
13 GEOMETRIC DISCREPANCY THEORY AND
UNIFORM DISTRIBUTION
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INTRODUCTION

A sequence s1, s2, . . . in U = [0, 1) is said to be uniformly distributed if, in the
limit, the number of sj falling in any given subinterval is proportional to its length.
Equivalently, s1, s2, . . . is uniformly distributed if the sequence of equiweighted
atomic probability measures µN (sj) = 1/N , supported by the initial N -segments
s1, s2, . . . , sN , converges weakly to Lebesgue measure on U. This notion immedi-
ately generalizes to any topological space with a corresponding probability measure
on the Borel sets.

Uniform distribution, as an area of study, originated from the remarkable paper
of Weyl [Wey16], in which he established the fundamental result known nowadays
as the Weyl criterion (see [Cas57, KN74]). This reduces a problem on uniform
distribution to a study of related exponential sums, and provides a deeper under-
standing of certain aspects of Diophantine approximation, especially basic results
such as Kronecker’s density theorem. Indeed, careful analysis of the exponential
sums that arise often leads to Erdős-Turán-type upper bounds, which in turn lead
to quantitative statements concerning uniform distribution.

Today, the concept of uniform distribution has important applications in a
number of branches of mathematics such as number theory (especially Diophan-
tine approximation), combinatorics, ergodic theory, discrete geometry, statistics,
numerical analysis, etc. In this chapter, we focus on the geometric aspects of the
theory.

13.1 UNIFORM DISTRIBUTION OF SEQUENCES

GLOSSARY

Uniformly distributed: Given a sequence (sn)n∈N, with sn ∈ U = [0, 1), let
ZN ([a, b)) = |{j ≤ N | sj ∈ [a, b)}|. The sequence is uniformly distributed if, for
every 0 ≤ a < b ≤ 1, limN→∞N−1ZN ([a, b)) = b− a.

Fractional part: The fractional part {x} of a real number x is x− bxc.
Kronecker sequence: A sequence of points of the form ({Nα1}, . . . , {Nαk})N∈N

in Uk, where 1, α1, . . . , αk ∈ R are linearly independent over Q.

Discrepancy, or irregularity of distribution: The discrepancy of a sequence
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(sn)n∈N, with sn ∈ U = [0, 1), in a subinterval [a, b) of U, is

∆N ([a, b)) = |ZN ([a, b))−N(b− a)|.

More generally, the discrepancy of a sequence (sn)n∈N, with sn ∈ S, a topological
probability space, in a measurable subset A ⊂ S, is ∆N (A) = |ZN (A)−Nµ(A)|,
where ZN (A) = |{j ≤ N | sj ∈ A}|.

Aligned rectangle, aligned triangle: A rectangle (resp. triangle) in R2 two
sides of which are parallel to the coordinate axes.

Hausdorff dimension: A set S in a metric space has Hausdorff dimension m,
where 0 ≤ m ≤ +∞, if

(i) for any 0 < k < m, µk(S) > 0;

(ii) for any m < k < +∞, µk(S) < +∞.

Here, µk is the k-dimensional Hausdorff measure, given by

µk(S) = 2−kκk lim inf
ε→0

{ ∞∑
i=1

(diam Si)
k

∣∣∣∣∣ S ⊂
∞⋃
i=1

Si, diam Si ≤ ε

}
,

where κk is the volume of the unit ball in Ek.

Remark. Throughout this chapter, the symbol c will always represent the generic
absolute positive constant, depending only on the indicated parameters. The
value generally varies from one appearance to the next.

It is not hard to prove that for any irrational number α, the sequence of frac-
tional parts {Nα} is everywhere dense in U (here N is the running index). Suppose
that the numbers 1, α1, . . . , αk are linearly independent over Q. Then Kronecker’s
theorem states that the k-dimensional Kronecker sequence ({Nα1}, . . . , {Nαk}) is
dense in the unit k-cube Uk. It is a simple consequence of the Weyl criterion
that any such Kronecker sequence is uniformly distributed in Uk, a far stronger
result than the density theorem. For example, letting k = 1, we see that {N

√
2} is

uniformly distributed in U.
Weyl’s work led naturally to the question: How rapidly can a sequence in U

become uniformly distributed as measured by the discrepancy ∆N ([a, b)) of subin-
tervals? Here, ∆N ([a, b)) = |ZN ([a, b)) −N(b − a)|, where ZN ([a, b)) counts those
j ≤ N for which sj lies in [a, b). Thus we see that ∆N measures the difference
between the actual number of sj in an interval and the expected number. The se-
quence is uniformly distributed if and only if ∆N (I) = o(N) for all subintervals I.
The notion of discrepancy immediately extends to any topological probability space,
provided there is at hand a suitable collection of measurable sets J corresponding
to the intervals. If A is in J , set ∆N (A) = |ZN (A)−Nµ(A)|.

From the works of Hardy, Littlewood, Ostrowski, and others, it became clear
that the smaller the partial quotients in the continued fractions of the irrational
number α are, the more uniformly distributed the sequence {Nα} is. For instance,
the partial quotients of quadratic irrationals are characterized by being cyclic, hence
bounded. Studying the behavior of {Nα} for these numbers has proved an excellent
indicator of what might be optimal for general sequences in U. Here one has
∆N (I) < c(α) logN for all intervals I and integers N ≥ 2. Unfortunately, one does
not have anything corresponding to continued fractions in higher dimensions, and
this has been an obstacle to a similar study of Kronecker sequences (see [Bec94]).

Preliminary version (July 16, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 13: Geometric discrepancy theory and uniform distribution 333

Van der Corput gave an alternative construction of a super uniformly dis-
tributed sequence of rationals in U for which ∆N (I) < c logN for all intervals
I and integers N ≥ 2 (see [KN74, p. 127]). He also asked for the best possible
estimate in this direction. In particular, he posed

PROBLEM 13.1.1 Van der Corput Problem [Cor35a] [Cor35b]

Can there exist a sequence for which ∆N (I) < c for all N and I?

He conjectured, in a slightly different formulation, that such a sequence could
not exist. This conjecture was affirmed by van Aardenne-Ehrenfest [A-E45], who
later showed that for any sequence in U, supI ∆N (I) > c log logN/ log log logN for
infinitely many values of N [A-E49]. Her pioneering work gave the first nontrivial
lower bound on the discrepancy of general sequences in U. It is trivial to construct
a sequence for which supI ∆N (I) ≤ 1 for infinitely many values of N .

In a classic paper, Roth showed that for any infinite sequence in U, it must
be true that supI ∆N (I) > c(logN)1/2 for infinitely many N . Finally, in another
classic paper, Schmidt used an entirely new method to prove the following result.

THEOREM 13.1.2 Schmidt [Sch72b]

The inequality supI ∆N (I) > c logN holds for infinitely many N .

For a more detailed discussion of work arising from the van der Corput conjec-
ture, see [BC87, pp. 3–6].

In light of van der Corput’s sequence, as well as {N
√

2}, Schmidt’s result is
best possible. The following problem, which has been described as “excruciatingly
difficult,” is a major remaining open question from the classical theory.

PROBLEM 13.1.3

Extend Schmidt’s result to a best possible estimate of the discrepancy for sequences
in Uk for k > 1.

For a given sequence, the results above do not imply the existence of a fixed
interval I in U for which supN ∆N (I) =∞. Let Iα denote the interval [0, α), where
0 < α ≤ 1. Schmidt [Sch72a] showed that for any fixed sequence in U there are
only countably many values of α for which ∆N (Iα) is bounded. The best result in
this direction is due to Halász.

THEOREM 13.1.4 Halász [Hal81]

For any fixed sequence in U, let A denote the set of values of α for which ∆N (Iα) =
o(logN). Then A has Hausdorff dimension 0.

For a more detailed discussion of work arising from this question, see [BC87,
pp. 10–11].

The fundamental works of Roth and Schmidt opened the door to the study of
discrepancy in higher dimensions, and there were surprises. In his classic paper,
Roth [Rot54] transformed the heart of van der Corput’s problem to a question con-
cerning the unit square U2. In this new formulation, Schmidt’s “logN theorem”
implies that if N points are placed in U2, there is always an aligned rectangle
I = [γ1, α1)× [γ2, α2) having discrepancy exceeding c logN . Roth also showed that
it was possible to place N points in the square U2 so that the discrepancy of no
aligned rectangle exceeds c logN . One way is to choose pj = ((j−1)/N, {j

√
2}) for

j ≤ N . Thus, the function c logN describes the minimax discrepancy for aligned
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rectangles. However, Schmidt showed that there is always an aligned right triangle
(the part of an aligned rectangle above, or below, a diagonal) with discrepancy ex-
ceeding cN1/4−ε ! Later work has shown that cN1/4 exactly describes the minimax
discrepancy of aligned right triangles. This paradoxical behavior is not isolated.

Generally, if one studies a collection J of “nice” sets such as disks, aligned
boxes, rotated cubes, etc., in Uk or some other convex region, it turns out that
the minimax discrepancy is either bounded above by c(logN)r or bounded below
by cNs, with nothing halfway. In Uk, typically s = (k − 1)/2k. Thus, there tends
to be a logarithmic version of the Vapnik-Chervonenkis principle in operation (see
Chapter 40 of this Handbook for a related discussion). Later, we shall see how
certain geometric properties place J in one or the other of these two classes.

13.2 THE GENERAL FREE PLACEMENT PROBLEM FOR N
POINTS

One can ask for bounds on the discrepancy ofN variable points P = {p1, p2, . . . , pN}
that are freely placed in a domain K in Euclidean t-space Et. By contrast, when one
considers the discrepancy of a sequence in K, the initial n-segment of p1, . . . , pn,
. . . , pN remains fixed for n ≤ N as new points appear with increasing N . For a
given K, as the unit interval U demonstrates, estimates for these two problems are
quite different as functions of N . The freely placed points in U need never have
discrepancy exceeding 1.

With Roth’s reformulation (discussed in Section 13.3), the classical problem is
easier to state and, more importantly, it generalizes in a natural manner to a wide
class of problems. The bulk of geometric discrepancy problems are now posed as
free placement problems. In practically all situations, the domain K has a very
simple description as a cube, disk, sphere, etc., and standard notation is used in
the specific situations.

PROBABILITY MEASURES AND DISCREPANCY

In a free placement problem there are two probability measures in play. First, there
is the atomic measure µ+ that assigns weight 1/N to each pj . Second, there is a
probability measure µ− on the Borel sets of K. The measure µ− is generally the
restriction of a natural uniform measure, such as scaled Lebesgue measure. An
example would be given by µ− = σ/4π on the unit sphere S2, where σ is the usual
surface measure. It is convenient to define the signed measure µ = µ+ − µ− (in
the previous section µ− was denoted by µ). The discrepancy of a Borel set A is, as
before, given by ∆(A) = |Z(A)−Nµ−(A)| = N |µ(A)|.

The function ∆ is always restricted to a very special collection J of sets, and the
challenge lies in obtaining estimates concerning the restricted ∆. It is the central
importance of the collection J that gives the study of discrepancy its distinct
character. In a given problem it is sometimes possible to reduce the size of J .
Taking the unit interval U as an example, letting J be the collection of intervals
[γ, α) seems to be the obvious choice. But a moment’s reflection shows that only
intervals of the form Iα = [0, α) need be considered for estimates of discrepancy.
At most a factor of 2 is introduced in any estimate of bounds.
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NOTIONS OF DISCREPANCY

In most interesting problems J itself carries a measure ν in the sense of integral
geometry, and this adds much more structure. While there is artistic latitude in the
choice of ν, more often than not there is a natural measure on J . In the example
of U, by identifying Iα = [0, α) with its right endpoint, it is clear that Lebesgue
measure on U is the natural choice for ν.

Given that the measure ν exists, for 0 < W <∞ define

‖∆(P,J )‖W =

(∫
J

(∆(A))W dν

)1/W

and ‖∆(P,J )‖∞ = sup
J

∆(A),

and for 0 < W ≤ ∞ define

D(K,J ,W,N) = inf
|P|=N

{‖∆(P,J )‖W }. (13.2.1)

The determination of the “minimax” D(K,J ,∞, N) is generally the most impor-
tant as well as the most difficult problem in the study. It should be noted that
the function D(K,J ,∞, N) is defined even if the measure ν is not. The term
D(K,J , 2, N) has been shown to be intimately related to problems in numerical
integration in some special cases, and is of increasing importance. These various
functions D(K,J ,W,N) measure how well the continuous distribution µ− can be
approximated by N freely placed atoms.

For W ≥ 1, the inequality

ν(J )−1/W ‖∆(P,J )‖W ≤ ‖∆(P,J )‖∞ (13.2.2)

provides a general approach for obtaining a lower bound for D(K,J ,∞, N). The
choice W = 2 has been especially fruitful, but good estimates of D(K,J ,W,N) for
any W are of independent interest.

An upper bound on D(K,J ,∞, N) generally is obtained by showing the ex-
istence of a favorable example. This may be done either by a direct construction,
often extremely difficult to verify, or by a probabilistic argument showing such an
example does exist without giving it explicitly. These comments would apply as
well to upper bounds for any D(K,J ,W,N).

13.3 ALIGNED RECTANGLES IN THE UNIT SQUARE

The unit square U2 = [0, 1) × [0, 1) is by far the most thoroughly studied 2-
dimensional object. The main reason for this is Roth’s reformulation of the van der
Corput problem. Many of the interesting questions that arose have been answered,
and we give a summary of the highlights.

For U2 one wishes to study the discrepancy of rectangles of the type I =
[γ1, α1)× [γ2, α2). It is a trivial observation that only those I for which γ1 = γ2 = 0
need be considered, and this restricted family, denoted by B2, is the choice for
J . By considering this smaller collection one introduces at most a factor of 4 on
bounds. There is a natural measure ν on B2, which may be identified with Lebesgue
measure on U2 via the upper right corner points (α1, α2). In the same spirit, let
B1 denote the previously introduced collection of intervals Iα = [0, α) in U.
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THEOREM 13.3.1 Roth’s Equivalence [Rot54] [BC87, pp. 6–7]

Let f be a positive increasing function tending to infinity. Then the following two
statements are equivalent:

(i) There is an absolute positive constant c1 such that for any finite sequence
s1, s2, . . . , sN in U, there always exists a positive integer n ≤ N such that
‖∆(Pn,B1)‖∞ > c1f(N). Here, Pn is the initial n-segment.

(ii) There is an absolute positive constant c2 such that for all positive integers N ,
D(U2,B2,∞, N) > c2f(N).

The equivalence shows that the central question of bounds for the van der Cor-
put problem can be replaced by an elegant problem concerning the free placement
of N points in the unit square U2. The mapping sj → ((j − 1)/N, sj) plays a role
in the proof of this equivalence. If one takes as PN the image in U2 under the
mapping of the initial N -segment of the van der Corput sequence, the following
upper bound theorem may be proved.

THEOREM 13.3.2 Lerch [BC87, Theorem 4, K = 2]

For N ≥ 2,
D(U2,B2,∞, N) < c logN. (13.3.1)

The corresponding lower bound is established by the important “logN theo-
rem” of Schmidt.

THEOREM 13.3.3 Schmidt [Sch72b] [BC87, Theorem 3B]

One has
D(U2,B2,∞, N) > c logN. (13.3.2)

By an explicit lattice construction, Davenport [Dav56] gave the best possible
upper bound estimate for W = 2. His analysis shows that if the irrational number
α has continued fractions with bounded partial quotients, then the N = 2M points
in U2 given by

p±j = ((j − 1)/M, {±jα}), j ≤M,

can be taken as P in proving the following theorem. Other proofs have been given
by Vilenkin [Vil67], Halton and Zaremba [HZ69], and Roth [Rot76].

THEOREM 13.3.4 Davenport [Dav56] [BC87, Theorem 2A]

For N ≥ 2,
D(U2,B2, 2, N) < c(logN)1/2. (13.3.3)

This complements the following lower bound obtained by Roth in his classic
paper.

THEOREM 13.3.5 Roth [Rot54] [BC87, Theorem 1A, K = 2]

One has
D(U2,B2, 2, N) > c(logN)1/2. (13.3.4)

For W = 1, an upper bound D(U2,B2, 1, N) < c(logN)1/2 follows at once from
Davenport’s bound (13.3.3) by the monotonicity of D(U2,B2,W,N) as a function
of W . The corresponding lower bound was obtained by Halász.
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THEOREM 13.3.6 Halász [Hal81] [BC87, Theorem 1C, K = 2]

One has
D(U2,B2, 1, N) > c(logN)1/2. (13.3.5)

Halász (see [BC87, Theorem 3C]) deduced that there is always an aligned square
of discrepancy larger than c logN . Of course, the square generally will not be a
member of the special collection B2. Ruzsa [Ruz93] has given a clever elementary
proof that the existence of such a square follows directly from inequality (13.3.2)
above; see also [Mat99].

The ideas developed in the study of discrepancy can be applied to approxima-
tions of integrals. We briefly mention two examples, both restricted to 2 dimensions
for the sake of simplicity.

A function ψ is termed M-simple if ψ(x) =
∑M
j=1mjχBj

(x), where χBj
is

the characteristic function of the aligned rectangle Bj . In this theorem, the lower
bounds are nontrivial because of the logarithmic factors coming from discrepancy
theory on U2.

THEOREM 13.3.7 Chen [Che85] [Che87] [BC87, Theorems 5A, 5C]

Let the function f be defined on U2 by f(x) = C +
∫
B(x)

g(y)dy where C is a

constant, g is nonzero on a set of positive measure in U2, and B(x1, x2) = [0, x1)×
[0, x2). Then, for any M -simple function ψ,

‖f − ψ‖W > c(f,W )M−1(logM)1/2, 1 ≤W <∞;

‖f − ψ‖∞ > c(f)M−1 logM.

Let C be the class of all continuous real valued functions on U2, endowed with
the Wiener sheet measure ω. For every function f ∈ C and every set P of N points
in U2, let

I(f) =

∫
U2

f(x)dx and U(P, f) =
1

N

∑
p∈P

f(p).

THEOREM 13.3.8 Woźniakowski [Woź91]

One has

inf
|P|=N

(∫
C
|U(P, f)− I(f)|2dω

)1/2

=
D(U2,B2, 2, N)

N
.

13.4 ALIGNED BOXES IN A UNIT k-CUBE

The van der Corput problem led to the study of D(U2,B2,W,N), which in turn led
to the study of D(Uk,Bk,W,N) for W > 0 and general positive integers k. Here,
Bk denotes the collection of boxes I = [0, α1)× . . .× [0, αk), and the measure ν is
identified with Lebesgue measure on Uk via the corner points (α1, . . . , αk).

The principle of Roth’s equivalence extends so that the discrepancy problem
for sequences in Uk reformulates as a free placement problem in Uk+1, so that
we discuss only the latter version. Inequalities (13.3.1) – (13.3.5) give the exact
order of magnitude of D(U2,B2,W,N) for the most natural values of W , namely
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1 ≤ W ≤ 2 and W = ∞, with the latter being top prize. While much is known,
knowledge of D(Uk,Bk,W,N) is incomplete, especially for W =∞, while there is
ongoing work on the case W = 1 which may lead to its complete solution. It should
be remarked that if k and N are fixed, then D(Uk,Bk,W,N) is a nondecreasing
function of the positive real number W .

As was indicated earlier, upper bound methods generally fall into two classes,
explicit constructions and probabilistic existence arguments. In practice, careful
constructions are made prior to a probabilistic averaging process. Chen’s proof of
the following upper bound theorem involved extensive combinatorial and number-
theoretic constructions as well as probabilistic considerations.

THEOREM 13.4.1 Chen [Che80] [BC87, Theorem 2D]

For positive real numbers W , and integers k ≥ 2 and N ≥ 2,

D(Uk,Bk,W,N) < c(W,k)(logN)(k−1)/2. (13.4.1)

A second proof was given by Chen [Che83] (see also [BC87, Section 3.5]), where
the idea of digit shifts was first used in the subject. Earlier, Roth [Rot80] (see also
[BC87, Theorem 2C]) treated the case W = 2. The inequality (13.4.1) highlights
one of the truly baffling aspects of the theory, namely the apparent jump disconti-
nuity in the asymptotic behavior of D(Uk,Bk,W,N) at W =∞. This discontinuity
is most dramatically established for k = 2, but is known to occur for any k ≥ 3 (see
(13.4.4) below).

Explicit multidimensional sequences greatly generalizing the van der Corput
sequence also have been used to obtain upper bounds for D(Uk,Bk,∞, N). Halton
constructed explicit point sets in Uk in order to prove the next theorem. Faure
(see [BC87, Section 3.2]) gave a different proof of the same result.

THEOREM 13.4.2 Halton [Hal60] [BC87, Theorem 4]

For integers k ≥ 2 and N ≥ 2,

D(Uk,Bk,∞, N) < c(k)(logN)k−1. (13.4.2)

In order to prove (13.3.3), Davenport used properties of special lattices in 2
dimensions. However, it took many years before we had success with lattices in
higher dimensions. Skriganov has established some most interesting results, which
imply the following theorem. Given a region, a lattice is termed admissible if the
region contains no member of the lattice except possibly the origin (see [Cas59]).
Examples for the following theorem are given by lattices arising from algebraic
integers in totally real algebraic number fields.

THEOREM 13.4.3 Skriganov [Skr94]

Suppose Γ is a fixed k-dimensional lattice admissible for the region |x1x2 . . . xk| < 1.

(i) Halton’s upper bound inequality (13.4.2) holds if the N points are obtained by
intersecting Uk with tΓ, where t > 0 is a suitably chosen real scalar.

(ii) With the same choice of t as in part (i), there exists x ∈ Ek such that Chen’s
upper bound inequality (13.4.1) holds if the N points are obtained by inter-
secting Uk with tΓ + x.
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Later, using p-adic Fourier-Walsh analysis together with ideas originating from
coding theory, Chen and Skriganov [CS02] have obtained explicit constructions that
give (13.4.1) in the special case W = 2, with an explicitly given constant c(2, k).
The extension to arbitrary positive real numbers W was given by Skriganov [Skr06].
Alternative proofs of these results, using dyadic Fourier-Walsh analysis, were given
by Dick and Pillichshammer [DP14] in the special case W = 2, and by Dick [Dic14]
for arbitrary positive real numbers W .

Moving to lower bound estimates, the following theorem of Schmidt is comple-
mented by Chen’s result (13.4.1). For W ≥ 2 this lower bound is due to Roth, since
D is monotone in W .

THEOREM 13.4.4 Schmidt [Sch77a] [BC87, Theorem 1B]

For W > 1 and integers k ≥ 2,

D(Uk,Bk,W,N) > c(W,k)(logN)(k−1)/2. (13.4.3)

Concerning W = 1, there is the result of Halász, which is probably not optimal.
It is reasonably conjectured that (k − 1)/2 is the correct exponent.

THEOREM 13.4.5 Halász [Hal81] [BC87, Theorem 1C]

For integers k ≥ 2,
D(Uk,Bk, 1, N) > c(k)(logN)1/2.

The next lower bound estimate, although probably not best possible, firmly
establishes a discontinuity in asymptotic behavior at W =∞ for all k ≥ 3.

THEOREM 13.4.6 Bilyk, Lacey, Vagharshakyan [BLV08]

For integers k ≥ 3, there exist constants δk ∈ (0, 1/2) such that

D(Uk,Bk,∞, N) > c(k)(logN)(k−1)/2+δk . (13.4.4)

Earlier, Beck [Bec89] had established a weaker lower bound for the case k = 3,
of the form

D(Uk,Bk,∞, N) > c(3)(logN)(log logN)c3 ,

where c3 can be taken to be any positive real number less than 1/8. These bounds
represent the first improvements of Roth’s lower bound

D(Uk,Bk,∞, N) > c(k)(logN)(k−1)/2,

established over 60 years ago.
Can the factor 1/2 be removed from the exponent? This is the “great open

problem.” Recently, there has been evidence that suggests that perhaps

D(Uk,Bk,∞, N) > c(k)(logN)k/2, (13.4.5)

but no more. To discuss this, we need to modify the definition (13.2.1) in light of
the idea of digit shifts introduced by Chen [Che83]. Let S be a finite set of dyadic
digit shifts. For every point set P and every dyadic shift S ∈ S, let P(S) denote
the image of P under S. Corresponding to (13.2.1), let

E(K,J ,W,N,S) = inf
|P|=N

sup
S∈S
{‖∆(P(S),J )‖W }.
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In Skriganov [Skr16], it is shown that for every N , there exists a finite set S of
dyadic digit shifts, depending only on N and k, such that

E(Uk,Bk,∞, N,S) > c(k)(logN)k/2, (13.4.6)

an estimate consistent with the suggestion (13.4.5). In the same paper, it is also
shown that for every fixed W > 0 and for every N , there exists a finite set S of
dyadic digit shifts, depending only on N , k and W , such that

E(Uk,Bk,W,N,S) > c(W,k)(logN)(k−1)/2, (13.4.7)

somewhat extending (13.4.3).
Beck has also refined Roth’s estimate in a geometric direction.

THEOREM 13.4.7 Beck [BC87, Theorem 19A]

Let J be the collection of aligned cubes contained in Uk. Then

D(Uk,J ,∞, N) > c(k)(logN)(k−1)/2. (13.4.8)

Actually, Beck’s method shows D(Uk,J , 2, N) > c(k)(logN)(k−1)/2, with re-
spect to a natural measure ν on sets of aligned cubes. This improves Roth’s inequal-
ity D(Uk,Bk, 2, N) > c(k)(logN)(k−1)/2. So far, it has not been possible to extend
Ruzsa’s ideas to higher dimensions in order to show that the previous theorem fol-
lows directly from Roth’s estimate. However, Drmota [Drm96] has published a new
proof that D(Uk,J , 2, N) > c(k)D(Uk,Bk, 2, N), and this does imply (13.4.8).

13.5 MOTION-INVARIANT PROBLEMS

In this section and the next three, we discuss collections J of convex sets having
the property that any set in J may be moved by a direct (orientation preserving)
motion of Ek and yet remain in J . Motion-invariant problems were first extensively
studied by Schmidt, and many of his estimates, obtained by a difficult technique
using integral equations, were close to best possible. The book [BC87] contains an
account of Schmidt’s methods. Later, the Fourier transform method of Beck has
achieved results that in general surpass those obtained by Schmidt. For a broad
class of problems, Beck’s Fourier method gives nearly best possible estimates for
D(K,J , 2, N).

The pleasant surprise is that if J is motion-invariant, then the bounds on
D(K,J ,∞, N) turn out to be very close to those for D(K,J , 2, N). This is shown
by a probabilistic upper bound method, which generally pins D(K,J ,∞, N) be-
tween bounds differing at most by a factor of c(k)(logN)1/2.

The simplest motion-invariant example is given by letting J be the collection
of all directly congruent copies of a given convex set A. In this situation, J carries
a natural measure ν, which may be identified with Haar measure on the motion
group on Ek. A broader choice would be to let J be all sets in Ek directly similar
to A. Again, there is a natural measure ν on J . However, for the results stated
in the next two sections, the various measures ν on the choices for J will not be
discussed in great detail. In most situations, such measures do play an active role
in the proofs through inequality (13.2.2) with W = 2. A complete exposition of
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integration in the context of integral geometry, Haar measure, etc., may be found
in the book by Santaló [San76].

For any domain K in Et and each collection J , it is helpful to define three
auxiliary collections:

Definition:

(i) Jtor consists of those subsets of K obtained by reducing elements of J modulo
Zk. To avoid messiness, let us always suppose that J has been restricted so
that this reduction is 1–1 on each member of J . For example, one might
consider only those members of J having diameter less than 1.

(ii) Jc consists of those subsets of K that are members of J .

(iii) Ji consists of those subsets of K obtained by intersecting K with members
of J .

Note that Jc and Ji are well defined for any domain K. However, Jtor es-
sentially applies only to Uk. If viewed as a flat torus, then Uk is the proper
domain for Kronecker sequences and Weyl’s exponential sums. There are sev-
eral general inequalities for discrepancy results involving Jtor, Jc, and Ji. For
example, we have D(Uk,Jc,∞, N) ≤ D(Uk,Jtor,∞, N) because Jc is contained
in Jtor. Also, if the members of J have diameters less than 1, then we have
D(Uk,Jtor,∞, N) ≤ 2kD(Uk,Ji,∞, N), since any set in Jtor is the union of at
most 2k sets in Ji.

13.6 SIMILAR OBJECTS IN THE UNIT k-CUBE

GLOSSARY

If A is a compact convex set in Ek, let d(A) denote the diameter of A, r(A) denote
the radius of the largest k-ball contained in A, and σ(∂A) denote the surface
content of ∂A. The collection J is said to be ds-generated by A if J consists
of all directly similar images of A having diameters not exceeding d(A).

We state two pivotal theorems of Beck. As usual, if S is a discrete set, Z(B)
denotes the cardinality of B ∩ S.

THEOREM 13.6.1 Beck [Bec87] [BC87, Theorem 17A]

Let S be an arbitrary infinite discrete set in Ek, A be a compact convex set with
r(A) ≥ 1, and J be ds-generated by A. Then there is a set B in J such that

|Z(B)− volB| > c(k)(σ(∂A))1/2. (13.6.1)

COROLLARY 13.6.2 Beck [BC87, Corollary 17B]

Let A be a compact convex body in Ek with r(A) ≥ N−1/k, and let J be ds-generated
by A. Then

D(Uk,Jtor,∞, N) > c(A)N (k−1)/2k. (13.6.2)
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The deduction of Corollary 13.6.2 from Theorem 13.6.1 involves a simple rescal-
ing argument. Another important aspect of Beck’s work is the introduction of upper
bound methods based on probabilistic considerations. The following result shows
that Theorem 13.6.1 is very nearly best possible.

THEOREM 13.6.3 Beck [BC87, Theorem 18A]

Let A be a compact convex body in Ek with r(A) ≥ 1, and let J be ds-generated by
A. Then there exists an infinite discrete set S0 such that for every set B in J ,

|Z(B)− volB| < c(k)(σ(∂A))1/2(log σ(∂A))1/2. (13.6.3)

COROLLARY 13.6.4 Beck [BC87, Corollary 18C]

Let A be a compact convex body in Ek, and J be ds-generated by A. Then

D(Uk,Jtor,∞, N) < c(A)N (k−1)/2k(logN)1/2. (13.6.4)

Beck (see [BC87, pp. 129–130]) deduced several related corollaries from Theo-
rem 13.6.3. The example sets PN for Corollary 13.6.4 can be taken as the initial
segments of a certain fixed sequence whose choice definitely depends on A. If
d(A) = λ and A is either a disk (solid sphere) or a cube, then the right side of
(13.6.2) takes the form c(k)(λkN)(k−1)/2k. Montgomery [Mon89] has obtained a
similar lower bound for cubes and disks.

The problem of estimating discrepancy for Jc is even more challenging because
of “boundary effects.” We state, as an example, a theorem for disks. The right
inequality follows from (13.6.4).

THEOREM 13.6.5 Beck [Bec87] [BC87, Theorem 16A]

Let J be ds-generated by a k-disk. Then for every ε > 0,

c1(k, ε)N (k−1)/2k−ε < D(Uk,Jc,∞, N) < c2(k)N (k−1)/2k(logN)1/2. (13.6.5)

Because all the lower bounds above come from L2 estimates, these various
results (13.6.1) – (13.6.5) allow us to make the general statement that for W in the
range 2 ≤ W ≤ ∞, the magnitude of D(Uk,J ,W,N) is controlled by N (k−1)/2k.
Thus there is no extreme discontinuity in asymptotic behavior at W =∞. However,
work by Beck and Chen proves that there is a discontinuity at some W satisfying
1 ≤W ≤ 2, and the following results indicate that W = 1 is a likely candidate.

THEOREM 13.6.6 Beck, Chen [BC93b]

Let J be ds-generated by a convex polygon A with d(A) < 1. Then

D(U2,Jtor,W,N) < c(A,W )N (W−1)/2W , 1 < W ≤ 2;

D(U2,Jtor, 1, N) < c(A)(logN)2.
(13.6.6)

In fact, Theorem 13.6.6 is motivated by the study of discrepancy with respect
to halfplanes, and is established by ideas used to establish Theorem 13.9.8 below.
Note the similarities of the inequalities (13.6.6) and (13.9.5). After all, a convex
polygon is the intersection of a finite number of halfplanes, and so the proof of
Theorem 13.6.6 involves carrying out the idea of the proof of Theorem 13.9.8 a
finite number of times.
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The next theorem shows that powers of N other than N (k−1)/2k may appear
for 2 ≤ W ≤ ∞. It deals with what has been termed the isotropic discrepancy
in Uk.

THEOREM 13.6.7 Schmidt [Sch75] [BC87, Theorem 15]

Let J be the collection of all convex sets in Ek. Then

D(Uk,Ji,∞, N) > c(k)N (k−1)/(k+1). (13.6.7)

The function N (k−1)/(k+1) dominates N (k−1)/2k, so that this largest possible
choice for J does in fact yield a larger discrepancy. Beck has shown by probabilistic
techniques that the inequality (13.6.7), excepting a possible logarithmic factor, is
best possible for k = 2.

The following result shows that for certain rotation-invariant J the discrepancy
of Kronecker sequences (defined in Section 13.1) will not behave as cN (k−1)/2k, but
as the square of this quantity.

THEOREM 13.6.8 Larcher [Lar91]

Let the sequence of point sets PN be the initial segments of a Kronecker sequence
in Uk, and let J be ds-generated by a cube of edge length λ < 1. Then, for each
N ,

‖∆(PN ,Ji)‖∞ > c(k)λk−1N (k−1)/k.

Furthermore, the exponent (k − 1)/k cannot be increased.

13.7 CONGRUENT OBJECTS IN THE UNIT k-CUBE

GLOSSARY

If J consists of all directly congruent copies of a convex set A, we say that A dm-
generates J . Simple examples are given by the collection of all k-disks of a
fixed radius r or by the collection of all k-cubes of a fixed edge length λ.

Given a convex set A, there is some evidence for the conjecture that the dis-
crepancy for the dm-generated collection will be essentially as large as that for the
ds-generated collection. However, this is generally very difficult to establish, even
in very specific situations. There are the following results in this direction. The
upper bound inequalities all come from Corollary 13.6.4 above.

THEOREM 13.7.1 Beck [BC87, Theorem 22A]

Let J be dm-generated by a square of edge length λ. Then

c1(λ)N1/8 < D(U2,Jtor,∞, N) < c2(λ)N1/4(logN)1/2.

It is felt that N1/4 gives the proper lower bound, and for Ji this is definitely
true. The lower bound in the next result follows at once from the work of Alexander
[Ale91] described in Section 13.9.
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THEOREM 13.7.2 Alexander, Beck

Let J be dm-generated by a k-cube of edge length λ. Then

c1(λ, k)N (k−1)/2k < D(Uk,Ji,∞, N) < c2(λ, k)N (k−1)/2k(logN)1/2.

A similar result probably holds for k-disks, but this has been established only
for k = 2.

THEOREM 13.7.3 Beck [BC87, Theorem 22B]

Let J be dm-generated by a 2-disk of radius r. Then

c1(r)N1/4 < D(U2,Ji,∞, N) < c2(r)N1/4(logN)1/2.

13.8 WORK OF MONTGOMERY

It should be reported that Montgomery [Mon89] has independently developed a
lower bound method which, as does Beck’s method, uses techniques from harmonic
analysis. Montgomery’s method, especially in dimension 2, obtains for a number
of special classes J estimates comparable to those obtained by Beck’s method. In
particular, Montgomery has considered J that are ds-generated by a region whose
boundary is a piecewise smooth simple closed curve.

13.9 HALFSPACES AND RELATED OBJECTS

GLOSSARY

Segment: Given a compact subset K and a closed halfspace H in Ek, K ∩H is
called a segment of K.

Slab: The region between two parallel hyperplanes.

Spherical slice: The intersection of two open hemispheres on a sphere.

Let H be a closed halfspace in Ek. Then the collection Hk of all closed half-
spaces is dm-generated by H, and if we associate H with the oriented hyperplane
∂H, there is a well-known invariant measure ν on Hk. Further information con-
cerning this and related measures may be found in Chapter 12 of Santaló [San76].
For a compact domain K in Ek, it is clear that only the collection Hki , the segments
of K, are proper for study, since Hkc is empty and Hktor is unsuitable.

In this section, it is necessary for the domain K to be somewhat more general;
hence we make only the following broad assumptions:

(i) K lies on the boundary of a fixed convex set M in Ek+1;

(ii) σ(K) = 1, where σ is the usual k-measure on ∂M.

Since Ek is the boundary of a halfspace in Ek+1, any set in Ek of unit Lebesgue
k-measure satisfies these assumptions. The normalization of assumption (ii) is for
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convenience, and, by rescaling, the inequalities of this section may be applied to any
uniform probability measure on a domain K in Ek+1. Such rescaling only affects
dimensional constants; for standard domains, such as the unit k-sphere Sk and the
unit k-disk Dk, this will be done without comment.

Although in applications K will have a simple geometric description, the next
theorem treats the general situation and obtains the essentially exact magnitude
of D(K,Hk+1

i , 2, N). If K lies in Ek, then Hk+1 may be replaced by Hk. If ν is
properly normalized, this change invokes no rescaling.

THEOREM 13.9.1 Alexander [Ale91]

Let K be the collection of all K satisfying assumptions (i) and (ii) above. Then

c1(k)N (k−1)/2k < inf
K∈K

D(K,Hk+1
i , 2, N) < c2(M)N (k−1)/2k. (13.9.1)

The upper bound of (13.9.1) can be proved by an indirect probabilistic method
introduced by Alexander [Ale72] for K = S2, but the method of Beck and Chen
[BC90] also may be applied for standard choices of K such as Uk and Dk. When
M = K = Sk, the segments are the spherical caps. For this important special case
the upper bound is due to Stolarsky [Sto73], while the lower bound is due to Beck
[Bec84] (see also [BC87, Theorem 24B]).

Since the ν-measure of the halfspaces that separate M is less than c(k)d(M),
inequality (13.2.2) may be applied to obtain a lower bound for D(K,Hk+1

i ,∞, N).
The upper bound in the following theorem should be taken in the context of actual
applications such as M being a k-sphere Sk, a compact convex body in Ek, or more
generally, a compact convex hypersurface in Ek+1.

THEOREM 13.9.2 Alexander, Beck

Let K be the collection of K satisfying assumptions (i) and (ii) above. Furthermore,
suppose that M is of finite diameter. Then

c3(k)(d(M))−1/2N (k−1)/2k < inf
K∈K

D(K,Hk+1
i ,∞, N) < c4(M)N (k−1)/2k(logN)1/2.

(13.9.2)

For M = K = Sk, inequalities (13.9.2) are due to Beck, improving a slightly
weaker lower bound by Schmidt [Sch69]. Consideration of K = U2 makes it obvious
that there exists an aligned right triangle with discrepancy at least cN1/4, as stated
in Section 13.1. For the case M = K = D2, a unit 2-disk (Roth’s disk-segment prob-
lem), Beck [Bec83] (see also [BC87, Theorem 23A]) obtained inequalities (13.9.2),
excepting a factor (logN)−7/2 in the lower bound. Later, Alexander [Ale90] im-
proved the lower bound, and Matoušek [Mat95] obtained essentially the same upper
bound. Matoušek’s work on D2 makes it seem likely that Beck’s factor (logN)1/2

in his general upper bound theorem might be removable in many specific situations,
but this is very challenging.

THEOREM 13.9.3 Alexander, Matoušek

For Roth’s disk-segment problem,

c1N
1/4 < D(D2,H2

i ,∞, N) < c2N
1/4. (13.9.3)

Alexander’s lower bound method, by the nature of the convolutions employed,
gives information on the discrepancy of slabs. This is especially apparent in the
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work of Chazelle, Matoušek, and Sharir, who have developed a more direct and
geometrically transparent version of Alexander’s method. The following theorem
on the discrepancy of thin slabs is a corollary to their technique. It is clear that if
a slab has discrepancy ∆, then one of the two bounding halfspaces has discrepancy
at least ∆/2.

THEOREM 13.9.4 Chazelle, Matoušek, Sharir [CMS95]

Let N points lie in the unit cube Uk. Then there exists a slab T of width c1(k)N−1/k

such that ∆(T) > c2(k)N (k−1)/2k.

Alexander [Ale94] has investigated the effect of the dimension k on the discrep-
ancy of halfspaces, and obtained somewhat complicated inequalities that imply the
following result.

THEOREM 13.9.5 Alexander

For the lower bounds in inequalities (13.9.1) and (13.9.2) above, there is an absolute
positive constant c such that one may choose c1(k) > ck−3/4 and c3(k) > ck−1.

Schmidt [Sch69] studied the discrepancy of spherical slices (the intersection of
two open hemispheres) on Sk. Associating a hemisphere with its pole, Schmidt
identified ν with the normalized product measure on Sk × Sk. Blümlinger [Blü91]
demonstrated a surprising relationship between halfspace (spherical cap) and slice
discrepancy for Sk. However, his definition for ν in terms of Haar measure on
SO(k + 1) differed somewhat from Schmidt’s.

THEOREM 13.9.6 Blümlinger

Let Sk be the collection of slices of Sk. Then

c(k)D(Sk,Hk+1
i , 2, N) < D(Sk,Sk, 2, N). (13.9.4)

For the next result, the left inequality follows from inequalities (13.2.2), (13.9.1),
and (13.9.4). Blümlinger uses a version of Beck’s probabilistic method to establish
the right inequality.

THEOREM 13.9.7 Blümlinger

For slice discrepancy on Sk,

c1(k)N (k−1)/2k < D(Sk,Sk,∞, N) < c2(k)N (k−1)/2k(logN)1/2.

Grabner [Gra91] has given an Erdős-Turán type upper bound on spherical cap
discrepancy in terms of spherical harmonics. This adds to the considerable body
of results extending inequalities for exponential sums to other sets of orthonormal
functions, and thereby extends the Weyl theory.

All of the results so far in this section treat 2 ≤ W ≤ ∞. For W in the
range 1 ≤ W < 2 there is mystery, but we do have the following result, related to
inequality (13.6.6), showing that a dramatic change in asymptotic behavior occurs
in the range 1 ≤W ≤ 2. For U2, Beck and Chen show that regular grid points will
work for the upper bound example for W = 1, and they are able to modify their
method to apply to any bounded convex domain in E2.
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THEOREM 13.9.8 Beck, Chen [BC93a]

Let K be a bounded convex domain in E2. Then

D(K,H2
i ,W,N) < c(K,W )N (W−1)/2W , 1 < W ≤ 2;

D(K,H2
i , 1, N) < c(K)(logN)2.

(13.9.5)

13.10 BOUNDARIES OF GENERATORS FOR
HOMOTHETICALLY INVARIANT J

We have already noted several factors that play a role in determining whether
D(K,J ,W,N) behaves like Nr as opposed to (logN)s. Beck’s work shows that if
J is dm-generated, D(K,J ,∞, N) behaves as Nr. However, the work of Beck and
Chen clearly shows that if W is sufficiently small, then even for motion-invariant
J , it may be that D(K,J ,W,N) is bounded above by (logN)s.

Beck [Bec88] has extensively studied D(U2,Jtor,∞, N) under the assumption
that J is homothetically invariant, and in this section we shall record some of the
results obtained.

It turns out that the boundary shape of a generator is the critical element in
determining to which, if either, class J belongs. Remarkably, for the “typical”
homothetically invariant class J , D(U2,Jtor,∞, N) oscillates infinitely often to be
larger than N1/4−ε and smaller than (logN)4+ε.

GLOSSARY

The convex set A h-generates J if J consists of all homothetic images B of A
with d(B) ≤ d(A).

Blaschke-Hausdorff metric: The metric on the space CONV(2) of all compact
convex sets in E2 in which the distance between two sets is the minimum distance
from any point of one set to the other.

A set is of first category if it is a countable union of nowhere dense sets.

If one considers the two examples of J being h-generated by an aligned square
and by a disk, previously stated results make it very likely that shape strongly
affects discrepancy for homothetically invariant J . The first two theorems quan-
tify this phenomenon for two very standard boundary shapes, first polygons, then
smooth closed curves.

THEOREM 13.10.1 Beck [Bec88] [BC87, Corollary 20D]

Let J be h-generated by a convex polygon A. Then, for any ε > 0,

D(U2,Jtor,∞, N) = o((logN)4+ε). (13.10.1)

Beck and Chen [BC89] have given a less complicated argument that obtains
o((logN)5+ε) on the right side of (13.10.1).

THEOREM 13.10.2 Beck [Bec88] [BC87, Corollary 19F]

Let A be a compact convex set in E2 with a twice continuously differentiable bound-
ary curve having strictly positive curvature. If A h-generates J , then for N ≥ 2,

D(U2,Jtor,∞, N) > c(A)N1/4(logN)−1/2. (13.10.2)
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For sufficiently smooth positively curved bodies, Drmota [Drm93] has extended
(13.10.2) into higher dimensions and also removed the logarithmic factor. Thus, he
obtains a lower bound of the form c(A)N (k−1)/2k, along with the standard upper
bound obtained by Beck’s probabilistic method.

Let CONV(2) denote the usual locally compact space of all compact convex
sets in E2 endowed with the Blaschke-Hausdorff metric. There is the following
surprising result, which quantifies the oscillatory behavior mentioned above.

THEOREM 13.10.3 Beck [BC87, Theorem 21]

Let ε > 0 be given. For all A in CONV(2), excepting a set of first category, if J is
h-generated by A, then each of the following two inequalities is satisfied infinitely
often:

(i) D(U2,Jtor,∞, N) < (logN)4+ε.

(ii) D(U2,Jtor,∞, N) > N1/4(logN)−(1+ε)/2.

In fact, the final theorem of this section will say more about the rationale of
such estimates.

The next theorem gives the best lower bound estimate known if it is assumed
only that the generator A has nonempty interior, certainly a minimal hypothesis.

THEOREM 13.10.4 Beck [Bec88] [BC87, Corollary 19G]

If J is h-generated by a compact convex set A having positive area, then

D(U2,Jtor,∞, N) > c(A)(logN)1/2.

Possibly the right side should be c(A) logN , which would be best possible as
the example of aligned squares demonstrates. Lastly, we discuss the important
theorem underlying most of these results about h-generated J . Let A be a member
of CONV(2) with nonempty interior, and for each integer l ≥ 3 let Al be an
inscribed l-gon of maximal area. The Nth approximability number ξN (A) is
defined as the smallest integer l such that the area of A \Al is less than l2/N .

THEOREM 13.10.5 Beck [Bec88] [BC87, Corollary 19H, Theorem 20C]

Let A be a member of CONV(2) with nonempty interior. Then if J is h-generated
by A, we have

c1(A)(ξN (A))1/2(logN)−1/4 < D(U2,Jtor,∞, N) < c2(A, ε)ξN (A)(logN)4+ε.
(13.10.3)

The proof of the preceding fundamental theorem, which is in fact the join of
two major theorems, is long, but the import is clear; namely, that for h-generated
J , if one understands ξN (A), then one essentially understands D(U2,Jtor,∞, N).
If ξN (A) remains nearly constant for long intervals, then A acts like a polygon and
D will drift below (logN)4+2ε. If, at some stage, ∂A behaves as if it consists of
circular arcs, then ξN (A) will begin to grow as cN1/2.

For still more information concerning the material in this section, along with
the proofs, see [BC87, Chapter 7]. Károlyi [Kár95a, Kár95b] has extended the
idea of approximability number to higher dimensions and obtained upper bounds
analogous to those in (13.10.3).
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13.11 D(K,J,2,N) IN LIGHT OF DISTANCE GEOMETRY

Although knowledge of D(K,J ,∞, N) is our highest aim, in the great majority
of problems this is achieved by first obtaining bounds on D(K,J , 2, N). In this
section, we briefly show how this function fits nicely into the theory of metric
spaces of negative type. In our situation, the distance between points will be given
by a Crofton formula with respect to the measure ν on J . This approach evolved
from a paper written in 1971 by Alexander and Stolarsky investigating extremal
problems in distance geometry, and has been developed in a number of subsequent
papers by both authors studying special cases. However, we reverse history and leap
immediately to a formulation suitable for our present purposes. We avoid mention
of certain technical assumptions concerning J and ν which cause no difficulty in
practice.

Assume that K is a compact convex set in Ek and that J = Jc. This latter
assumption causes no loss of generality since one can always just redefine J . Let
ν, as usual, be a measure on J , with the further assumption that ν(J ) <∞.

Definition: If p and q are points in K, the set A in J is said to separate p and
q if A contains exactly one of these two points. The distance function ρ on K is
defined by the Crofton formula ρ(p, q) = (1/2) ν{J | J separates p and q}, and if µ
is any signed measure on K having finite positive and negative parts, one defines
the functional I(µ) by

I(µ) =

∫∫
ρ(p, q)dµ(p)dµ(q).

With these definitions one obtains the following representation for I(µ).

THEOREM 13.11.1 Alexander [Ale91]

One has

I(µ) =

∫
J
µ(A)µ(K \A)dν(A). (13.11.1)

For µ satisfying the condition of total mass zero,
∫
K
dµ = 0, the integrand

in (13.11.1) becomes −(µ(A))2. The signed measures µ = µ+ − µ− that we are
considering, with µ− being a uniform probability measure on K and µ+ consisting
of N atoms of equal weight 1/N , certainly have total mass zero. Here one has
∆(A) = Nµ(A). Hence there is the following corollary.

COROLLARY 13.11.2

For the signed measures µ presently considered, if P denotes the N points supporting
µ+, then

−N2I(µ) =

∫
J

(∆(A))2dν(A) = (‖∆(P,J )‖2)2. (13.11.2)

Thus if one studies the metric ρ, it may be possible to prove that −I(µ) > f(N),
whence it follows that (D(K,J , 2, N))2 > N2f(N). If J consists of the halfspaces
of Ek, then ρ is the Euclidean metric. In this important special case, Alexander
[Ale91] was able to make good estimates. Chazelle, Matoušek, and Sharir [CMS95]
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and A.D. Rogers [Rog94] contributed still more techniques for treating the halfspace
problem.

If µ1 and µ2 are any two signed measures of total mass 1 on K, then one can
define the relative discrepancy ∆(A) = N(µ1(A)− µ2(A)). The first equality of
(13.11.2) still holds if µ = µ1 − µ2. A signed measure µ0 of total mass 1 is termed
optimal if it solves the integral equation

∫
K
ρ(x, y)dµ(y) = λ for some positive

number λ. If an optimal measure µ0 exists, then I(µ0) = λ maximizes I on the
class of all signed Borel measures of total mass 1 on K. In the presence of an
optimal measure, one has the following very pretty identity.

THEOREM 13.11.3 Generalized Stolarsky Identity

Suppose that the measure µ0 is optimal on K, and that µ is any signed measure of
total mass 1 on K. If ∆ is the relative discrepancy with respect to µ0 and µ, then

N2I(µ) +

∫
J

(∆(A))2dν(A) = N2I(µ0). (13.11.3)

The first important example of this formula is due to Stolarsky [Sto73] where
he treated the sphere Sk, taking as µ the uniform atomic measure supported by
N variable points. For Sk it is clear that the uniform probability measure µ0 is
optimal. His integrals involving the spherical caps are equivalent, up to a scale
factor, to integrals with respect to the measure on the halfspaces of Ek for which
ρ is the Euclidean metric. Stolarsky’s tying of a geometric extremal problem to
Schmidt’s work on the discrepancy of spherical caps was a major step forward in
the study of discrepancy and of distance geometry.

Very little has been done to investigate the deeper nature of the individual
metrics ρ determined by classes J other than halfspaces. They are all metrics
of negative type, which essentially means that I(µ) ≤ 0 if µ has total mass 0.
There is a certain amount of general theory, begun by Schoenberg and developed
by a number of others, but it does not apply directly to the problem of estimating
discrepancy.

13.12 UNIFORM PLACEMENT OF POINTS ON SPHERES

As demonstrated by Stolarsky, formula (13.11.3) shows that if one places N points
on Sk so that the sum of all distances is maximized, then D(Sk,Hki , 2, N) is achieved
by this arrangement. Berman and Hanes [BH77] have given a pretty algorithm that
searches for optimal configurations. For k = 2, while the exact configurations are
not known for N ≥ 5, this algorithm appears to be successful for N ≤ 50. For
such an N surprisingly few rival configurations will be found. Lubotzky, Phillips,
and Sarnak [LPS86] have given an algorithm, based on iterations of a specially
chosen element in SO(3), which can be used to place many thousands of reasonably
well distributed points on S2. Difficult analysis shows that these points are well
placed, but not optimally placed, relative to H2

i . On the other hand, it is shown
that these points are essentially optimally placed with respect to a nongeometric
operator discrepancy. Data concerning applications to numerical integration are
also included in the paper. More recently, Rakhmanov, Saff, and Zhou [RSZ94] have
studied the problem of placing points uniformly on a sphere relative to optimizing
certain functionals, and they state a number of interesting conjectures.
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In yet another theoretical direction, the existence of very well distributed point
sets on Sk allows the sphere, after difficult analysis, to be closely approximated by
equi-edged zonotopes (sums of line segments). The papers of Wagner [Wag93] and
of Bourgain and Lindenstrauss [BL93] treat this problem.

13.13 COMBINATORIAL DISCREPANCY

GLOSSARY

A 2 -coloring of X is a mapping χ : X → {−1, 1}. For each such χ there is
a natural integer-valued set function µχ on the finite subsets of X defined by
µχ(A) =

∑
x∈A χ(x), and if J is a given family of finite subsets of X we define

D(X,J ) = min
χ

max
A∈J

|µχ(A)|.

Degree: If J is a collection of subsets of a finite set X, degJ = max{|J (x)|
∣∣ x ∈

X}, where J (x) is the subcollection consisting of those members of J that
contain x.

The collection J shatters a set S ⊂ X if, for any given subset B ⊂ S, there
exists A in J such that B = A ∩ S. The VC-dimension of J is defined by
dimvc J = max{|S|

∣∣ S ⊂ X, J shatters S}. For m ≤ |X|, the primal shatter
function πJ is defined by

πJ (m) = max
Y⊂X
|Y |≤m

|{Y ∩A | A ∈ J }|.

The dual shatter function is defined by π∗J (m) = πJ ∗(m), where X∗ = J , and
J ∗ = {J (x) | x ∈ X}.

Techniques in combinatorial discrepancy theory have proved very powerful in
this geometric setting. Here one 2-colors a discrete set and studies the discrepancy
of a special class J of subsets as measured by |#red − #blue|. If one 2-colors
the first N positive integers, then the beautiful “1/4 theorem” of Roth [Rot64]
says that there will always be an arithmetic progression having discrepancy at
least cN1/4. This result should be compared to van der Waerden’s theorem, which
says that there is a long monochromatic progression, whose discrepancy obviously
will be its length. However, it is known that this length need not be more than
logN , and the minimax might be as small as log log . . . logN (here the number of
iterated logarithms may be arbitrarily large). Moreover, general results concerning
combinatorial discrepancy, for example, those that use the Vapnik-Chervonenkis
dimension, are very useful in computational geometry; cf. Chapter 47.

Combinatorial discrepancy theory involves discrepancy estimates arising from
2-colorings of a set X. Upper bound estimates of combinatorial discrepancy have
proved to be very helpful in obtaining upper bound estimates of geometric discrep-
ancy. In this final section we briefly discuss various properties of the collection J
that lead to useful upper bound estimates of combinatorial discrepancy.
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The simplest property of the collection J is its cardinality |J |. Here, Spencer
obtained a fine result.

THEOREM 13.13.1 Spencer [AS93]

Let X be a finite set. If |J | ≥ |X|, then

D(X,J ) ≤ c
(
|X| log

(
1 +
|J |
|X|

))1/2

.

Applications and extensions of the following theorem may be found in [BC87,
Chapter 8].

THEOREM 13.13.2 Beck, Fiala [BF81] [BC87, Lemma 8.5.]

Let X be a finite set. Then

D(X,J ) ≤ 2 degJ − 1.

Since πJ (m) = 2m if and only if dimvc J ≥ m, the function πJ contains much
more information than does VC-dimension alone. If dimvc J = d, then πJ (m) is
polynomially bounded by cmd. However, in many geometric situations this bound
on the shatter function can be improved, leading to better discrepancy bounds.
Detailed discussions may be found in the papers by Haussler and Welzl [HW87]
and by Chazelle and Welzl [CW89].

Dual objects are defined in the usual manner (see Glossary). We state several
results.

THEOREM 13.13.3 Matoušek, Welzl, Wernisch [MWW93]

Suppose that (X,J ) is a finite set system with |X| = n. If πJ (m) ≤ c1m
d for

m ≤ n, then
D(X,J ) ≤ c2n(d−1)/2d(log n)1+1/2d, d > 1,

D(X,J ) ≤ c3(log n)5/2, d = 1.
(13.13.1)

If π∗J (m) ≤ c4md for m ≤ |J |, then

D(X,J ) ≤ c5n(d−1)/2d log n, d > 1,

D(X,J ) ≤ c6(log n)3/2, d = 1.
(13.13.2)

Matoušek [Mat95] has shown that the factor (log n)1+1/2d may be dropped
from inequality (13.13.1) for d > 1, and has applied this result to halfspaces with
great effect (see inequality (13.9.3)). One part of Matoušek’s argument depends on
combinatorial results of Haussler [Hau95].

13.14 RECENT NEW DIRECTIONS

We mention three recent developments of great interest.
Beck [Bec14] has identified some super irregularity phenomena in long and

narrow hyperbolic regions, where the discrepancy is found to be of comparable size
to the expectation.
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Khinchin’s conjecture on strong uniformity is false, although for a long time
many believed it to be true. Motivated by continuous versions of the conjecture,
Beck [Bec15] has made interesting and deep studies into super uniform motions.

Matoušek and Nikolov [MN15] has recently obtained a very strong lower bound
of c(log n)d−1 for the combinatorial discrepancy of n-point sets in the d-dimensional
unit cube with respect to axis-parallel boxes. This is the combinatorial analogue
of the problem studied in Theorem 13.4.6.

13.15 SOURCES AND RELATED MATERIAL

FURTHER READING

There are a few principal surveys on discrepancy theory. The first survey [Sch77b]
covers the early development. The Cambridge tract [BC87] is a comprehensive
account up to the mid-1980s. The account [DT97] contains a comprehensive list
of results and references but few detailed proofs. The exquisite account [Mat99] is
most suitable for beginners, as the exposition is very down to earth. The recent
volume [CST14] is a collection of essays by experts in various areas.

Among related texts, [KN74] deals mostly with uniform distribution, [Cha00]
deals with the discrepancy method and is geared towards computer science, while
[DP10] concerns mostly numerical integration.

Auxiliary texts relating to this chapter include [Cas57], [Cas59], and [San76]
and [AS93].
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