11 EUCLIDEAN RAMSEY THEORY

R.L. Graham

INTRODUCTION

Ramsey theory typically deals with problems of the following type. We are given a set S, a family \mathcal{F} of subsets of S, and a positive integer r. We would like to decide whether or not for every partition of $S=C_{1} \cup \cdots \cup C_{r}$ into r subsets, it is always true that some C_{i} contains some $F \in \mathcal{F}$. If so, we abbreviate this by writing $S \xrightarrow{r} \mathcal{F}$ (and we say S is r-Ramsey). If not, we write $S \xrightarrow{r} \mathcal{F}$. (For a comprehensive treatment of Ramsey theory, see GRS90.)

In Euclidean Ramsey theory, S is usually taken to be the set of points in some Euclidean space \mathbb{E}^{N}, and the sets in \mathcal{F} are determined by various geometric considerations. The case most studied is the one in which $\mathcal{F}=\operatorname{Cong}(X)$ consists of all congruent copies of a fixed finite configuration $X \subset S=\mathbb{E}^{N}$. In other words, $\operatorname{Cong}(X)=\{g X \mid g \in S O(N)\}$, where $S O(N)$ denotes the special orthogonal group acting on \mathbb{E}^{N}.

Further, we say that X is Ramsey if, for all $r, \mathbb{E}^{N} \xrightarrow{r} \operatorname{Cong}(X)$ holds provided N is sufficiently large (depending on X and r). This we indicate by writing $\mathbb{E}^{N} \longrightarrow X$.

Another important case we will discuss (in Section 11.4) is that in which $\mathcal{F}=$ $\operatorname{Hom}(X)$ consists of all homothetic copies $a X+\bar{t}$ of X, where a is a positive real and $\bar{t} \in \mathbb{E}^{N}$. Thus, in this case \mathcal{F} is just the set of all images of X under the group of positive homotheties acting on \mathbb{E}^{N}.

It is easy to see that any Ramsey (or r-Ramsey) set must be finite. A standard compactness argument shows that if $\mathbb{E}^{N} \xrightarrow{r} X$ then there is always a finite set $Y \subseteq \mathbb{E}^{N}$ such that $Y \xrightarrow{r} X$. Also, if X is Ramsey (or r-Ramsey) then so is any homothetic copy $a X+\bar{t}$ of X.

GLOSSARY

$\mathbb{E}^{N} \xrightarrow{r} \operatorname{Cong}(\boldsymbol{X}): \quad$ For any partition $\mathbb{E}^{N}=C_{1} \cup \cdots \cup C_{r}$, some C_{i} contains a set congruent to X. We say that X is \boldsymbol{r}-Ramsey. When $\operatorname{Cong}(X)$ is understood we will usually write $\mathbb{E}^{N} \xrightarrow{r} X$.
$\mathbb{E}^{N} \longrightarrow \boldsymbol{X}: \quad$ For every $r, \mathbb{E}^{N} \xrightarrow{r} \operatorname{Cong}(X)$ holds, provided N is sufficiently large. We say in this case that X is Ramsey.

$11.1 r$-RAMSEY SETS

In this section we focus on low-dimensional r-Ramsey results. We begin by stating three conjectures.

CONJECTURE 11.1.1

For any nonequilateral triangle T (i.e., the set of 3 vertices of T),

$$
\mathbb{E}^{2} \xrightarrow{2} T .
$$

CONJECTURE 11.1.2 (stronger)

For any partition $\mathbb{E}^{2}=C_{1} \cup C_{2}$, every triangle occurs (up to congruence) in C_{1}, or else the same holds for C_{2}, with the possible exception of a single equilateral triangle.

The partition $\mathbb{E}^{2}=C_{1} \cup C_{2}$ with

$$
\begin{aligned}
& C_{1}=\{(x, y) \mid-\infty<x<\infty, 2 m \leq y<2 m+1, m=0, \pm 1, \pm 2, \ldots\} \\
& C_{2}=\mathbb{E}^{2} \backslash C_{1}
\end{aligned}
$$

into alternating half-open strips of width 1 prevents the equilateral triangle of side $\sqrt{3}$ from occurring in a single C_{i}. In fact, there are other ways of 2 -coloring the plane so as to avoid a monochromatic unit equilateral triangle, such as the so-called "zebra-like" colorings as described in JKS+09. It is also shown in JKS+09 that if the plane is decomposed into the union of an open set and a closed set, then every equilateral triangle occurs at least one of these sets.

CONJECTURE 11.1.3

For any triangle T,

$$
\mathbb{E}^{2} \stackrel{3}{/ \rightarrow} T
$$

In the positive direction, we have $\mathrm{EGM}^{+} 75 \mathrm{~b}$:

THEOREM 11.1.4

(a) $\mathbb{E}^{2} \xrightarrow{2} T$ if T is a triangle satisfying:
(i) Thas a ratio between two sides equal to $2 \sin \theta / 2$ with $\theta=30^{\circ}, 72^{\circ}, 90^{\circ}$, or 120°
(ii) T has a $30^{\circ}, 90^{\circ}$, or 150° angle Sha76]
(iii) T has angles $\left(\alpha, 2 \alpha, 180^{\circ}-3 \alpha\right)$ with $0<\alpha<60^{\circ}$
(iv) T has angles $\left(180^{\circ}-\alpha, 180^{\circ}-2 \alpha, 3 \alpha-180^{\circ}\right)$ with $60^{\circ}<\alpha<90^{\circ}$
(v) T is the degenerate triangle $(a, 2 a, 3 a)$
(vi) T has sides (a, b, c) satisfying

$$
a^{6}-2 a^{4} b^{2}+a^{2} b^{4}-3 a^{2} b^{2} c^{2}+b^{2} c^{2}=0
$$

or

$$
a^{4} c^{2}+b^{4} a^{2}+c^{4} b^{2}-5 a^{2} b^{2} c^{2}=0
$$

(vii) T has sides (a, b, c) satisfying

$$
c^{2}=a^{2}+2 b^{2} \text { with } a<2 b \quad \text { Sha76 }
$$

(viii) T has sides (a, b, c) satisfying

$$
a^{2}+c^{2}=4 b^{2} \text { with } 3 b^{2}<2 a^{2}<5 b^{2} \quad \text { Sha76 }
$$

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.
(ix) T has sides equal in length to the sides and circumradius of an isosceles triangle
(b) $\mathbb{E}^{3} \xrightarrow{2} T$ for any nondegenerate triangle T
(c) $\mathbb{E}^{3} \xrightarrow{3} T$ for any nondegenerate right triangle T BT96]
(d) $\mathbb{E}^{3} \stackrel{12}{\longrightarrow} T$, a triangle with angles $\left(30^{\circ}, 60^{\circ}, 90^{\circ}\right)$ Bón93
(e) $\mathbb{E}^{2} \stackrel{2}{\rightarrow} Q^{2}$ (4 points forming a square)
(f) $\mathbb{E}^{4} \stackrel{2}{\nrightarrow} Q^{2} \quad$ Can96a
(g) $\mathbb{E}^{5} \xrightarrow{2} R^{2}$, any rectangle Tót96
(h) $\mathbb{E}^{n} \stackrel{4}{\nrightarrow} \circ \underline{1} \circ \stackrel{1}{-}$ for any n (a degenerate $(1,1,2)$ triangle)
(i) $\mathbb{E}^{n} \stackrel{16}{\longrightarrow} \circ \stackrel{a}{\square} \circ \stackrel{b}{ } \circ$ for any n (a degenerate $(a, b, a+b)$ triangle).

It is not known whether the 4 in (h) or the 16 in (i) can be replaced by smaller values. Other results of this type can be found in $\mathrm{EGM}^{+} 73$, $\mathrm{EGM}^{+} 75 \mathrm{a}$, EGGM ${ }^{+} 75 \mathrm{~b}$, Sha76], and CFG91.

The 2-point set X_{2} consisting of two points a unit distance apart is the simplest set about which such questions can be asked, and has a particularly interesting history (see Soi91 for details). It is clear that

$$
\mathbb{E}^{1} \xrightarrow{2} X_{2} \quad \text { and } \quad \mathbb{E}^{2} \xrightarrow{2} X_{2}
$$

To see that $\mathbb{E}^{2} \xrightarrow{3} X_{2}$, consider the 7-point Moser graph shown in Figure 11.1.1. All edges have length 1 . On the other hand, $\mathbb{E}^{2} \stackrel{7}{\nrightarrow} X_{2}$, which can be seen by an appropriate periodic 7 -coloring ($=$ partition into 7 parts) of a tiling of \mathbb{E}^{2} by regular hexagons of diameter 0.9 (see Figure 1.3.1).

FIGURE 11.1.1
The Moser graph.

Definition: The chromatic number of \mathbb{E}^{n}, denoted by $\chi\left(\mathbb{E}^{n}\right)$, is the least m such that $\mathbb{E}^{n} \xrightarrow{m} X_{2}$.

By the above remarks,

$$
4 \leq \chi\left(\mathbb{E}^{2}\right) \leq 7
$$

These bounds have remained unchanged for over 50 years.

Some evidence that $\chi\left(\mathbb{E}^{2}\right) \geq 5$ (in the author's opinion) is given by the following result of O'Donnell:

THEOREM 11.1.5 O'D00a, O'D00b

For any $g>0$, there is 4 -chromatic unit distance graph in \mathbb{E}^{2} with girth greater than g.

Note that the Moser graph has girth 3.

PROBLEM 11.1.6

Determine the exact value of $\chi\left(\mathbb{E}^{2}\right)$.
The best bounds currently known for \mathbb{E}^{n} are:

$$
(1.239+o(1))^{n}<\chi\left(\mathbb{E}^{n}\right)<(3+o(1))^{n}
$$

(see FW81, CFG91, Rai00, BMP05).
A "near miss" for showing $\chi\left(\mathbb{E}^{2}\right)<7$ was found by Soifer Soi92. He shows that there exists a partition $\mathbb{E}^{2}=C_{1} \cup \cdots \cup C_{7}$ where C_{i} contains no pair of points at distance 1 for $1 \leq i \leq 6$, while C_{7} has no pair at distance $1 / \sqrt{5}$.

The best bounds known for $\chi\left(\mathbb{E}^{3}\right)$ are:

$$
6 \leq \chi\left(\mathbb{E}^{3}\right) \leq 15
$$

The lower bound is due to Nechushtan Nec00 and the upper bound is due (independently to Coulson Col02, and R. Radoičić and G. Tóth RT02, improving earlier results of Székely and Wormald [WW89] and Bóna/Tóth [BT96]).

See Section 1.3 for more details.
An interesting phenomenon, first pointed out by Székely [Szé84, suggests that the true value of $\chi\left(\mathbb{E}^{2}\right)$ may depend on which axioms for set theory are being used. In ZFC, the standard Zermelo/Fraenkel axioms together with the Axiom of Choice, non-(Lebesgue)-measurable sets exist and can be used to prevent monochromatic configurations from occurring. Indeed, it was shown by Falconer Fal81 that if the plane is decomposed into four Lebesgue measurable sets, then one of the sets must contain a unit distance. In other words, the "measurable" chromatic number of the plane is at least 5 . On the other hand, if the Axiom of Choice is replaced by the axiom LM which asserts that every set of reals is Lebesgue measurable, then such constructions are not possible and the chromatic number of the plane may be 4 in these systems. (It is known by a result of Solovay Sol70 that ZFC and ZF +LM are equally consistent). Further results of this type are given in the papers of Shelah and Soifer [SS03, SS04, Soi05]. Sets for which the chromatic number depends on whether or not the color classes are required to be measurable, are said to have an "ambiguous" chromatic number. In Pay09, Payne constructs a number of interesting examples of unit-distance graphs in \mathbb{R}^{n} which have ambiguous chromatic number. This is further evidence that the chromatic number of various configurations in \mathbb{R}^{n} may depend on the flavor of set theory you prefer!

11.2 RAMSEY SETS

Recall that X is Ramsey (written $\mathbb{E}^{N} \longrightarrow X$) if, for all r, if $\mathbb{E}^{N}=C_{1} \cup \cdots \cup C_{r}$ then some C_{i} must contain a congruent copy of X, provided only that $N \geq N_{0}(X, r)$.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

GLOSSARY

Spherical: $\quad X$ is spherical if it lies on the surface of some sphere.
Rectangular: X is rectangular if it is a subset of the vertices of a rectangular parallelepiped.
Simplex: $\quad X$ is a simplex if it spans $\mathbb{E}^{|X|-1}$.

THEOREM 11.2.1 EGM ${ }^{+}$73]

If X and Y are Ramsey then so is $X \times Y$.
Thus, since any 2-point set is Ramsey (for any r, consider the unit simplex $S_{2 r+1}$ in $\mathbb{E}^{2 r}$ scaled appropriately), then so is any rectangular parallelepiped. This implies:

THEOREM 11.2.2

Any rectangular set is Ramsey.
Frankl and Rödl strengthen this significantly in the following way.
Definition: A set $A \subset \mathbb{E}^{n}$ is called super-Ramsey if there exist positive constants c and ϵ and subsets $X=X(N) \subset \mathbb{E}^{N}$ for every $N \geq N_{0}(X)$ such that:
(i) $|X|<c^{n}$;
(ii) $|Y|<|X| /(1+\epsilon)^{n}$ holds for all subsets $Y \subset X$ containing no congruent copy of A.

THEOREM 11.2.3 FR90

(i) All two-element sets are super-Ramsey.
(ii) If A and B are super-Ramsey then so is $A \times B$.

COROLLARY 11.2.4

If X is rectangular then X is super-Ramsey.
In the other direction we have

THEOREM 11.2.5

Any Ramsey set is spherical.
The simplest nonspherical set is the degenerate $(1,1,2)$ triangle.
Concerning simplices, we have the result of Frankl and Rödl:

THEOREM 11.2.6 FR90

Every simplex is Ramsey.
In fact, they show that for any simplex X, there is a constant $c=c(X)$ such that for all r,

$$
\mathbb{E}^{c \log r} \xrightarrow{r} X,
$$

which follows from their result:

THEOREM 11.2.7

Every simplex is super-Ramsey.

It was an open problem for more than 20 years as to whether the set of vertices of a regular pentagon was Ramsey. This was finally settled by Křiž Kři91 who proved the following two fundamental results:

THEOREM 11.2.8 Kři91

Suppose $X \subseteq \mathbb{E}^{N}$ has a transitive solvable group of isometries. Then X is Ramsey.

COROLLARY 11.2.9

Any set of vertices of a regular polygon is Ramsey.

THEOREM 11.2.10 Kři91

Suppose $X \subseteq \mathbb{E}^{N}$ has a transitive group of isometries that has a solvable subgroup with at most two orbits. Then X is Ramsey.

COROLLARY 11.2.11

The vertex sets of the Platonic solids are Ramsey.

CONJECTURE 11.2.12

Any 4-point subset of a circle is Ramsey.
Křiž Kři92 has shown this holds if a pair of opposite sides of the 4-point set are parallel (i.e., form a trapezoid).

Certainly, the outstanding open problem in Euclidean Ramsey theory is to determine the Ramsey sets. The author (bravely?) makes the following:

CONJECTURE 11.2.13 (\$1000)

Any spherical set is Ramsey.
If true then this would imply that the Ramsey sets are exactly the spherical sets.
Recently, an alternative conjecture has been suggested by Leader, Russell and Walters LRW12. Let us call a finite configuration C in Euclidean space transitive if it has a transitive group of symmetries. Further, let us say that \mathbf{C} is subtransitive if it is a subset of a transitive configuration.

CONJECTURE 11.2.14 [LRW12]

Any Ramsey set is subtransitive.
These authors have also shown LRW11 that almost all 4-points subsets of a unit circle are not subtransitive. Thus, the question as to whether 4-point cyclic subsets are Ramsey sharply separates these two conjectures!

We point out that a result of Spencer Spe79 shows that any finite configuration C in \mathbb{E}^{n} is arbitrarily close to a Ramsey set. Let us say that C^{\prime} is ϵ-close to C if C^{\prime} can be obtained by moving each point of C by a distance of at most ϵ.

THEOREM 11.2.15 Spe79

For every finite configuration $C \subset \mathbb{E}^{n}$ and every $\epsilon>0$, there is any ϵ-close configuration C^{\prime} which is a Ramsey set.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

11.3 SPHERE-RAMSEY SETS

Since spherical sets play a special role in Euclidean Ramsey theory, it is natural that the following concept arises.

GLOSSARY

$\boldsymbol{S}^{N}(\boldsymbol{\rho})$: A sphere in \mathbb{E}^{N} with radius ρ.
Sphere-Ramsey: $\quad X$ is sphere-Ramsey if, for all r, there exist $N=N(X, r)$ and $\rho=\rho(X, r)$ such that

$$
S^{N}(\rho) \xrightarrow{r} X .
$$

In this case we write $S^{N}(\rho) \longrightarrow X$.
For a spherical set X, let $\rho(X)$ denote its circumradius, i.e., the radius of the smallest sphere containing X as a subset.

Remark. If X and Y are sphere-Ramsey then so is $X \times Y$.
THEOREM 11.3.1 Gra83
If X is rectangular then X is sphere-Ramsey.
In Gra83, it was conjectured that in fact if X is rectangular and $\rho(X)=1$ then $S^{N}(1+\epsilon) \longrightarrow X$ should hold. This was proved by Frankl and Rödl [FR90] in a much stronger "super-Ramsey" form.

Concerning simplices, Matousěk and Rödl proved the following spherical analogue of simplices being Ramsey:

THEOREM 11.3.2 MR95

For any simplex X with $\rho(X)=1$, any r, and any $\epsilon>0$, there exists $N=N(X, r, \epsilon)$ such that

$$
S^{N}(1+\epsilon) \xrightarrow{r} X .
$$

The proof uses an interesting mix of techniques from combinatorics, linear algebra, and Banach space theory.

The following results show that the "blowup factor" of $1+\epsilon$ is really needed.
THEOREM 11.3.3 Gra83
Let $X=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathbb{E}^{N}$ such that:
(i) for some nonempty $I \subseteq\{1,2, \ldots, m\}$, there exist nonzero $a_{i}, i \in I$, with

$$
\sum_{i \in I} a_{i} x_{i}=0 \in \mathbb{E}^{N}
$$

(ii) for all nonempty $J \subseteq I$,

$$
\sum_{j \in J} a_{j} \neq 0
$$

Then X is not sphere-Ramsey.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

This implies that $X \subset S^{N}(1)$ is not sphere-Ramsey if the convex hull of X contains the center of $S^{N}(1)$.
Definition: A simplex $X \subset \mathbb{E}^{N}$ is called exceptional if there is a subset $A \subseteq X$, $|A| \geq 2$, such that the affine hull of A translated to the origin has a nontrivial intersection with the linear span of the points of $X \backslash A$ regarded as vectors.

THEOREM 11.3.4 MR95
If X is a simplex with $\rho(X)=1$ and $S^{N}(1) \longrightarrow X$ then X must be exceptional.
It is not known whether it is true for exceptional X that $S^{N}(1) \longrightarrow X$. The simplest nontrivial case is for the set of three points $\{a, b, c\}$ lying on some great circle of $S^{N}(1)$ (with center o) so that the line joining a and b is parallel to the line joining o and c. We close with a fundamental conjecture:

CONJECTURE 11.3.5

If X is Ramsey, then X is sphere-Ramsey.

11.4 EDGE-RAMSEY SETS

In this variant (introduced in $\mathrm{EGM}^{+} 75 \mathrm{~b}$, we color all the line segments $[a, b]$ in \mathbb{E}^{n} rather than coloring the points. Analogously to our earlier definition, we will say that a configuration E of line segments is edge-Ramsey if for any r, there is an $N=N(r)$ such any r-coloring of the line segments in \mathbb{E}^{N} contains a monochromatic congruent copy of E (up to some Euclidean motion). The main results known for edge-Ramsey configurations are the following:

THEOREM 11.4.1 $\mathrm{EGM}^{+} 75 \mathrm{~b}$

If E is edge-Ramsey then all edges of E must have the same length.

THEOREM 11.4.2 Gra83

If E is edge-Ramsey then the endpoints of the edges of E must lie on two spheres.

THEOREM 11.4.3 Gra83

If the endpoints of E do not lie on a sphere and the graph formed by E is not bipartite then E is not edge-Ramsey.

It is clear that the edge set of an n-dimensional simplex is edge-Ramsey. Less obvious (but equally true) are the following.

THEOREM 11.4.4 Can96b

The edge set of an n-cube is edge-Ramsey.

THEOREM 11.4.5 Can96b

The edge set of an n-dimensional cross polytope is edge-Ramsey.
This set, a generalization of the octahedron, has as its edges all $2 n(n-1)$ line segments of the form $[(0,0, \ldots, \pm 1, \ldots, 0),(0,0, \ldots, 0, \pm 1, \ldots, 0)]$ where the two ± 1 's occur in different positions.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

THEOREM 11.4.6 Can96b

The edge set of a regular n-gon is not edge-Ramsey if $n=5$ or $n \geq 7$.
Since regular n-gons are edge-Ramsey for $n=2,3$, and 4 , the only undecided value is $n=6$.

PROBLEM 11.4.7 Is the edge set of a regular hexagon edge-Ramsey?
The situation is not as simple as one might hope since as pointed out by Cantwell Can96b:
(i) If $A B$ is a line segment with C as its midpoint, then the set E_{1} consisting of the line segments $A C$ and $C B$ is not edge-Ramsey, even though its graph is bipartite and A, B, C lie on two spheres.
(ii) There exist nonspherical sets that are edge-Ramsey.

PROBLEM 11.4.8 Characterize edge-Ramsey configurations.

It is not clear at this point what a reasonable conjecture might be. For more results on these topics, see Can96b] or Gra83].

11.5 HOMOTHETIC RAMSEY SETS AND DENSITY THEOREMS

In this section we will survey various results of the type $\mathbb{E}^{N} \xrightarrow{r} \operatorname{Hom}(X)$, the set of positive homothetic images $a X+\bar{t}$ of a given set X. Thus, we are allowed to dilate and translate X but we cannot rotate it. The classic result of this type is van der Waerden's theorem, which asserts the following:

THEOREM 11.5.1 Wae27
If $X=\{1,2, \ldots, m\}$ then $\mathbb{E} \xrightarrow{r} \operatorname{Hom}(X)$.
(Note that $\operatorname{Hom}(X)$ is just the set of m-term arithmetic progressions.)
By the compactness theorem mentioned in the Introduction there exists, for each m, a minimum value $W(m)$ such that

$$
\{1,2, \ldots, W(m)\} \xrightarrow{2} \operatorname{Hom}(X)
$$

The determination or even estimation of $W(m)$ seems to be extremely difficult. The known values are:

m	1	2	3	4	5	6
$W(m)$	1	3	9	35	178	1132

The best general result from below (due to Berlekamp - see GRS90) is

$$
W(p+1) \geq p \cdot 2^{p}, \quad p \text { prime }
$$

The best upper bound known follows from a spectacular result of Gowers Gow01:

$$
W(m)<2^{2^{2^{2^{2^{m+9}}}}}
$$

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

This settled a long-standing $\$ 1000$ conjecture of the author. This result is a corollary of Gowers's new quantitative form of Szemerédi's theorem mentioned in the next section. It improves on the earlier bound of Shelah: She88:

The following conjecture of the author has been open for more than 30 years:

CONJECTURE 11.5.2 (\$1000)

For all m,

$$
W(m) \leq 2^{m^{2}}
$$

The generalization to \mathbb{E}^{N} is due independently to Gallai and Witt (see GRS90).

THEOREM 11.5.3

For any finite set $X \subset \mathbb{E}^{n}$,

$$
\mathbb{E}^{N} \longrightarrow \operatorname{Hom}(X)
$$

We remark here that a number of results in (Euclidean) Ramsey theory have stronger so-called density versions. As an example, we state the well-known theorem of Szemerédi.

GLOSSARY

\mathbb{N} : The set of natural numbers $\{1,2,3, \ldots\}$.
$\overline{\boldsymbol{\delta}}(\boldsymbol{A})$: The upper density of a set $A \subseteq \mathbb{N}$ is defined by:

$$
\bar{\delta}(A)=\limsup _{n \longrightarrow \infty} \frac{|A \cap\{1,2, \ldots, n\}|}{n}
$$

THEOREM 11.5.4 (Szemerédi Sze75])
If $A \subseteq \mathbb{N}$ has $\bar{\delta}(A)>0$ then A contains arbitrarily long arithmetic progressions.
That is, $A \cap \operatorname{Hom}\{1,2, \ldots, m\} \neq \emptyset$ for all m. This clearly implies van der Waerden's theorem since $\mathbb{N}=C_{1} \cup \cdots \cup C_{r} \Rightarrow \max _{i} \bar{\delta}\left(C_{i}\right) \geq 1 / r$.

Furstenberg [Fur77] has given a quite different proof of Szemerédi's theorem, using tools from ergodic theory and topological dynamics. This approach has proved to be very powerful, allowing Furstenberg, Katznelson, and others to prove density versions of the Hales-Jewett theorem (see [FK91), the Gallai-Witt theorem, and many others. Gowers has proved the following strong quantitative version of Szemerédi's theorem:

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

THEOREM 11.5.5 Gow01

For every $k>0$, any subset of $1,2, \ldots, N$ of size at least $N(\log \log N)^{-c(k)}$ contains a k-term arithmetic progression, where $c(k)=2^{-2^{k+9}}$.

Recently, the Polymath project, initiated by Gowers, has resulted in several new proofs of the density Hales-Jewett theorem (see Tao09, Poly12, DKT14]).

There are other ways of expressing the fact that A is relatively dense in \mathbb{N} besides the condition that $\bar{\delta}(A)>0$. One would expect that these could also be used as a basis for a density version of van der Waerden or Gallai-Witt. Very little is currently known in this direction, however. We conclude this section with several conjectures of this type.

CONJECTURE 11.5.6 (Erdős)

If $A \subseteq \mathbb{N}$ satisfies $\sum_{a \in A} 1 / a=\infty$ then A contains arbitrarily long arithmetic progressions.

CONJECTURE 11.5.7 (Graham)

If $A \subseteq \mathbb{N} \times \mathbb{N}$ with $\sum_{(x, y) \in A} 1 /\left(x^{2}+y^{2}\right)=\infty$ then A contains the 4 vertices of an axis-aligned square.

More generally, I expect that A will always contain a homothetic image of $\{1,2, \ldots, m\} \times\{1,2, \ldots, m\}$ for all m. Of course, if we assume A has positive upper density, then this result follows from the density Hales-Jewett theorem [FK91]. A nice combinatorial proof by Solymosi for the square appears in Sol04.

Finally, we mention a direction in which the group $S O(n)$ is enlarged to allow dilations as well.

Definition: For a set $W \subseteq \mathbb{E}^{k}$, define the upper density $\bar{\delta}(W)$ of W by

$$
\bar{\delta}(W):=\limsup _{R \longrightarrow \infty} \frac{m(B(o, R) \cap W)}{m(B(o, R))}
$$

where $B(o, R)$ denotes the k-ball $\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{E}^{k} \mid \sum_{i=1}^{k} x_{i}^{2} \leq R^{2}\right\}$ centered at the origin, and m denotes Lebesgue measure.

THEOREM 11.5.8 (Bourgain Bou86)
Let $X \subseteq \mathbb{E}^{k}$ be a simplex. If $W \subseteq \mathbb{E}^{k}$ with $\bar{\delta}(W)>0$ then there exists t_{0} such that for all $t>t_{0}$, W contains a congruent copy of $t X$.

Some restrictions on X are necessary as the following result shows.
THEOREM 11.5.9 (Graham Gra94)
Let $X \subseteq \mathbb{E}^{k}$ be nonspherical. Then for any N there exist a set $W \subseteq \mathbb{E}^{N}$ with $\bar{\delta}(W)>0$ and a set $T \subseteq \mathbb{R}$ with $\underline{\delta}(T)>0$ such that W contains no congruent copy of $t X$ for any $t \in T$.

Here $\underline{\delta}$ denotes lower density, defined similarly to $\bar{\delta}$ but with liminf replacing limsup.

It is clear that much remains to be done here.

11.6 VARIATIONS

There are quite a few variants of the preceding topics that have received attention in the literature (e.g., see Sch93). We mention some of the more interesting ones.

ASYMMETRIC RAMSEY THEOREMS

Typical results of this type assert that for given sets X_{1} and X_{2} (for example), for every partition of $\mathbb{E}^{N}=C_{1} \cup C_{2}$, either C_{1} contains a congruent copy of X_{1}, or C_{2} contains a congruent copy of X_{2}. We can denote this by

$$
\mathbb{E}^{N} \xrightarrow{2}\left(X_{1}, X_{2}\right) .
$$

Here is a sampling of results of this type (more of which can be found in EGM ${ }^{+} 73$, [EGM ${ }^{+} 75 \mathrm{a}$, $\mathrm{EGM}^{+} 75 \mathrm{~b}$).
(i) $\mathbb{E}^{2} \xrightarrow{2}\left(T_{2}, T_{3}\right)$ where T_{i} is any subset of \mathbb{E}^{2} with i points, $i=2,3$.
(ii) $\mathbb{E}^{2} \xrightarrow{2}\left(P_{2}, P_{4}\right)$ where P_{2} is a set of two points at a distance 1 , and P_{4} is a set of four collinear points with distance 1 between consecutive points.
(iii) $\mathbb{E}^{3} \xrightarrow{2}\left(T, Q^{2}\right)$ where T is an isosceles right triangle and Q^{2} is a square.
(iv) $\mathbb{E}^{2} \xrightarrow{2}\left(P_{2}, T_{4}\right)$ where P_{2} is as in (ii) and T_{4} is any set of four points Juh79.
(v) There is a set T_{8} of 8 points such that

$$
\mathbb{E}^{2} \stackrel{2}{\not}\left(P_{2}, T_{8}\right) \quad \text { CT94. }
$$

This strengthens an earlier result of Juhász Juh79, which proved this for a certain set of 12 points.

POLYCHROMATIC RAMSEY THEOREMS

Here, instead of asking for a copy of the target set X in a single C_{i}, we require only that it be contained in the union of a small number of C_{i}, say at most m of the C_{i}. Let us indicate this by writing $\mathbb{E}^{N} \underset{m}{\rightarrow} X$.
(i) If $\mathbb{E}^{N} \underset{m}{\rightarrow} X$ then X must be embeddable on the union of m concentric spheres $\mathrm{EGM}^{+} 73$.
(ii) Suppose X_{i} is finite and $\mathbb{E}^{N} \underset{m_{i}}{\longrightarrow} X_{i}, 1 \leq i \leq t$. Then

$$
\mathbb{E}^{N} \xrightarrow[m_{1} m_{2} \cdots m_{t}]{ } X_{1} \times X_{2} \times \cdots \times X_{t} \quad \text { ERS83] }
$$

(iii) If X_{6} is the 6 -point set formed by taking the four vertices of a square together with the midpoints of two adjacent sides then $\mathbb{E}^{2} \nrightarrow X_{6}$ but $\mathbb{E}^{2} \underset{2}{\longrightarrow} X_{6}$.
(iv) If X is the set of vertices of a regular simplex in \mathbb{E}^{N} together with the trisection points of each of its edges then

$$
\mathbb{E}^{2} \nrightarrow X_{6} \quad \text { but } \quad \mathbb{E}^{2} \xrightarrow[3]{\longrightarrow} X_{6}
$$

It is not known if $\mathbb{E}^{2} \underset{2}{\longrightarrow} X_{6}$. Many other results of this type can be found in ERS83.

PARTITIONS OF \mathbb{E}^{n} WITH ARBITRARILY MANY PARTS

Since $\mathbb{E}^{2} \stackrel{7}{\not /} P_{2}$, where P_{2} is a set of two points with unit distance, one might ask whether there is any nontrivial result of the type $\mathbb{E}^{2} \xrightarrow{m} \mathcal{F}$ when m is allowed to go to infinity. Of course, if \mathcal{F} is sufficiently large, then there certainly are. There are some interesting geometric examples for which \mathcal{F} is not too large.

THEOREM 11.6.1 Gra80a

For any partition of \mathbb{E}^{n} into finitely many parts, some part contains, for all $\alpha>0$ and all sets of lines L_{1}, \ldots, L_{n} that span \mathbb{E}^{n}, a simplex having volume α and edges through one vertex parallel to the L_{i}.

Many other theorems of this type are possible (see Gra80a).

PARTITIONS WITH INFINITELY MANY PARTS

Results of this type tend to have a strong set-theoretic flavor. For example: $\mathbb{E}^{2} \stackrel{\aleph_{0}}{\nrightarrow} T_{3}$ where T_{3} is an equilateral triangle Ced69. In other words, \mathbb{E}^{2} can be partitioned into countably many parts so that no part contains the vertices of an equilateral triangle. In fact, this was recently strengthened by Schmerl [Sch94b] who showed that for all N,

$$
\mathbb{E}^{N} \stackrel{\aleph_{0}}{\not} T_{3} .
$$

In fact, this result holds for any fixed triangle T in place of T_{3} Sch94b. Schmerl also has shown Sch94a that there is a partition of \mathbb{E}^{N} into countably many parts such that no part contains the vertices of any isosceles triangle.

Another result of this type is this:

THEOREM 11.6.2 Kun

Assuming the Continuum Hypothesis, it is possible to partition \mathbb{E}^{2} into countably many parts, none of which contains the vertices of a triangle with rational area.

We also note the interesting result of Erdős and Komjath:

THEOREM 11.6.3 EK90

The existence of a partition of \mathbb{E}^{2} into countably many sets, none of which contains the vertices of a right triangle is equivalent to the Continuum Hypothesis.

The reader can consult Komjath Kom97 for more results of this type.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

COMPLEXITY ISSUES

S. Burr Bur82 has shown that the algorithmic question of deciding if a given set $X \subset \mathbb{N} \times \mathbb{N}$ can be partitioned $X=C_{1} \cup C_{2} \cup C_{3}$ so that $x, y \in C_{i}$ implies distance $(x, y) \geq 6$, for $i=1,2,3$, is NP-complete. (Also, he shows that a certain infinite version of this is undecidable.)

Finally, we make a few remarks about the celebrated problem of Esther Klein (who became Mrs. Szekeres), which, in some sense, initiated this whole area (see Sze73] for a charming history).

THEOREM 11.6.4 ES35

There is a minimum function $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that any set of $f(n)$ points in \mathbb{E}^{2} in general position contains the vertices of a convex n-gon.

This result of Erdős and George Szekeres actually spawned an independent genesis of Ramsey theory. The best bounds currently known for $f(n)$ are:

$$
2^{n-2}+1 \leq f(n) \leq 2^{n+4 n^{4 / 5}}
$$

The lower bound appears in ES35. The upper bound is a striking new result of Andrew Suk Suk17. It applies for n sufficiently large and is the first significant improvement of the original upper bound $\binom{2 n-4}{n-2+1}$ of Erdős and Szekeres.

CONJECTURE 11.6.5

Prove (or disprove) that $f(n)=2^{n-2}+1, n \geq 3$.
(See Chapter 1 of this Handbook for more details.)

11.7 SOURCES AND RELATED MATERIAL

SURVEYS

The principal surveys for results in Euclidean Ramsey theory are GRS90, Gra80b, Gra85, and Gra94. The first of these is a monograph on Ramsey theory in general, with a section devoted to Euclidean Ramsey theory, while the last three are specifically about the topics discussed in the present chapter.

RELATED CHAPTERS

Chapter 1: Finite point configurations
Chapter 13: Geometric discrepancy theory and uniform distribution

REFERENCES

[BMP05] P. Brass, W.O.J. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, New York, 2005

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.
[Bón93] M. Bóna. A Euclidean Ramsey theorem. Discrete Math., 122:349-352, 1993.
[Bou86] J. Bourgain. A Szemerédi type theorem for sets of positive density in \mathbb{R}^{k}. Israel J. Math., 54:307-316, 1986.
[BT96] M. Bóna and G. Tóth. A Ramsey-type problem on right-angled triangles in space. Discrete Math., 150:61-67, 1996
[Bur82] S.A. Burr. An NP-complete problem in Euclidean Ramsey theory. In Proc. 13th Southeastern Conf. on Combinatorics, Graph Theory and Computing, vol. 35, pages 131-138, 1982.
[Can96a] K. Cantwell. Finite Euclidean Ramsey theory. J. Combin. Theory Ser. A, 73:273285, 1996.
[Can96b] K. Cantwell. Edge-Ramsey theory. Discrete Comput. Geom., 15:341-352, 1996.
[Ced69] J. Ceder. Finite subsets and countable decompositions of Euclidean spaces. Rev. Roumaine Math. Pures Appl., 14:1247-1251, 1969.
[CFG91] H.T. Croft, K.J. Falconer, and R.K. Guy. Unsolved Problems in Geometry. SpringerVerlag, New York, 1991.
[Col02] D. Coulson. A 15-coloring of 3-space omitting distance one. Discrete Math., 256:8390, 2002.
[CT94] G. Csizmadia and G. Tóth. Note on a Ramsey-type problem in geometry. J. Combin. Theory Ser. A, 65:302-306, 1994.
[DKT14] P. Dodos, V. Kamellopoulos, and K. Tyros. A simple proof of the density HalesJewett theorem. Int. Math. Res. Not., 12:3340-3352, 2014.
$\left[E^{+} \mathrm{H}^{+} 73\right]$ P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, and E.G. Straus. Euclidean Ramsey theorems. J. Combin. Theory Ser. A, 14:341-63, 1973.
$\left[E^{+} M^{+} 75 \mathrm{a}\right]$ P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, and E.G. Straus. Euclidean Ramsey theorems II. In A. Hajnal, R. Rado, and V. Sós, editors, Infinite and Finite Sets I, pages 529-557, North-Holland, Amsterdam, 1975.
$\left[\mathrm{EGM}^{+} 75 \mathrm{~b}\right]$ P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, and E.G. Straus. Euclidean Ramsey theorems III. In A. Hajnal, R. Rado, and V. Sós, editors, Infinite and Finite Sets II, pages 559-583, North-Holland, Amsterdam, 1975.
[EK90] P. Erdős and P. Komjáth. Countable decompositions of \mathbb{R}^{2} and \mathbb{R}^{3}. Discrete Comput. Geom., 5:325-331, 1990.
[ERS83] P. Erdős, B. Rothschild, and E.G. Straus. Polychromatic Euclidean Ramsey theorems. J. Geom., 20:28-35, 1983.
[ES35] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compos. Math., 2:463-470, 1935.
[Fal81] K.J. Falconer. The realization of distances in measurable subsets covering $R R^{n} J$. Combin. Theory Ser. A, 31:184-189, 1981.
[FK91] H. Furstenberg and Y. Katznelson. A density version of the Hales-Jewett theorem. J. Anal. Math., 57:64-119, 1991.
[FR90] P. Frankl and V. Rödl. A partition property of simplices in Euclidean space. J. Amer. Math. Soc., 3:1-7, 1990.
[Fur77] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math., 31:204-256, 1977.
[FW81] P. Frankl and R.M. Wilson. Intersection theorems with geometric consequences. Combinatorica, 1:357-368, 1981.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.
[Gow01] T. Gowers. A new proof of Szemerédi's theorem. Geom. Funct. Anal., 11:465-588, 2001.
[Gra80a] R.L. Graham. On partitions of \mathbb{E}^{n}. J. Combin. Theory Ser. A, 28:89-97, 1980.
[Gra80b] R.L. Graham. Topics in Euclidean Ramsey theory. In J. Nešetřil and V. Rödl, editors, Mathematics of Ramsey Theory, Springer-Verlag, Heidelberg, 1980.
[Gra83] R.L. Graham. Euclidean Ramsey theorems on the n-sphere. J. Graph Theory, 7:105114, 1983.
[Gra85] R.L. Graham. Old and new Euclidean Ramsey theorems. In J.E. Goodman, E. Lutwak, J. Malkevitch, and R. Pollack, editors, Discrete Geometry and Convexity, vol. 440 of Ann. New York Acad. Sci., pages 20-30, 1985.
[Gra94] R.L. Graham. Recent trends in Euclidean Ramsey theory. Discrete Math., 136:119127, 1994.
[GRS90] R.L. Graham, B.L. Rothschild, and J. Spencer. Ramsey Theory, 2nd edition. Wiley, New York, 1990.
[JKS+09] V. Jelínek, J. Kynčl, R. Stolař, and T. Valla. Monochromatic triangles in two-colored plane. Combinatorica, 29:699-718, 2009.
[Juh79] R. Juhász. Ramsey type theorems in the plane. J. Combin. Theory Ser. A, 27:152160, 1979.
[Kom97] P. Komjáth. Set theory: geometric and real. R.L. Graham and J. Nešetřil, editors, The Mathematics of Paul Erdős, II, vol. 14 of Algorithms and Combinatorics, pages 461-466, Springer, Berlin, 1997.
[Kři91] I. Křiž. Permutation groups in Euclidean Ramsey theory. Proc. Amer. Math. Soc., 112:899-907, 1991.
[Kři92] I. Křiž. All trapezoids are Ramsey. Discrete Math., 108:59-62, 1992.
[Kun] K. Kunen. Personal communication.
[LRW11] I. Leader, P.A. Russell, and M. Walter. Transitive sets and cyclic quadrilaterals. J. Combinatorics, 2:457-462, 2011.
[LRW12] I. Leader, P.A. Russell, and M. Walter. Transitive sets in Euclidean Ramsey theory. J. Combin. Theory Ser. A 119:382-396, 2012.
[MR95] J. Matoušek and V. Rödl. On Ramsey sets on spheres. J. Combin. Theory Ser. A, 70:30-44, 1995.
[Nec00] O. Nechushtan. A note on the space chromatic number. Discrete Math., 256:499-507, 2002.
[O'D00a] P. O'Donnell. Arbitrary girth, 4-chromatic unit distance graphs in the plane; Part 1: Graph Description. Geombinatorics, 9:145-150, 2000.
[O'D00b] P. O'Donnell. Arbitrary girth, 4-chromatic unit distance graphs in the plane; Part 2: Graph embedding. Geombinatorics, 9:180-193, 2000.
[Pay09] M.S. Payne. Unit distance graphs with ambiguous chromatic number. Electr. J. Combin., 16:N31, 2009.
[Poly12] D.H.J. Polymath. A new proof of the density Hales-Jewett theorem. Ann. Math., 175:1283-1327, 2012.
[Rai00] A.M. Raigorodskii. On the chromatic number of the space. Usp. Mat. Nauk, 55:147148, 2000.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.
[RT02] R. Radoičić and G. Tóth. Note on the chromatic number of the space. In B. Aronov et al., editors, Discrete and Computational Geometry, vol. 25 of Algorithms and Combinatorics, pages 695-698, Springer, Berlin, 2003.
[Sch93] P. Schmitt. Problems in discrete and combinatorial geometry. In P.M. Gruber and J.M. Wills, editors, Handbook of Convex Geometry, volume A, North-Holland, Amsterdam, 1993.
[Sch94a] J.H. Schmerl. Personal communication, 1994.
[Sch94b] J.H. Schmerl. Triangle-free partitions of Euclidean space. Bull. London Math. Soc., 26:483-486, 1994.
[Sha76] L. Shader. All right triangles are Ramsey in $\mathbb{E}^{2}!$ J. Combin. Theory Ser. A, 20:385389, 1976.
[She88] S. Shelah. Primitive recursive bounds for van der Waerden numbers. J. Amer. Math. Soc., 1:683-697, 1988.
[Soi91] A. Soifer. Chromatic number of the plane: A historical survey. Geombinatorics, 1:13-14, 1991.
[Soi92] A. Soifer. A six-coloring of the plane. J. Combin. Theory Ser. A, 61:292-294, 1992.
[Soi05] A. Soifer. Axiom of choice and chromatic number of \mathbb{R}^{n}. J. Combin. Theory Ser. A, 110:169-173, 2005.
[Sol04] J. Solymosi. A note on a question of Erdős and Graham. Combin. Probab. Comput., 13:263-267, 2004.
[Sol70] R.M. Solovay. A model of set theory in which every set of reals is Lebesgue measurable. Ann. of Math., 92:1-56, 1970.
[Spe79] J.H. Spencer All finite configurations are almost Ramsey. J. Combin. Theory Ser. A, 27:410-403, 1979.
[SS03] S. Shelah and A. Soifer. Axiom of choice and chromatic number of the plane. J. Combin. Theory Ser. A, 103:387-391, 2003.
[SS04] S. Shelah and A. Soifer. Axiom of choice and chromatic number: example on the plane. J. Combin. Theory Ser. A, 105:359-364, 2004.
[Suk17] A. Suk. On the Erdős-Szekeres convex polygon problem. J. Amer. Math. Soc., 30:1047-1053, 2017.
[Sze73] G. Szekeres. A combinatorial problem in geometry: Reminiscences. In J. Spencer, editor, Paul Erdös: The Art of Counting, Selected Writings, pages xix-xxii, MIT Press, Cambridge, 1973.
[Sze75] E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:199-245, 1975.
[Szé84] L.A. Székely. Measurable chromatic number of geometric graphs and set without some distances in Euclidean space. Combinatorica, 4:213-218, 1984.
[SW89] L.A. Székely and N.C. Wormald. Bounds on the measurable chromatic number of \mathbb{R}^{n}. Discrete Math., 75:343-372, 1989.
[Tao09] T. Tao. Polymath1 and three new proofs of the density Hales-Jewett theorem. Available at http://terrytao.wordpress.com, 2009.
[Tót96] G. Tóth. A Ramsey-type bound for rectangles. J. Graph Theory, 23:53-56, 1996.
[Wae27] B.L. van der Waerden. Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk., 15:212-216, 1927.

