
1 FINITE POINT CONFIGURATIONS

János Pach

INTRODUCTION

The study of combinatorial properties of finite point configurations is a vast area
of research in geometry, whose origins go back at least to the ancient Greeks.
Since it includes virtually all problems starting with “consider a set of n points
in space,” space limitations impose the necessity of making choices. As a result,
we will restrict our attention to Euclidean spaces and will discuss problems that
we find particularly important. The chapter is partitioned into incidence problems
(Section 1.1), metric problems (Section 1.2), and coloring problems (Section 1.3).

1.1 INCIDENCE PROBLEMS

In this section we will be concerned mainly with the structure of incidences between
a finite point configuration P and a set of finitely many lines (or, more generally, k-
dimensional flats, spheres, etc.). Sometimes this set consists of all lines connecting
the elements of P . The prototype of such a question was raised by Sylvester [Syl93]
more than one hundred years ago: Is it true that for any configuration of finitely
many points in the plane, not all on a line, there is a line passing through exactly two
points? This problem was rediscovered by Erdős [Erd43], and affirmative answers
to this question was were given by Gallai and others [Ste44]. Generalizations for
circles and conic sections in place of lines were established by Motzkin [Mot51] and
Wilson-Wiseman [WW88], respectively.

GLOSSARY

Incidence: A point of configuration P lies on an element of a given collection of
lines (k-flats, spheres, etc.).

Simple crossing: A point incident with exactly two elements of a given collection
of lines or circles.

Ordinary line: A line passing through exactly two elements of a given point
configuration.

Ordinary circle: A circle passing through exactly three elements of a given point
configuration.

Ordinary hyperplane: A (d−1)-dimensional flat passing through exactly d ele-
ments of a point configuration in Euclidean d-space.

Motzkin hyperplane: A hyperplane whose intersection with a given d-dimen-
sional point configuration lies—with the exception of exactly one point—in a
(d−2)-dimensional flat.
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4 J. Pach

Family of pseudolines: A family of two-way unbounded Jordan curves, any
two of which have exactly one point in common, which is a proper crossing.

Family of pseudocircles: A family of closed Jordan curves, any two of which
have at most two points in common, at which the two curves properly cross each
other.

Regular family of curves: A family Γ of curves in the xy-plane defined in
terms of D real parameters satisfying the following properties. There is an
integer s such that (a) the dependence of the curves on x, y, and the parameters
is algebraic of degree at most s; (b) no two distinct curves of Γ intersect in more
than s points; (c) for any D points of the plane, there are at most s curves in Γ
passing through all of them.

Degrees of freedom: The smallest number D of real parameters defining a reg-
ular family of curves.

Spanning tree: A tree whose vertex set is a given set of points and whose edges
are line segments.

Spanning path: A spanning tree that is a polygonal path.

Convex position: P forms the vertex set of a convex polygon or polytope.

k-Set: A k-element subset of P that can be obtained by intersecting P with an
open halfspace.

Halving plane: A hyperplane with ⌊|P |/2⌋ points of P on each side.

SYLVESTER-TYPE RESULTS

1. Gallai theorem (dual version): Any set of lines in the plane, not all of which
pass through the same point, determines a simple crossing. This holds even
for families of pseudolines [KR72].

2. Pinchasi theorem: Any set of at least five pairwise crossing unit circles in the
plane determines a simple crossing [Pin01].

Any sufficiently large set of pairwise crossing pseudocircles in the plane, not
all of which pass through the same pair of points, determines an intersection
point incident to at most three pseudocircles [ANP+04].

3. Pach-Pinchasi theorem: Given n red and n blue points in the plane, not all
on a line, there always exists a bichromatic line containing at most two points
of each color [PP00].

Any finite set of red and blue points contains a monochromatic spanned line,
but not always a monochromatic ordinary line [Cha70].

4. Motzkin-Hansen theorem: For any finite set of points in Euclidean d-space,
not all of which lie on a hyperplane, there exists a Motzkin hyperplane [Mot51,
Han65]. We obtain as a corollary that n points in d-space, not all of which lie
on a hyperplane, determine at least n distinct hyperplanes. (A hyperplane is
determined by a point set P if its intersection with P is not contained in a
(d−2)-flat.) Putting the points on two skew lines in 3-space shows that the
existence of an ordinary hyperplane cannot be guaranteed for d > 2.
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If n > 8 is sufficiently large, then any set of n noncocircular points in the
plane determines at least

(

n−1
2

)

distinct circles, and this bound is best possible
[Ell67]. The minimum number of ordinary circles determined by n noncocir-
cular points is 1

4n
2 −O(n). Here lines are not counted as circles [LMM+17].

5. Csima-Sawyer theorem: Any set of n noncollinear points in the plane deter-
mines at least 6n/13 ordinary lines (n > 7). This bound is sharp for n = 13
and false for n = 7 [KM58, CS93]; see Figure 1.1.1.

Green-Tao theorem (formerly Motzkin-Dirac conjecture): If n is sufficiently
large and even, then the number of ordinary lines is at least n/2, and if n
is odd, then at least 3⌊n−1

4 ⌋. These bounds cannot be improved [GT13]. In
3-space, any set of n noncoplanar points determines at least 2n/5 Motzkin
hyperplanes [Han80, GS84].

FIGURE 1.1.1

Extremal examples for the (dual) Csima-Sawyer
theorem:
(a) 13 lines (including the line at infinity)
determining only 6 simple points;
(b) 7 lines determining only 3 simple points.

(b)(a)

6. Orchard problem [Syl67]: What is the maximum number of collinear triples
determined by n points in the plane, no four on a line? There are several
constructions showing that this number is at least n2/6 − O(n), which is
asymptotically best possible, cf. [BGS74, FP84]. (See Figure 1.1.2.) Green-
Tao theorem [GT13]: If n is sufficiently large, then the precise value of the

maximum is ⌊n(n−3)
6 ⌋.

FIGURE 1.1.2

12 points and 19 lines, each passing through exactly 3 points.

L

7. Dirac’s problem [Dir51]: Does there exist a constant c0 such that any set
of n points in the plane, not all on a line, has an element incident to at
least n/2 − c0 connecting lines? If true, this result is best possible, as is

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.
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shown by the example of n points distributed as evenly as possible on two
intersecting lines. (It was believed that, apart from some small examples
listed in [Grü72], this statement is true with c0 = 0, until Felsner exhibited an
infinite series of configurations, showing that c0 ≥ 3/2; see [BMP05, p. 313].)
It is known [PW14] that there is a positive constant c such that one can find
a point incident to at least cn connecting lines. The best known value of the
constant for which this holds is c = 1/37. A useful equivalent formulation of
this assertion is that any set of n points in the plane, no more than n− k of
which are on the same line, determines at least c′kn distinct connecting lines,
for a suitable constant c′ > 0. Note that according to the d = 2 special case
of the Motzkin-Hansen theorem, due to Erdős (see No. 4 above), for k = 1 the
number of distinct connecting lines is at least n. For k = 2, the corresponding
bound is 2n− 4, (n ≥ 10).

8. Ungar’s theorem [Ung82]: n noncollinear points in the plane always determine
at least 2⌊n/2⌋ lines of different slopes (see Figure 1.1.3); this proves Scott’s
conjecture. Furthermore, any set of n points in the plane, not all on a line,
permits a spanning tree, all of whose n−1 edges have different slopes [Jam87].
Pach, Pinchasi, and Sharir [PPS07] proved Scott’s conjecture in 3 dimensions:
any set of n ≥ 6 points in R

3, not all of which are on a plane, determine at
least 2n− 5 pairwise nonparallel lines if n is odd, and at least 2n− 7 if n is
even. This bound is tight for every odd n.

FIGURE 1.1.3

7 points determining 6 distinct slopes.

UPPER BOUNDS ON THE NUMBER OF INCIDENCES

Given a set P of n points and a family Γ of m curves or surfaces, the number of
incidences between them can be obtained by summing over all p ∈ P the number
of elements of Γ passing through p. If the elements of Γ are taken from a regular
family of curves with D degrees of freedom, the maximum number of incidences
between P and Γ is O(nD/(2D−1)m(2D−2)/(2D−1) + n+m). In the most important
applications, Γ is a family of straight lines or unit circles in the plane (D = 2), or it
consists of circles of arbitrary radii (D = 3). The best upper bounds known for the
number of incidences are summarized in Table 1.1.1. It follows from the first line of
the table that for any set P of n points in the plane, the number of distinct straight
lines containing at least k elements of P is O(n2/k3 +n/k), and this bound cannot
be improved (Szemerédi-Trotter). In the second half of the table, κ(n,m) and
β(n,m) denote extremely slowly growing functions, which are certainly o(nǫmǫ) for
every ǫ > 0. A family of pseudocircles is special if its curves admit a 3-parameter
algebraic representation. A collection of spheres in 3-space is said to be in general

position here if no three of them pass through the same circle [CEG+90, ANP+04].
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TABLE 1.1.1 Maximum number of incidences between n points of P and m elements of Γ.

[SzT83, CEG+90, NPP+02, KMSS12, Z13]

PT. SET P FAMILY Γ BOUND TIGHT

Planar lines O(n2/3m2/3 + n+m) yes

Planar pseudolines O(n2/3m2/3 + n+m) yes

Planar unit circles O(n2/3m2/3 + n+m) ?

Planar pairwise crossing circles O(n1/2m5/6 + n2/3m2/3 + n+m) ?

Planar special pseudocircles O(n6/11m9/11κ(n,m) + n2/3m2/3 + n+m) ?

Planar pairwise crossing pseudocircles O(n2/3m2/3 + n+m4/3) ?

3-dim’l unit spheres O(n3/4m3/4 + n+m) ?

3-dim’l spheres in gen. position O(n3/4m3/4 + n+m) ?

d-dim’l circles O(n6/11m9/11κ(n,m) + n2/3m2/3 + n+m) ?

MIXED PROBLEMS

Many problems about finite point configurations involve some notions that cannot
be defined in terms of incidences: convex position, midpoint of a segment, etc.
Below we list a few questions of this type. They are discussed in this part of the
chapter, and not in Section 1.2, which deals with metric questions, because we can
disregard most aspects of the Euclidean metrics in their formulation. For example,
convex position can be defined by requiring that some sets should lie on one side
of certain hyperplanes. This is essentially equivalent to introducing an order along
each straight line.

1. Erdős-Klein-Szekeres problem: What is the maximum number of points that
can be chosen in the plane so that no three are on a line and no k are in
convex position (k > 3)? Denoting this number by c(k), it is known that

2k−2 ≤ c(k) ≤ 2k+o(k).

The lower bound given in [ES61] is conjectured to be tight, but this has been
verified only for k ≤ 6; [SP06]. The original upper bound,

(

2k−4
k−2

)

in [ES35]

was successively improved to
(

2k−5
k−2

)

−
(

2k−8
k−3

)

+1, where the last bound is due
to Mojarrad and Vlachos [MV16]. Suk [Suk17] proved that, as k tends to
infinity, the lower bound is asymptotically tight.

Let e(k) denote the maximum size of a planar point set P that has no three
elements on a line and no k elements that form the vertex set of an “empty”
convex polygon, i.e., a convex k-gon whose interior is disjoint from P . We
have e(3) = 2, e(4) = 4, e(5) = 8, e(6) < ∞, and Horton showed that e(k) is
infinite for all k ≥ 7 [Har78, Hor83, Nic07, Ger08].

2. The number of empty k-gons: Let Hd
k (n) (n ≥ k ≥ d+1) denote the minimum

number of k-tuples that induce an empty convex polytope of k vertices in a
set of n points in d-space, no d + 1 of which lie on a hyperplane. Clearly,
H1

2 (n) = n− 1 and H1
k(n) = 0 for k > 2. For k = d+ 1, we have

1

d!
≤ lim

n→∞
Hd

k (n)/n
d ≤ 2

(d− 1)!
,
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[Val95]. For d = 2, the best estimates known for H2
k = limn→∞ H2

k(n)/n
2 are

given in [BV04]:

1 ≤ H2
3 ≤ 1.62, 1/2 ≤ H2

4 ≤ 1.94, 0 ≤ H2
5 ≤ 1.02,

0 ≤ H2
6 ≤ 0.2, H2

7 = H2
8 = . . . = 0.

3. The number of k-sets [ELSS73]: Let Nd
k (n) denote the maximum number

of k-sets in a set of n points in d-space, no d + 1 of which lie on the same
hyperplane. In other words, Nd

k (n) is the maximum number of different ways
in which k points of an n-element set can be separated from the others by a
hyperplane. It is known that

neΩ(
√
log k) ≤ N2

k (n) ≤ O
(

n(k + 1)1/3
)

,

[Tót01, Dey98]. For the number of halving planes, N3
⌊n/2⌋(n) = O(n5/2), and

nd−1eΩ(
√
logn)) ≤ Nd

⌊n/2⌋(n) = o(nd).

The most interesting case is k = n
2 in the plane, which is the maximum

number of distinct ways to cut a set of n points in the plane in half (number
of halving lines).

FIGURE 1.1.4

12 points determining 15 combinatorially
distinct halving lines.

The maximum number of at-most-k-element subsets of a set of n points in
d-space, no d + 1 of which lie on a hyperplane, is O

(

n⌊d/2⌋k⌈d/2⌉
)

, and this
bound is asymptotically tight [CS89]. In the plane the maximum number
of at-most-k-element subsets of a set of n points is kn for k < n

2 , which is
reached for convex n-gons [AG86, Pec85].

4. The number of midpoints: Let M(n) denote the minimum number of different
midpoints of the

(

n
2

)

line segments determined by n points in convex position
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in the plane. One might guess that M(n) ≥ (1 − o(1))
(

n
2

)

, but it was shown
in [EFF91] that

(

n

2

)

−
⌊

n(n+ 1)(1− e−1/2)

4

⌋

≤ M(n) ≤
(

n

2

)

−
⌊

n2 − 2n+ 12

20

⌋

.

5. Midpoint-free subsets: As a partial answer to a question proposed in [BMP05],
it was proved by V. Bálint et al.[BBG+95] that if m(n) denotes the largest
number m such that every set of n points in the plane has a midpoint-free
subset of size m, then

⌈−1 +
√
8n+ 1

2

⌉

≤ m(n).

However, asymptotically, Ω(n1−ǫ)n ≤ m(n) ≤ o(n), for every ǫ > 0.

OPEN PROBLEMS

Here we give six problems from the multitude of interesting questions that remain
open.

1. Does there exist for every k a number n = n(k) such that in any set P of n
points in the plane there are k elements that are either collinear and pairwise
see each other? (Two elements of P see each other if the segment connecting
them does not pass through any other point of P . [KPW05].

2. Generalized orchard problem (Grünbaum): What is the maximum number
ck(n) of collinear k-tuples determined by n points in the plane, no k + 1
of which are on a line (k ≥ 3)? In particular, show that c4(n) = o(n2).
Improving earlier lower bounds of Grünbaum [Grü76] and Ismailescu [Ism02],
Solymosi and Stojaković showed that

ck(n) ≥ n
2− γk

√

log n ,

for a suitable γk > 0. [SS13]. For k = 3, according to the Green-Tao theorem

[GT13], we have c3(n) = ⌊n(n−3)
6 ⌋, provided that n is sufficiently large.

3. Maximum independent subset problem (Erdős): Determine the largest num-
ber α(n) such that any set of n points in the plane, no four on a line, has an
α(n)-element subset with no collinear triples. Füredi [Für91] has shown that
Ω(

√
n logn) ≤ α(n) ≤ o(n).

4. Slope problem (Jamison): Is it true that every set of n points in the plane, not
all on a line, permits a spanning path, all of whose n− 1 edges have different
slopes?

5. Empty triangle problem (Bárány): Is it true that every set of n points in the
plane, no three on a line, determines at least t(n) empty triangles that share
a side, where t(n) is a suitable function tending to infinity?
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10 J. Pach

6. Balanced partition problem (Kupitz): Does there exist an integer k with the
property that for every planar point set P , there is a connecting line such that
the difference between the number of elements of P on its left side and right
side does not exceed k? Some examples due to Alon show that this assertion
is not true with k = 1. Pinchasi proved that there is a connecting line, for
which this difference is O(log logn).

1.2 METRIC PROBLEMS

The systematic study of the distribution of the
(

n
2

)

distances determined by n
points was initiated by Erdős in 1946 [Erd46]. Given a point configuration P =
{p1, p2, . . . , pn}, let g(P ) denote the number of distinct distances determined by P ,
and let f(P ) denote the number of times that the unit distance occurs between
two elements of P . That is, f(P ) is the number of pairs pipj (i<j) such that
|pi−pj | = 1. What is the minimum of g(P ) and what is the maximum of f(P )
over all n-element subsets of Euclidean d-space? These questions have raised deep
number-theoretic and combinatorial problems, and have contributed richly to many
recent developments in these fields.

GLOSSARY

Unit distance graph: A graph whose vertex set is a given point configuration
P , in which two points are connected by an edge if and only if their distance is
one.

Diameter: The maximum distance between two points of P .

General position in the plane: No three points of P are on a line, and no four
on a circle.

Separated set: The distance between any two elements is at least one.

Nearest neighbor of p ∈ P: A point q ∈ P , whose distance from p is minimum.

Farthest neighbor of p ∈ P: A point q ∈ P , whose distance from p is maximum.

Homothetic sets: Similar sets in parallel position.

REPEATED DISTANCES

Extremal graph theory has played an important role in this area. For example, it is
easy to see that the unit distance graph assigned to an n-element planar point set P
cannot contain K2,3, a complete bipartite graph with 2 and 3 vertices in its classes.
Thus, by a well-known graph-theoretic result, f(P ), the number of edges in this
graph, is at most O(n3/2). This bound can be improved to O(n4/3) by using more
sophisticated combinatorial techniques (apply line 3 of Table 1.1.1 with m = n);
but we are still far from knowing what the best upper bound is.

In Table 1.2.1, we summarize the best currently known estimates on the max-
imum number of times the unit distance can occur among n points in the plane,
under various restrictions on their position. In the first line of the table—and
throughout this chapter—c denotes (unrelated) positive constants. The second and
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TABLE 1.2.1 Estimates for the maximum number of unit distances

determined by an n-element planar point set P .

POINT SET P LOWER BOUND UPPER BOUND SOURCE

Arbitrary n1+c/ log log n O(n4/3) [Erd46, SST84]

Separated ⌊3n−
√
12n − 3⌋ ⌊3n −

√
12n− 3⌋ [Reu72, Har74]

Of diameter 1 n n [HP34]

In convex position 2n− 7 O(n logn) [EH90, Für90]

No 3 collinear Ω(n logn) O(n4/3) Kárteszi

Separated, no 3 coll. (2 + 5/16 − o(1))n (2 + 3/7)n [Tót97]

third lines show how many times the minimum distance and the maximum distance,
resp., can occur among n arbitrary points in the plane. Table 1.2.2 contains some
analogous results in higher dimensions.

FIGURE 1.2.1

A separated point set with ⌊3n − (12n − 3)1/2⌋ unit distances (n = 69).
All such sets have been characterized by Kupitz.

TABLE 1.2.2 Estimates for the maximum number of unit distances determined by an

n-element point set P in d-space.

POINT SET P LOWER BOUND UPPER BOUND SOURCE

d = 3, arbitrary Ω(n4/3 log logn) O(n3/2) [Erd60, KMS12, Zal13]

d = 3, separated 6n−O(n2/3) 6n−Ω(n2/3) Newton

d = 3, diameter 1 2n− 2 2n− 2 [Grü56, Hep56]

d = 3, on sphere Ω(n4/3) O(n4/3) [EHP89]

(rad. 1/
√
2)

d = 3, on sphere Ω(n log∗ n) O(n4/3) [EHP89]

(rad. r 6= 1/
√
2)

d = 4 ⌊n2

4
⌋+ n− 1 ⌊n2

4
⌋+ n [Bra97, Wam99]

d ≥ 4 even, arb. n2

2

(

1− 1
⌊d/2⌋

)

+n−O(d) n2

2

(

1− 1
⌊d/2⌋

)

+n−Ω(d) [Erd67]

d > 4 odd, arb. n2

2

(

1− 1
⌊d/2⌋

)

+Ω(n4/3) n2

2

(

1− 1
⌊d/2⌋

)

+O(n4/3) [EP90]

The second line of Table 1.2.1 can be extended by showing that the smallest
distance cannot occur more than 3n− 2k+4 times between points of an n-element
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FIGURE 1.2.2

n points, among which the second-
smallest distance occurs ( 24

7
+ o(1))n

times.

set in the plane whose convex hull has k vertices [Bra92a]. The maximum number
of occurrences of the second-smallest and second-largest distance is (24/7+ o(1))n
and 3n/2 (if n is even), respectively [Bra92b, Ves78].

Given any point configuration P , let Φ(P ) denote the sum of the numbers
of farthest neighbors for every element p ∈ P . Table 1.2.3 contains tight upper
bounds on Φ(P ) in the plane and in 3-space, and asymptotically tight ones for
higher dimensions [ES89, Csi96, EP90]. Dumitrescu and Guha [DG04] raised the
following related question: given a colored point set in the plane, its heterocolored
diameter is the largest distance between two elements of different color. Let φk(n)
denote the maximum number of times that the heterocolored diameter can occur
in a k-colored n-element point set between two points of different color. It is known
that φ2(n) = n, φ3(n) and φ4(n) = 3n/2 +O(1) and φk(n) = O(n) for every k.

TABLE 1.2.3 Upper bounds on Φ(P ), the total number of farthest neighbors of all

points of an n-element set P .

POINT SET P UPPER BOUND SOURCE

Planar, n is even 3n− 3 [ES89, Avi84]

Planar, n is odd 3n− 4 [ES89, Avi84]

Planar, in convex position 2n [ES89]

3-dimensional, n ≡ 0 (mod 2) n2/4 + 3n/2 + 3 [Csi96, AEP88]

3-dimensional, n ≡ 1 (mod 4) n2/4 + 3n/2 + 9/4 [Csi96, AEP88]

3-dimensional, n ≡ 3 (mod 4) n2/4 + 3n/2 + 13/4 [Csi96, AEP88]

d-dimensional (d > 3) n2(1 − 1/⌊d/2⌋ + o(1))
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DISTINCT DISTANCES

It is obvious that if all distances between pairs of points of a d-dimensional set P
are the same, then |P | ≤ d + 1. If P determines at most g distinct distances, we
have that |P | ≤

(

d+g
d

)

; see [BBS83]. This implies that if d is fixed and n tends to
infinity, then the minimum number of distinct distances determined by n points in
d-space is at least Ω(n1/d). Denoting this minimum by gd(n), for d ≥ 3 we have
the following results:

Ω(n2/d−2/(d(d+2))) ≤ gd(n) ≤ O(n2/d).

The lower bound is due to Solymosi and Vu [SV08], the upper bound to Erdős.
In the plane, Guth and Katz [GK15] nearly proved Erdős’s conjecture by showing
that g2(n) = Ω(n/ logn). Combining the results in [SV08] and [GK15], de Zeeuw
showed that

g3(n) = Ω(n3/5/ logn).

In Table 1.2.4, we list some lower and upper bounds on the minimum number of dis-
tinct distances determined by an n-element point set P , under various assumptions
on its structure.

TABLE 1.2.4 Estimates for the minimum number of distinct distances

determined by an n-element point set P in the plane.

POINT SET P LOWER BOUND UPPER BOUND SOURCE

Arbitrary Ω(n/ logn) O(n/
√
logn) [GK15]

In convex position ⌊n/2⌋ ⌊n/2⌋ [Alt63]

No 3 collinear ⌈(n− 1)/3⌉ ⌊n/2⌋ Szemerédi [Erd75]

In general position Ω(n) O(n1+c/
√
log n) [EFPR93]

RELATED RESULTS

1. Integer distances: There are arbitrarily large, noncollinear finite point sets in
the plane such that all distances determined by them are integers, but there
exists no infinite set with this property [AE45].

2. Generic subsets: Any set of n points in the plane contains Ω((n/ logn)1/3)
points such that all distances between them are distinct [Cha13]. This bound
could perhaps be improved to about n1/2/(logn)1/4, which would be best
possible, as is shown by the example of the

√
n× √

n integer grid. The cor-
responding quantity in d-dimensional space is Ω(n1/(3d−3)(logn)1/3−2/(3d−3).
[CFG+15].

3. Borsuk’s problem: It was conjectured that every (finite) d-dimensional point
set P can be partitioned into d + 1 parts of smaller diameter. It follows
from the results quoted in the third lines of Tables 1.2.1 and 1.2.2 that this
is true for d = 2 and 3. Surprisingly, Kahn and Kalai [KK93] proved that
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there exist sets P that cannot be partitioned into fewer than (1.2)
√
d parts of

smaller diameter. In particular, the conjecture is false for d ≥ 64 [JB14]. On
the other hand, it is known that for large d, every d-dimensional set can be
partitioned into (

√

3/2 + o(1))d parts of smaller diameter [Sch88].

4. Nearly equal distances: Two numbers are said to be nearly equal if their
difference is at most one. If n is sufficiently large, then the maximum number
of times that nearly the same distance occurs among n separated points in
the plane is ⌊n2/4⌋. The maximum number of pairs in a separated set of n
points in the plane, whose distance is nearly equal to any one of k arbitrarily

chosen numbers, is n2

2 (1− 1
k+1 + o(1)), as n tends to infinity [EMP93].

5. Repeated angles: In an n-element planar point set, the maximum number
of noncollinear triples that determine the same angle is O(n2 logn), and this
bound is asymptotically tight for a dense set of angles (Pach-Sharir). The
corresponding maximum in 3-space is at most O(n7/3). In 4-space the angle
π/2 can occur Ω(n3) times, and all other angles can occur at most O(n5/2+ε)
times, for every ε > 0 [Pur88, AS05]. For dimension d ≥ 5 all angles can
occur Ω(n3) times.

6. Repeated areas: Let td(n) denote the maximum number of triples in an n-
element point set in d-space that induce a unit area triangle. It is known
that Ω(n2 log logn) ≤ t2(n) ≤ O(n20/9), t3(n) = O(n17/7+ε), for every ε >
0; t4(n), t5(n) = o(n3), and t6(n) = Θ(n3) ([EP71, PS90, RS17, DST09]).
Maximum- and minimum-area triangles occur among n points in the plane
at most n and at most Θ(n2) times [BRS01].

7. Congruent triangles: Let Td(n) denote the maximum number of triples in an
n-element point set in d-space that induce a triangle congruent to a given
triangle T . It is known [AS02, ÁFM02] that

Ω(n1+c/ log logn) ≤ T2(n) ≤ O(n4/3),

Ω(n4/3) ≤ T3(n) ≤ O(n5/3+ǫ),

Ω(n2) ≤ T4(n) ≤ O(n2+ǫ),

T5(n) = Θ(n7/3), and

Td(n) = Θ(n3) for d ≥ 6.

8. Similar triangles: There exists a positive constant c such that for any triangle
T and any n ≥ 3, there is an n-element point set in the plane with at least
cn2 triples that induce triangles similar to T . For all quadrilaterals Q, whose
points, as complex numbers, have an algebraic cross ratio, the maximum
number of 4-tuples of an n-element set that induce quadrilaterals similar to Q
is Θ(n2). For all other quadrilaterals Q, this function is slightly subquadratic.
The maximum number of pairwise homothetic triples in a set of n points in
the plane is O(n3/2), and this bound is asymptotically tight [EE94, LR97].
The number of similar tetrahedra among n points in three-dimensional space
is at most O(n2.2) [ATT98]. Further variants were studied in [Bra02].

9. Isosceles triangles, unit circles: In the plane, the maximum number of triples
that determine an isosceles triangle, is O(n2.137) (Pach-Tardos). The maxi-
mum number of distinct unit circles passing through at least 3 elements of a
planar point set of size n is at least Ω(n3/2) and at most n2/3−O(n) [Ele84].
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CONJECTURES OF ERDŐS

1. The number of times the unit distance can occur among n points in the plane
does not exceed n1+c/ log logn.

2. Any set of n points in the plane determines at least Ω(n/
√
logn) distinct

distances.

3. Any set of n points in convex position in the plane has a point from which
there are at least ⌊n/2⌋ distinct distances.

4. There is an integer k ≥ 4 such that any finite set in convex position in the
plane has a point from which there are no k points at the same distance.

5. Any set of n points in the plane, not all on a line, contains at least n − 2
triples that determine distinct angles (Corrádi, Erdős, Hajnal).

6. The diameter of any set of n points in the plane with the property that the
set of all distances determined by them is separated (on the line) is at least
Ω(n). Perhaps it is at least n−1, with equality when the points are collinear.

7. There is no set of n points everywhere dense in the plane such that all
distances determined by them are rational (Erdős, Ulam). Shaffaf [Sha15]
showed that this conjecture would follow from the Bombieri-Lang conjecture.

1.3 COLORING PROBLEMS

If we partition a space into a small number of parts (i.e., we color its points with a
small number of colors), at least one of these parts must contain certain “unavoid-
able” point configurations. In the simplest case, the configuration consists of a pair
of points at a given distance. The prototype of such a question is the Hadwiger-
Nelson problem: What is the minimum number of colors needed for coloring the
plane so that no two points at unit distance receive the same color? The answer is
known to be between 4 and 7.

GLOSSARY

Chromatic number of a graph: The minimum number of colors, χ(G), need-
ed to color all the vertices of G so that no two vertices of the same color are
adjacent.

List-chromatic number of a graph: The minimum number k such that for
any assignment of a list of k colors to every vertex of the graph, for each vertex
it is possible to choose a single color from its list so that no two vertices adjacent
to each other receive the same color.

Chromatic number of a metric space: The chromatic number of the unit
distance graph of the space, i.e., the minimum number of colors needed to color
all points of the space so that no two points of the same color are at unit distance.
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FIGURE 1.3.1

The chromatic number of the plane is
(i) at most 7 and (ii) at least 4.
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Polychromatic number of metric space: The minimum number of colors, χ,
needed to color all points of the space so that for each color class Ci, there is
a distance di such that no two points of Ci are at distance di. A sequence of
“forbidden” distances, (d1, . . . , dχ), is called a type of the coloring. (The same
coloring may have several types.)

Girth of a graph: The length of the shortest cycle in the graph.

A point configuration P is k-Ramsey in d-space if, for any coloring of the points
of d-space with k colors, at least one of the color classes contains a congruent
copy of P .

A point configuration P is Ramsey if, for every k, there exists d(k) such that P
is k-Ramsey in d(k)-space.

Brick: The vertex set of a right parallelepiped.

FORBIDDEN DISTANCES

Table 1.3.1 contains the best bounds we know for the chromatic numbers of various
spaces. All lower bounds can be established by showing that the corresponding
unit distance graphs have some finite subgraphs of large chromatic number [BE51].
Sd−1(r) denotes the sphere of radius r in d-space, where the distance between two
points is the length of the chord connecting them.

Next we list several problems and results strongly related to the Hadwiger-
Nelson problem (quoted in the introduction to this section).

1. 4-chromatic unit distance graphs of large girth: O’Donnell [O’D00] answered
a question of Erdős by exhibiting a series of unit distance graphs in the plane
with arbitrary large girths and chromatic number 4.

2. Polychromatic number: Stechkin and Woodall [Woo73] showed that the poly-
chromatic number of the plane is between 4 and 6. It is known that for any
r ∈ [

√
2−1, 1/

√
5], there is a coloring of type (1, 1, 1, 1, 1, r) [Soi94]. However,

the list-chromatic number of the unit distance graph of the plane, which is at
least as large as its polychromatic number, is infinite [Alo93].

3. Dense sets realizing no unit distance: The lower (resp. upper) density of an
unbounded set in the plane is the lim inf (resp. lim sup) of the ratio of the
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TABLE 1.3.1 Estimates for the chromatic numbers of metric spaces.

SPACE LOWER BOUND UPPER BOUND SOURCE

Line 2 2

Plane 4 7 Nelson, Isbell

Rational points of plane 2 2 [Woo73]

3-space 6 15 [Nec02, Cou02, RT03],

Rational points of 3-space 2 2 Benda, Perles

S2(r), 1
2
≤ r ≤

√
3−

√
3

2
3 4 [Sim75]

S2(r),

√
3−

√
3

2
≤ r ≤ 1√

3
3 5 Straus

S2(r), r ≥ 1√
3

4 7 [Sim76]

S2
(

1√
2

)

4 4 [Sim76]

4-space 9 54 [EIL14, RT03]

Rational points of 4-space 4 4 Benda, Perles

Rational points of 5-space 8 ? [Cib08]

d-space (1 + o(1))(1.239)d (3 + o(1))d [FW81, Rai00, LR72]

Sd−1(r), r ≥ 1
2

d ? [Lov83]

Lebesgue measure of its intersection with a disk of radius r around the origin
to r2π, as r → ∞. If these two numbers coincide, their common value is called
the density of the set. Let δd denote the maximum density of a planar set,
no pair of points of which is at unit distance. Croft [Cro67] and Keleti et
al. [KMO16] showed that 0.2293 ≤ δ2 ≤ 0.2588.

4. The graph of large distances: Let Gi(P ) denote the graph whose vertex set
is a finite point set P , with two vertices connected by an edge if and only if
their distance is one of the i largest distances determined by P . In the plane,
χ(G1(P )) ≤ 3 for every P ; see Borsuk’s problem in the preceding section. It
is also known that for any finite planar set, Gi(P ) has a vertex with fewer
than 3i neighbors [ELV89]. Thus, Gi(P ) has fewer than 3in edges, and its
chromatic number is at most 3i. However, if n > ci2 for a suitable constant
c > 0, we have χ(Gi(P )) ≤ 7.

EUCLIDEAN RAMSEY THEORY

According to an old result of Gallai, for any finite d-dimensional point configuration
P and for any coloring of d-space with finitely many colors, at least one of the color
classes will contain a homothetic copy of P . The corresponding statement is false
if, instead of a homothet, we want to find a translate, or even a congruent copy,
of P . Nevertheless, for some special configurations, one can establish interesting
positive results, provided that we color a sufficiently high-dimensional space with a
sufficiently small number of colors. The Hadwiger-Nelson-type results discussed in
the preceding subsection can also be regarded as very special cases of this problem,
in which P consists of only two points. The field, known as “Euclidean Ramsey the-
ory,” was started by a series of papers by Erdős, Graham, Montgomery, Rothschild,
Spencer, and Straus [EGM+73, EGM+75a, EGM+75b].

For details, see Chapter 10 of this Handbook.
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OPEN PROBLEMS

1. (Erdős, Simmons) Is it true that the chromatic number of Sd−1(r), the sphere
of radius r in d-space, is equal to d+1, for every r > 1/2? In particular, does
this hold for d = 3 and r = 1/

√
3?

2. (Sachs) What is the minimum number of colors, χ(d), sufficient to color any
system of nonoverlapping unit balls in d-space so that no two balls that are
tangent to each other receive the same color? Equivalently, what is the max-
imum chromatic number of a unit distance graph induced by a d-dimensional
separated point set? It is easy to see [JR84] that χ(2) = 4, and we also know
that 5 ≤ χ(3) ≤ 9.

3. (Ringel) Does there exist any finite upper bound on the number of colors
needed to color any system of (possibly overlapping) disks (of not necessarily
equal radii) in the plane so that no two disks that are tangent to each other
receive the same color, provided that no three disks touch one another at the
same point? If such a number exists, it must be at least 5.

4. (Graham) Is it true that any 3-element point set P that does not induce
an equilateral triangle is 2-Ramsey in the plane? This is known to be false
for equilateral triangles, and correct for right triangles (Shader). Is every
3-element point set P 3-Ramsey in 3-space? The answer is again in the
affirmative for right triangles [BT96].

5. (Bose et al. [BCC+13]) What is the smallest number c(n) such that any set
of n lines in the plane, no 3 of which pass through the same point, can be
colored by c(n) colors so that no cell of the arrangement is monochromatic?
In particular, is it true that c(n) > nε for some ε > 0?

1.4 SOURCES AND RELATED MATERIAL

SURVEYS

These surveys discuss and elaborate many of the results cited above.

[PA95, Mat02]: Monographs devoted to combinatorial geometry.

[BMP05]: A representative survey of results and open problems in discrete geome-
try, originally started by the Moser brothers.

[Pac93]: A collection of essays covering a large area of discrete and computational
geometry, mostly of some combinatorial flavor.

[HDK64]: A classical treatise of problems and exercises in combinatorial geometry,
complete with solutions.

[KW91]: A collection of beautiful open questions in geometry and number theory,
together with some partial answers organized into challenging exercises.
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Chapter 1: Finite point configurations 19

[EP95]: A survey full of original problems raised by the “founding father” of com-
binatorial geometry.

[JT95]: A collection of more than two hundred unsolved problems about graph
colorings, with an extensive list of references to related results.

[Soi09]: A collection of geometric coloring problems with a lot of information about
their history.

[Grü72]: A monograph containing many results and conjectures on configurations
and arrangements.

RELATED CHAPTERS

Chapter 4: Helly-type theorems and geometric transversals
Chapter 5: Pseudoline arrangements
Chapter 11: Euclidean Ramsey theory
Chapter 13: Geometric discrepancy theory and uniform distribution
Chapter 21: Topological methods in discrete geometry
Chapter 28: Arrangements
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Žilina, Math.-Phys. Ser., 10:3–10, 1995.

[BBS83] E. Bannai, E. Bannai, and D. Stanton. An upper bound on the cardinality of an

s-distance subset in real Euclidean space II. Combinatorica, 3:147–152, 1983.

[BCC+13] P. Bose, J. Cardinal, S. Collette, F. Hurtado, M. Korman, S. Langerman, and

P. Taslakian. Coloring and guarding arrangements. Discrete Math. Theor. Com-

put. Sci., 15:139–154, 2013.
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[EFPR93] P. Erdős, Z. Füredi, J. Pach, and I.Z. Ruzsa. The grid revisited. Discrete Math.,

111:189–196, 1993.
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[EGM+75b] P. Erdős, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, and E.G.

Straus. Euclidean Ramsey theorems. III. In A. Hajnal, R. Rado, and V.T. Sós,

editors, Infinite and Finite Sets, pages 559–584, North-Holland, Amsterdam, 1975.

[EH90] H. Edelsbrunner and P. Hajnal. A lower bound on the number of unit distances

between the points of a convex polygon. J. Combin. Theory Ser. A, 55:312–314,

1990.
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Ann. Univ. Sci. Budapest. Eötvös, Sect. Math., 3:53–62, 1960/61.

[ES89] H. Edelsbrunner and S.S. Skiena. On the number of furthest-neighbour pairs in a

point set. Amer. Math. Monthly, 96:614–618, 1989.

[FP84] Z. Füredi and I. Palásti. Arrangements of lines with a large number of triangles.

Proc. Amer. Math. Soc., 92:561–566, 1984.
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