Affine) Gale diagram: A configuration of n not necessarily pairwise distinct,
signed/bicolored (“positive”/“black” and “negative”/“white”) points in affine
space Rn−d−2, which encodes a d-polytope with n vertices uniquely up to pro-
jective transformations.

The computation of a Gale diagram involves only simple linear algebra. For
this, let V ∈ Rd×n be a matrix whose columns consist of coordinates for the vertices
of a d-polytope. For simplicity, we assume that P is not a pyramid, and that the
vertices {v1, . . . , vd+1} affinely span Rd. Let Ṽ ∈ R(d+1)×n be obtained from V
by adding an extra (terminal) row of ones. The vector configuration given by the

columns of Ṽ represents the oriented matroid of P ; see Chapter 6.
Now perform row operations on the matrix Ṽ to get it into the form Ṽ ∼

(Id+1|A), where Id+1 denotes a unit matrix, and A ∈ R(d+1)×(n−d−1). (The row

operations do not change the oriented matroid.) The columns of the matrix Ṽ ∗ :=

(−AT |In−d−1) ∈ R(n−d−1)×n then represent the dual oriented matroid. We find a

vector a ∈ Rn−d−1 that has nonzero scalar product with all the columns of Ṽ ∗,
divide each column w∗ of Ṽ ∗ by the value 〈a,w∗〉, and delete from the resulting
matrix any row that affinely depends on the others, thus obtaining a matrix W ∈
R(n−d−2)×n. The columns of W give a bicolored point configuration in Rn−d−2,
where black points are used for the columns where 〈a,w∗〉 > 0, and white points
for the others. This bicolored point configuration represents an affine Gale diagram
of P .

An affine configuration of bicolored points (consisting of n points that affinely
span Re) represents a polytope (with n vertices, of dimension n− e− 2) if and only
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FIGURE 15.1.11
Two affine Gale diagrams of 4-dimensional polytopes: for a
noncyclic neighborly polytope with 8 vertices, and for the po-
lar (with 8 vertices) of the polytope with 8 facets from Figure
15.1.10, for which the shape of a hexagonal face cannot be
prescribed arbitrarily.

if for any hyperplane spanned by some of the points, and for each side of it, the
number of black points on this side, plus the number of white points on the other
side, is at least 2.

The final information one needs is how to read off properties of a polytope from
its affine Gale diagram: A set of points represents a face if and only if the bicolored
points not in the set support an affine dependency, with positive coefficients on the
black points, and with negative coefficients on the white points. Equivalently, the
convex hull of all the black points not in our set, and the convex hull of all the
white points not in the set, intersect in their relative interiors.

Affine Gale diagrams have been very successfully used to study and classify
polytopes with few vertices.

d+1 vertices: The only d-polytopes with d+1 vertices are the d-simplices.

d+2 vertices: This corresponds to the situation of 0-dimensional affine Gale dia-
grams. There are exactly bd2/4c combinatorial types of d-polytopes with d+2
vertices: They are of the form ∆a−1 ∗ (∆b ⊕∆c) with d = a + b + c, a ≥ 0,
b ≥ c ≥ 0, that is, multiple (a-fold) pyramids over simplicial polytopes that
are direct sums of simplices ∆b ⊕ ∆c. Among these, the bd/2c types with
a = 0 are the simplicial ones.

d+3 vertices: All d-polytopes with d+3 vertices are realizable with (small) in-
tegral coordinates and satisfy the isotopy property: All this can be easily
analyzed in terms of 1-dimensional affine Gale diagrams. In addition, formu-
las for the numbers of

• polytopes [Fus06, Thm. 1],
• simplicial polytopes [Grü67, Sect. 6.2, Thm. 6.3.2, p. 113 and p. 424],
• neighborly polytopes [McM74], and
• simplicial neighborly polytopes [AM73]

have been produced using Gale diagrams. This leads to subtle enumeration
problems, some of them connected to colored necklace counting problems.

d+4 vertices: Here anything can go wrong: The universality theorem for oriented
matroids of rank 3 yields a universality theorem for d-polytopes with d+4
vertices. See Section 6.3.4.

We refer to [Zie95, Lecture 6] for a detailed introduction to affine Gale diagrams.

15.2 METRIC PROPERTIES

The combinatorial data of a polytope—vertices, edges, . . . , facets—have their coun-
terparts in genuine geometric data, such as face volumes, surface areas, quermass-
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integrals, and the like. In this second half of the chapter, we give a brief sketch of
some key geometric concepts related to polytopes.

However, the topics of combinatorial and of geometric invariants are not disjoint
at all: Much of the beauty of the theory stems from the subtle interplay between the
two sides. Thus, the computation of volumes inevitably leads to the construction of
triangulations (explicitly or implicitly), mixed volumes lead to mixed subdivisions
of Minkowski sums (one “hot topic” for current research in the area), quermassin-
tegrals relate to face enumeration, and so on.

A concrete and striking example of the interplay is related to Kalai’s 3d conjec-
ture on the face numbers of centrally symmetric polytopes P ⊂ Rd mentioned be-
fore: Using convex geometric methods, Figiel, Lindenstrauss and Milman [FLM77]
proved that ln f0(P ) ln fd−1(P ) ≥ 1

16d.
Furthermore, the study of polytopes yields a powerful approach to the theory

of convex bodies: Sometimes one can extend properties of polytopes to arbitrary
convex bodies by approximation [Sch14]. However, there are also properties valid
for polytopes that fail for convex bodies in general. This bug/feature is designed
to keep the game interesting.

15.2.1 VOLUME AND SURFACE AREA

GLOSSARY

Volume of a d-simplex T: V (T ) =
1

d!

∣∣∣∣det

(
v0 · · · vd

1 · · · 1

)∣∣∣∣, where T =

conv{v0, . . . , vd} with v0, . . . , vd ∈ Rd.
Volume of a d-polytope: V (P ) :=

∑
T∈∆(P ) V (T ), where ∆(P ) is any triangu-

lation of P .

k-volume V k(P ) of a k-polytope P ⊆ Rd: The volume of P , computed with
respect to the k-dimensional Euclidean measure induced on aff(P ).

Surface area of a d-polytope P: F (P ) :=
∑
T∈∆(P ), F∈Fd−1(P ) V

d−1(T ∩ F ),

where ∆(P ) is a triangulation of P .

The volume V (P ) (i.e., the d-dimensional Lebesgue measure) and the surface
area F (P ) of a d-polytope P ⊆ Rd can be derived from any triangulation of P , since
volumes of simplices are easy to compute. The crux for this is in the (efficient?)
generation of a triangulation, a topic on which Chapters 16 and 29 of this Handbook
have more to say.

The following recursive approach only implicitly generates a triangulation, but
derives explicit volume formulas. Let P ⊆ Rd (P 6= ∅) be a polytope. If d = 0 then
we set V (P ) = 1. Otherwise we set Sd−1(P ) := {u ∈ Sd−1 | dim(H(P, u) ∩ P ) =
d− 1}, and use this to define the volume of P as

V (P ) :=
1

d

∑
u∈Sd−1(P )

h(P, u) · V d−1(H(P, u) ∩ P ).

Thus, for any d-polytope the volume is a sum of its facet volumes, each weighted
by 1/d times its signed distance from the origin. This can be interpreted geomet-
rically as follows: Assume for simplicity that the origin is in the interior of P .
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Then the collection {conv(F ∪ {0}) | F ∈ Fd−1(P )} is a subdivision of P into d-
dimensional pyramids, where the base of conv(F ∪{0}) has (d−1)-dimensional vol-
ume V d−1(F )—to be computed recursively, the height of the pyramid is h(P, uF ),
and thus its volume is 1

dh(P, uF ) ·V d−1(F ); compare to Figure 15.2.1. The formula
remains valid even if the origin is outside P or on its boundary.

FIGURE 15.2.1
This pentagon, with the origin in its interior, is decomposed into five pyramids
(triangles), each with one of the pentagon facets (edges) Fi as its base. For
each pyramid, the height, of length h(P, uFi), is drawn as a dotted line.

A classical and beautiful result of Minkowski states that the volumes of the
facets V d−1(F ) along with their normals (directions) uF determine a polytope as
uniquely as possible:

THEOREM 15.2.1 Minkowski (cf. [Sch14, pp. 455])

Let u1, . . . , un ∈ Sd−1 be pairwise distinct unit vectors linearly spanning Rd and let
f1, . . . , fn > 0 be positive real numbers. There exists a d-dimensional polytope P
with n facets F1, . . . , Fn such that Fi = H(P, ui)∩P and V d−1(Fi) = fi, 1 ≤ i ≤ n,
if and only if

n∑
i=1

fi u
i = 0.

Moreover, P is uniquely determined up to translations.

This statement is a particular instance of the modern and “hot” Lp-Minkowski
problem for which we refer to [BLYZ13] and the references within.

Note that V (P ) ≥ 0. This holds with strict inequality if and only if the polytope
P has full dimension d. The surface area F (P ) can also be expressed as

F (P ) =
∑

u∈Sd−1(P )

V d−1(H(P, u) ∩ P ).

Thus for a d-polytope the surface area is the sum of the (d−1)-volumes of its facets.
If dim(P ) = d− 1, then F (P ) is twice the (d−1)-volume of P . One has F (P ) = 0
if and only if dim(P ) < d− 1.

TABLE 15.2.1

POLYTOPE fk(·) VOLUME SURFACE AREA

Cd 2d−k
(d
k

)
2d 2d · 2d−1

C∆
d 2k+1

( d

k + 1

)
2d

d!
2d
√
d

(d−1)!

Td

(d+ 1

k + 1

) √
d+ 1

d!
(d+ 1) ·

√
d

(d−1)!
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Both the volume and the surface area are continuous with respect to the Haus-
dorff metric (as defined in Chap. 2). They are monotone and invariant with respect
to rigid motions. The volume is homogeneous of degree d, i.e., V (µP ) = µdV (P )
for µ ≥ 0, whereas the surface area is homogeneous of degree d − 1. For further
properties of the functionals V (·) and F (·) see [Had57] and [Sch14].

Table 15.2.1 gives the numbers of k-faces, the volume, and the surface area of
the d-cube Cd (with edge length 2), of the cross-polytope C∆

d with edge length
√

2,
and of the regular simplex Td with edge length

√
2.

15.2.2 MIXED VOLUMES

GLOSSARY

Volume polynomial: The volume of the Minkowski sum λ1P1+λ2P2+· · ·+λrPr,
which is a homogeneous polynomial in λ1, . . . , λr ≥ 0. Here the Pi may be convex
polytopes of any dimension, or more general (closed, bounded) convex sets.

Mixed volumes: The suitably normalized coefficients of the volume polynomial
of P1, . . . , Pr.

Normal cone: The normal cone N(F, P ) of a face F of a polytope P is the set
of all vectors v ∈ Rd such that the supporting hyperplane H(P, v) contains F ,
i.e.,

N(F, P ) =
{
v ∈ Rd

∣∣ F ⊆ H(P, v) ∩ P
}
.

THEOREM 15.2.2 Mixed Volumes (cf. [Sch14, pp. 275])

Let P1, . . . , Pr ⊆ Rd be polytopes, r ≥ 1, and λ1, . . . , λr ≥ 0. The volume of
λ1P1 + · · · + λrPr is a homogeneous polynomial in λ1, . . . , λr of degree d. Thus it
can be written in the form

V (λ1P1 + · · ·+ λrPr) =
∑

(i(1),...,i(d))∈{1,2,...,r}d
λi(1) · · ·λi(d) · V (Pi(1), . . . , Pi(d)),

where the coefficients in this expansion are chosen to be symmetric in their indices.
Furthermore, the coefficient V (Pi(1), . . . , Pi(d)) depends only on Pi(1), . . . , Pi(d). It
is called the mixed volume of the polytopes Pi(1), . . . , Pi(d).

With the abbreviation

V (P1, k1; . . . ;Pr, kr) := V (P1, . . . , P1︸ ︷︷ ︸
k1 times

, . . . , Pr, . . . , Pr︸ ︷︷ ︸
kr times

),

the polynomial becomes

V (λ1P1 + · · ·+ λrPr) =
∑

k1,...,kr≥0
k1+···+kr=d

(
d

k1, . . . , kr

)
λk11 · · ·λkrr V (P1, k1; . . . ;Pr, kr).

In particular, the volume of the polytope Pi is given by the mixed volume
V (P1, 0; . . . ;Pi, d; . . . ;Pr, 0). The theorem is also valid for arbitrary convex bodies:
This is a good example of a result where the general case can be derived from the
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polytope case by approximation. For more about the properties of mixed volumes
from different points of view see Schneider [Sch14], Sangwine-Yager [San93], and
McMullen [McM93].

The definition of the mixed volumes as coefficients of a polynomial is somewhat
unsatisfactory. Schneider gave the following explicit rule, which generalizes an
earlier result of Betke [Bet92] for the case r = 2. It uses information about the
normal cones at certain faces. For this, note that N(F, P ) is a finitely generated
cone, which can be written explicitly as the sum of the orthogonal complement of
aff(P ) and the positive hull of those unit vectors u that are both parallel to aff(P )
and induce supporting hyperplanes H(P, u) that contain a facet of P including F .
Thus, for P ⊆ Rd the dimension of N(F, P ) is d− dim(F ).

THEOREM 15.2.3 Schneider’s Summation Formula [Sch94]

Let P1, . . . , Pr ⊆ Rd be polytopes, r ≥ 2. Let x1, . . . , xr ∈ Rd with x1 + · · ·+xr = 0,
(x1, . . . , xr) 6= (0, . . . , 0), and

r⋂
i=1

(
relintN(Fi, Pi)− xi

)
= ∅

whenever Fi is a face of Pi and dim(F1) + · · ·+ dim(Fr) > d. Then(
d

k1, . . . , kr

)
V (P1, k1; . . . ;Pr, kr) =

∑
(F1,...,Fr)

V (F1 + · · ·+ Fr),

where the summation extends over the r-tuples (F1, . . . , Fr) of ki-faces Fi of Pi with
dim(F1 + · · ·+ Fr) = d and

⋂r
i=1

(
N(Fi, Pi)− xi

)
6= ∅.

The choice of the vectors x1, . . . , xr implies that the selected ki-faces Fi ⊆ Pi
of a summand F1 + · · ·+Fr are contained in complementary subspaces. Hence one
may also write(

d

k1, . . . , kr

)
V (P1, k1; . . . ;Pr, kr) =

∑
(F1,...,Fr)

[F1, . . . , Fr] · V k1(F1) · · ·V kr (Fr),

where [F1, . . . , Fr] denotes the volume of the parallelepiped that is the sum of unit
cubes in the affine hulls of F1, . . . , Fr.

Finally, we remark that the selected sums of faces in the formula of the theorem
form a subdivision of the polytope P1 + · · ·+ Pr, i.e.,

P1 + · · ·+ Pr =
⊎

(F1,...,Fr)

(F1 + · · ·+ Fr) .

See Figure 15.2.2 for an example.

VOLUMES OF ZONOTOPES

If all summands in a Minkowski sum Z = P1 + · · · + Pr are line segments, say
Pi = pi + [0, 1]zi = conv{pi, pi + zi} with pi, zi ∈ Rd for 1 ≤ i ≤ r, then the
resulting polytope Z is a zonotope. In this case the summation rule immediately
gives V (P1, k1; . . . ;Pr, kr) = 0 if the vectors

z1, . . . , z1︸ ︷︷ ︸
k1 times

, . . . , zr, . . . , zr︸ ︷︷ ︸
kr times
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FIGURE 15.2.2
Here the Minkowski sum of a square P1 and a triangle P2 is decomposed into
translates of P1 and of P2 (this corresponds to two summands with F1 = P1

and F2 = P2, respectively), together with three “mixed” faces that arise as sums
F1 + F2, where F1 and F2 are faces of P1 and P2 (corresponding to summands
with dim (F1) = dim (F2) = 1).

are linearly dependent. This can also be seen directly from dimension considera-
tions. Otherwise, for ki(1) = ki(2) = · · · = ki(d) = 1, say,

V (P1, k1; . . . ;Pr, kr) =
1

d!

∣∣∣det
(
zi(1), zi(2), . . . , zi(d)

)∣∣∣ .
Therefore, one obtains McMullen’s formula for the volume of the zonotope Z (cf.
Shephard [She74]):

V (Z) =
∑

1≤i(1)<i(2)<···<i(d)≤r

∣∣∣det(zi(1), . . . , zi(d))
∣∣∣ .

15.2.3 QUERMASSINTEGRALS AND INTRINSIC VOLUMES

GLOSSARY

ith quermassintegral Wi(P ): The mixed volume V (P, d−i;Bd, i) of a polytope
P and the d-dimensional unit ball Bd.

κd: The volume of Bd. Hence κ0 = 1, κ1 = 2, κ2 = π, etc.

ith intrinsic volume Vi(P ): The (d−i)th quermassintegral, scaled by the con-
stant

(
d
i

)
/κd−i.

Outer parallel body of P at distance λ: The convex body P + λBd for some
λ > 0.

External angle γ(F, P ) at a face F of a polytope P : The volume of the
intersection

(
lin(F − xF ) +N(F, P )

)
∩ Bd divided by κd, for xF ∈ relint(F ),

where lin(·) denotes the linear hull. Thus γ(F, P ) is the “fraction of Rd taken up
by lin(F − xF ) +N(F, P ).” Equivalently, the external angle at a k-face F is the
fraction of the spherical volume of S covered by N(F, P ) ∩ S, where S denotes
the (d−k−1)-dimensional unit sphere in lin(N(F, P )).

Internal angle β(F,G) for faces F ⊆ G: The “fraction” of lin{G−xF } taken
up by the cone pos{x − xF | x ∈ G}, for xF ∈ relint(F ). A detailed discussion
of relations between external and internal angles can be found in McMullen
[McM75].

The quermassintegrals are generalizations of both the volume and the surface
area of P . In fact, they can also be seen as the continuous convex geometry analogs
of face numbers.

For a polytope P ⊆ Rd and the d-dimensional unit ball Bd, the mixed volume
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formula, applied to the outer parallel body P + λBd, gives

V (P + λBd) =

d∑
i=0

(
d

i

)
λiWi(P ),

with the convention Wi(P ) = V (P, d − i;Bd, i). This formula is known as the
Steiner polynomial. The mixed volume Wi(P ), the ith quermassintegral of P ,
is an important quantity and of significant geometric interest [Had57, Sch14]. As
special cases, W0(P ) = V (P ) is the volume, dW1(P ) = F (P ) is the surface area,
and Wd(P ) = κd.

For the geometric interpretation of Wi(P ) for polytopes, we use a normalization
of the quermassintegrals due to McMullen [McM75]: For 0 ≤ i ≤ d, the ith intrinsic
volume of P is defined by

Vi(P ) :=

(
d
i

)
κd−i

Wd−i(P ).

With this notation the Steiner polynomial can be written as

V (P + λBd) =

d∑
i=0

λd−iκd−iVi(P ).

See Figure 15.2.3 for an example. Vd(P ) is the volume of P , Vd−1(P ) is half
the surface area, and V0(P ) = 1. One advantage of this normalization is that
the intrinsic volumes are unchanged if P is embedded in some Euclidean space of
different dimension. Thus, for dim(P ) = k ≤ d, Vk(P ) is the ordinary k-volume of
P with respect to the Euclidean structure induced in aff(P ).

FIGURE 15.2.3
The Minkowski sum of a square P with a ball λB2 yields the outer parallel body. This outer parallel
body can be decomposed into pieces, whose volumes, V (P ), λV1(P )κ1, and λ2κ2, correspond to the
three terms in the Steiner polynomial.

+ = = ∪ ∪

V (P + λB2) = V2(P ) + λV1(P )κ1 + λ2κ2

For a (dim(P )− 2)-face F , the concept of external angle (see the glossary) re-
duces to the “usual” concept: then the external angle is given by 1

2π arccos〈uF1 , uF2〉
for unit normal vectors uF1 , uF2 ∈ Sd−1 to the facets F1, F2 with F1∩F2 = F . One
has γ(P, P ) = 1 for the polytope itself and γ(F, P ) = 1/2 for each facet F . Using
this concept, we get

Vk(P ) =
∑

F∈Fk(P )

γ(F, P ) · V k(F ).
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Internal and external angles are also useful tools in order to express combina-
torial properties of polytopes (see the application below). One classical example is
Gram’s equation [Gra74] [Grü67, Sect. 14.1].

d−1∑
k=0

(−1)k
∑

F∈Fk(P )

β(F, P ) = (−1)d−1.

This formula is quite similar to the Euler relation for the face numbers of a polytope
(see Chapter 17). It was discovered by Shephard and by Welzl that Gram’s equa-
tion follows directly from Euler’s relation applied to a random projection [Grü67,
p. 315a].

SOME COMPUTATIONS

In principle, one can use the external angle formula to determine the intrinsic
volumes of a given polytope, but in general it is hard to calculate external angles.
Indeed, for the computation of spherical volumes there are explicit formulas only
in small dimensions.

In what follows, we give formulas for the intrinsic volumes of the polytopes Cd,
C∆
d , and Td. For this, we identify the k-faces of Cd with the k-cube Ck and the

k-faces of C∆
d and of Td with Tk, for 0 ≤ k < d.

The case of the cube Cd is rather trivial. Since γ(Ck, Cd) = 2−(d−k) one gets
(see Table 15.2.1)

Vk(Cd) = 2k
(
d

k

)
.

For the regular simplex Td we have

Vk(Td) =

(
d+ 1

k + 1

)
·
√
k + 1

k!
· γ(Tk, Td).

An explicit formula for the external angles of a regular simplex by Ruben [Rub60]
[Had79] is:

γ(Tk, Td) =

√
k + 1

π

∫ ∞
−∞

e−(k+1)x2

(
1√
π

∫ x

−∞
e−y

2

dy

)d−k
dx.

For the regular cross-polytope we find for k ≤ d− 1 that

Vk(C∆
d ) = 2k+1

(
d

k + 1

)
·
√
k + 1

k!
· γ(Tk, C

∆
d ).

For this, the external angles of C∆
d were determined by Betke and Henk [BH93]:

γ(Tk, C
∆
d ) =

√
k + 1

π

∫ ∞
0

e−(k+1)x2

(
2√
π

∫ x

0

e−y
2

dy

)d−k−1

dx.

AN APPLICATION

External angles and internal angles play a crucial role in work by Affentranger
and Schneider [AS92] (see also [BV94]), who computed the expected number of

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 15: Basic properties of convex polytopes 409

k-faces of the orthogonal projection of a polytope P ⊆ Rd onto a randomly chosen
isotropic subspace of dimension n. Let E[fk(P ;n)] be that number. Then for
0 ≤ k < n ≤ d− 1 it was shown that

E[fk(P ;n)] = 2
∑
m≥0

∑
F∈Fk(P )

∑
G∈Fn−1−2m(P )

F⊆G

β(F,G)γ(G,P ),

where β(F,G) is the internal angle of the face F with respect to a face G ⊇ F .
In the sequel we apply the above formula to the polytopes Cd, C

∆
d , and Td.

For the cubes one has β(Ck, Cl) = (1/2)l−k, while the number of l-faces of Cd
containing any given k-face is equal to

(
d−k
l−k
)
. Hence

E[fk(Cd;n)] = 2

(
d

k

)∑
m≥0

(
d− k

n− 1− k − 2m

)
.

In particular, E[fk(Cd; d− 1)] = (2d−k − 2)
(
d
k

)
.

For the cross-polytope C∆
d the number of l-faces that contain a k-face is equal

to 2l−k
(
d−k−1
l−k

)
. Thus

E[fk(C∆
d ;n)] =

2

(
d

k + 1

)∑
m≥0

2n−2m

(
d− k − 1

n− 1− k − 2m

)
β(Tk, Tn−1−2m)γ(Tn−1−2m, C

∆
d ).

In the same way one obtains for Td

E[fk(Td;n)] =

2

(
d+ 1

k + 1

)∑
m≥0

(
d− k

n− 1− k − 2m

)
β(Tk, Tn−1−2m)γ(Tn−1−2m, Td).

For the last two formulas one needs the internal angles β(Tk, Tl) of the regular
simplex Td, for 0 ≤ k ≤ l ≤ d, For this, one has the following complex integral
[BH99]:

β(Tk, Tl) =
(k+1+l)1/2(k+1)(l−1)/2

π(l+1)/2

∫ ∞
−∞

e−w
2

(∫ ∞
0

e−(k+1)y2+2iwydy

)l
dw.

Using this formula one can determine the asymptotic behavior of E[fk(C∆
d ;n)]

and E[fk(Td;n)] as n tends to infinity [BH99].

15.3 SOURCES AND RELATED MATERIAL

FURTHER READING

The classic account of the combinatorial theory of convex polytopes was given by
Grünbaum in 1967 [Grü67]. It inspired and guided a great part of the subsequent
research in the field. Besides the related chapters of this Handbook, we refer to
[Zie95] and the handbook surveys by Klee and Kleinschmidt [KK95] and by Bayer
and Lee [BL93] for further reading.
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For the geometric theory of convex bodies we refer to the Handbook of Con-
vex Geometry [GW93], to Schneider [Sch14] for an excellent monograph, and as
an introduction to modern convex geometry we recommend [Bal97]. For high-
dimensional/asymptotic methods and results see also the recent book [AGM15].

As for the algorithmic aspects of computing volumes, etc., we refer to Chap-
ter 36 of this Handbook, on Computational Convexity, and to the additional refer-
ences given there. For further and recent aspects related to random polytopes we
refer to Chapter 12 “Discrete Aspects of Stochastic Geometry” of this Handbook.
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