#### **CONCURRENT ENGINEERING**

Goal: Decrease time to market by shortening life cycle

via

Introduction of customer evaluation and engineering design feedback during product development

A greatly increased rate of focused, detailed technical interchange among organizational elements

Development of the product and creation of an appropriate production process in parallel rather than in sequence

[see Patterson, Systems Engineering Life Cycles, p 100, Sage and Rouse]

# **CONCURRENT ENGINEERING**

## **INCOSE Conceptualization**



Figure 6-1A Concurrent Development vs. Traditional

[INCOSE, Systems Engineering Handbook, p 6-2]

## **Concurrent Engineering is:**

✓ the practice of considering the entire functionality of the product, as well as its assembly and manufacture, in an integrated design process

[Kusiak and Larson, p 328, Sage and Rouse]

✓ the practice of considering the entire product life cycle, from design to disposal, in an integrated design process

[Kusiak and Larson, p 328, Sage and Rouse]

✓ a systematic approach to the integrated, concurrent design of products and their related processes, including manufacturing and support

[Institute of Defense Analysis, Report R-338]

✓ the simultaneous consideration of product and process downstream requirements by multidisciplinary teams [NASA Systems Engineering Handbook, p 22]

# **Concurrent Engineering Benefits:**

TABLE 9.1 Benefits of Concurrent Engineering

| Performance Measure       | Benefit         |
|---------------------------|-----------------|
| Development time          | 30-50% less     |
| Engineering changes       | 60-95% less     |
| Scrap and rework          | 75% reduction   |
| Defects                   | 30-85% fewer    |
| Time to market            | 20-90% less     |
| Field failure rate        | 60% less        |
| Service life              | 100% increase   |
| Overall quality           | 100-600% higher |
| White-collar productivity | 20–110% higher  |
| Return on assets          | 20–120% higher  |

Source: Lawson and Karandikar, 1994.

[see Kusiak and Larson, p 329, Sage and Rouse]

## **Building a CE Environment**

#### Requires integration of:

- People
- Processes
- Problem-Solving Mechanisms
  (i.e., "approaches for solving specific design problems")
- Information

[presentation structure used by Kusiak and Larson in Sage and Rouse]

### **Concurrent Engineering Roadblocks:**

- 1. The currently available tools are not adequate for the new CE environment
- 2. There are a plethora of noninteroperable computers, networks, interfaces, operating systems, and software in the organization
- 3. There is a need for appropriate data and information management across the organization
- 4. Needed information is not communicated across horizontal levels in the organization
- 5. Correct decisions, when they are made, are not made in a timely manner

[Sage, Systems Reengineering, p 901, Sage and Rouse]

#### **Integrating People**

**Building CE Teams** 

(consider conceptual approach in 9.3.1.1)

Negotiation in Engineering Design

**Integrating Processes** 

**Process Modeling** 

**Process Reengineering** 

**Integrating Problem-Solving Mechanisms** 

**Requirements Decomposition** 

**Constraint-Parameter Decomposition** 

(consider conceptual approach in Example 9.6)

**Decomposition-Based Design Optimization** 

**Integrating Information** 

**Database Management Systems** 

**Information and Data Modeling** 

[presentation structure used by Kusiak and Larson in Sage and Rouse]

## **CE Risk Assessment:**

- · What can go wrong?
- What is the likelihood that it will go wrong?
- What are the consequences?

TABLE 9.10 Consequences of Concurrent Engineering Risk Factors

| Risk Factor                                      | Consequences                                                                                                                       | Measures of Consequence                                                                 |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Requirements risk  Technical risk  Schedule risk | Loss of customer base Due date violation Poor quality                                                                              | Number of customer complaints<br>Days past deadline<br>Number of rejects<br>Rework cost |
| Cost risk                                        | Additional resource requirement Due date violation Higher product cost                                                             | Days past deadline Personnel cost Overhead cost Sale price of product                   |
| Network risk<br>Redesign risk                    | Due date violation Information loss                                                                                                | Loss of market share Capital cost Days past deadline                                    |
| Resource risk                                    | Additional design iterations Due date violation Additional resource requirement Due date violation Additional resource requirement | Personnel cost Overhead cost Days past deadline Capital cost Personnel cost             |
| Environmental risk                               | Pollution Negative public perception                                                                                               | Overhead cost Days past deadline Cleanup expenses Product disposal costs                |

## **Kusiak and Larson CE Implementation:**

- 1. Develop "As-Is" Model
- 2. Develop "To-Be" Model
- 3. Identify Performance Measures
- 4. Monitor CE System

? Sufficiency?