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4 Network modelling and
evaluation of simple systems

4.1 Network modelling concepts

The previous chapters have considered the application of basic probabil-
ity techniques to combinational types of reliability assessment. In many
types of problems these techniques may be all that is required to assess
the adequacy of the systern. However, in practice, a system is frequently
represented as a network in which the system components are connected
together either in series, parallel, meshed or a combination of these. This
chapter considers series and parallel network representations (more com-
plicated meshed networks are considered in the next chapter).

It is vital that the relationship between the system and its network
model be thoroughly understood before considering the analytical tech-
niques that can be used to evaluate the reliability of these networks.

It must be appreciated that the actual system and the reliability
neiwnrk used to model the system may not necessarily have the same
topological structure. This consideration involves the key point discussed
previously that, before a reliability assessment of a system can be made,
the analyst must be fully conversant with the requirements of the system
ind be able to phrase these requirements in a form which can be
quantitatively assessed.

Definitions of series systems and parallel systems as represented in a
reliahility nerwork are considered first.

(30 Sertes systems
The components in a set are said to be in series from a reliability point of

Wt they must all work for system success or only one needs to fail for
tem Tailure

Parallel systems
nts in a set are said to be in parallel from a reliability point

*one needs to be working for system success or all must fail
lor sysiem failure.

“Tifitions provide a link between the present discussion and
=T 3 on the use of the binomial distribution. A series system
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therefore represents a non-redundant system and a parallel system rep-
resents a fully redundant system. Reconsider Example 3.7 in which four ".-
operating conditions were applied to a four component system. The %2
condition of ‘all four components must be working for system success’ &
could be represented by a network in which ail four components are
connected in series. Similarly, the condition of ‘only one compaonent need 3
be working for system success’ could be represented by a netwark in |
which all four components are connected in parallel. At this stage it
appears that the series and parallel network models are simply additional :
methods for representing non-redundant and fully redundant systems
whereas the previous techniques were able to solve such systems and £
more. Series and paraliel network considerations are used extensively in
system appreciation, representation and reduction. They are used in a |
wide range of applications including extremely simple models and compli-
cated systems with complex operational logic. Modelling of these systems
using the techniques described in Chapter 3 becomes difficult if not
impossible.

The main points in reconsidering Example 3.7 are: (a) there is fre-
quently more than one way of solving the same problem, (h] there are e
frequently links between one technique and another, and (c) most impor- Ji
tantly, a physical system having a defined topological structure may have | ¥
a considerably different reliability network topology which itself may |
change when the requirements of the physical system change although ¥
the topology of the physical system remains the same. :

It remains with the individual analyst to consider the actual require-
ments of a system and to construct a reliability network from these
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this reliability network. A reliability network is often referred 1o as 2
reliability block diagram.

4.2 Series systems

Consider a system consisting of two independent components /A and B ¥ 4
connected in series, from a reliability point of view, as shown in Figure =
4.1. This arrangement implies that both components must work L0 ensure
system success. Let R,, Rg = probability of successful operatian of com= afs
ponents A and B respectively, and Q,, Qg = probability of [ailure of .

Fig. 4.1 Two component series system
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components A and B respectively. Since success and failure are mutually
evclusive and complementary,

R.+Qa=1 and Ry+Qgz=1

The requirement for system success is that ‘both A and B’ must be
working. Equation 2.9 can be used to give the probability of system
success or reliability as

Re=Rp - Ry (.1)

If there are now n components in series, Equation 4.1 can be
eenerilized to give

n
r.=[1 R (4.2)
i=1

This equation frequently is referred to as the product rule of reliability
since it establishes that the reliability of a series system is the product of
the individual component reliabilities.

In some applications it may be considered advantageous to evaluate the
unrelinbility or probability of system failure rather than evaluating the
reliability or probability of system success. System success and system
failure are complementary events and therefore for the two component
system the unreliability is

"-}:;= I_RARB (43)
=1-(1-Q. 1~ Qyp)
=Qa+Qp—Qa- Qs (4.4)

or for an n component system,
O:=1-[] R, : (4.5)
i=1

Equations 4.3 and 4.5 could have been derived directly from Equation
212 since the requirement for system failure is that ‘A or B or both must
ol

Mow consider the application of these techniques to some specific
Prioblems,

Example 4.1

A svstem consists of 10 identical components, all of which must work for
"¥Slem success. What is the system reliability if each component has a
reliahility of 0.95?

From Equation 4.2,

i:=0.95'""=0.5987



84 Reliability evaluation of engineering systems

and the fact that each component has a probability of success that is Jess
than unity, the system reliability is less than the reliability of any one
component. It also decreases as the number of components in serieg

increases and as the component reliability decreases. This is illustrated in -

Figure 4.2 which shows the reliability of series systems containing identi-
cal components as a function of the number of series components and the
component reliability. It is evident from these results that the system
reliability decreases very rapidly as the number of series components
increases, particularly for those systems in which the components do nat
have a very high individual reliability.

Reliability

| == A 1
a 0 pal} 3G 40 50 60 70
Number of components

Fig. 4.2 Eflects of increasing the number of series components. The numbers
represent the reliability of each single component

This result, although easily derived, establishes an important concept 4
concerning the reliability of series systems. Because of the product rule ‘g
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Example 4.2

A wo component series system contains identical components each
having a reliability of 0.99. Evaluate the unreliability of the system.

From Equation 4.5, Qg=1-0.99=0.0199
From Equation 4.4, Qg=0.01+0.01-(0.01 x0.01) =0.0199

[hese two results are identical as would be expected. In some system
analyses however, Equation 4.4 is used in an approximate form, i.e. the
|_'.r':'-l.|.l|I:| term which is subtracted from the summation terms is neglected.
If this was done in the present example:

J5=10.01+0.01=0.02

which gives an error of 0.5%.

his approximation must be used with extreme care and applies only if
the number of components is small and the reliability of each component
is very high. The approximation is not used again in this chapter but is
re-introduced in the next chapter in connection with approximate tech-
niques used for analysing complex systems. Its advantage is that the
reliability of a series system can be evaluated from the product of
component reliabilities and the unreliability of the system from a summa-
tion of component unreliabilities.

In the design of a complex system or plant, a design parameter that
may be specified is the overall system reliability. From this overall value,
the required reliability of the system’s components is then evaluated. This
is the inverse procedure of that used in the previous examples and is
illustrated in the following example.

Example 4.3

A system design requires 200 identical components in series. If the
overall reliability must not be less than 0.99, what is the minimum
reliability of each component?

From Equation 4.2

1,99 = Q200

Le. R =11.9912% = (99995

4.3 Parallel systems

Consider a system consisting of two independent components A and B,
connected in parallel, from a reliability point of view as shown in Figure

a4
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il

i

Fig. 43 The two component parallel system

In this case the system requirement is that only one component need he
working for system success. The system reliability can be obtained as the
complement of the system unreliability or by using Equation 2.12 since
‘either A or B or both’ constitutes success to give

Rp=1-Qa Qs 4.5)
=RA+RB—RA'RB (4.-”
or for an n component system:
Re=1-[] Q (4.8)
i=1
Also
Qr=0Q4" Qs (4.9)
and for an n component system:
e=[1a (4.10)

i=1

It follows that the equations for a parallel system are of the same form
as those of a series system but with R and Q interchanged. In the case of
parallel systems, Equation 4.10 leads to the concept of the product rule of
unreliabilities. However, unlike the case of series systems in which, under
certain circumstances, Equation 4.4 can be reduced to a simple summa-
tion, Equation 4.7 cannot be simplified in this way since the product
(Ra - Rp) is, hopefully, always reasonably comparable with the values of
R, and R;.

number of series components was increased following Equation 4.2.
the case of parallel systems, however, it is the unreliability that decreases

In the case of series systems, the system reliability decreased in the °
In E%

the number of parallel components is increased following Equation 41'9—,%
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weight and volume of the system and increases the required maintenance.
Therefore, it must be examined very carefully.

[n order to illustrate the application of the equations for parallel
systems consider the following examples.

Example 4.4

A system consists of four components in parallel having reliabilities of
1.99, 0.95, 0.98 and 0.97. What is the reliability and unreliability of the
system?
From Equation 4.10 Qp=(1-0.99)1-0.95)(1-0.98)(1-0.97)
=3x10"7
and from Equation 4.8 Ry =0.9999997

This example also demonstrates the difficulty of physically appreciating
the quality of a system in terms of the reliability value R since for many
practical systems this numerical value is often a series of 9s followed by
another digit or more. It is often more reasonable to state the unreliabil-
ity as this eliminates the string of 9s and provides a value that is more
casily interpreted.

Example 4.5

A system component has a reliability of 0.8. Evaluate the effect on the
overall system reliability of increasing the number of these components
connected in parallel.

Lising Equation 4.10, the value of system reliability is shown in Table
4.1 for systems having 1 to 6 components in parallel. Also shown in Table
4.1 is the increase in reliability obtained by adding each additional
component. This is known as incremental reliability. The percentage
comparative reliability defined as the change in reliability over that of a

Tihie 4.1 Reliability results for Example 4.5

Percentage comparative

and hence the reliability increases with the number of components:

Increasing the number of parallel components increases the initial cost, |

Number of System Incremental
amponents reliability reliability reliability
0.800000 —

2 0.960000 0.160000 20.00
3 0.992000 0.032000 24.00
4 0.998400 0.006400 24.80
S 0.999680 0.001280 24.96
6 24.99

0.999936 0.000256
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Fig. 4.4 Incremental reliability benefits

single component expressed as a percentage based on the single comipo-
nent reliability is also shown in Table 4.1. The results for incremental
reliability and comparative reliability are also shown in Figure 4.4,

From Figure 4.4 it is evident that the addition of the first redundant
component to the one-component system provides the largest benefit to
the system, the amount of improvement diminishing as further additions
are made.

Since the abscissa axis of Figure 4.4 is related to the cost of the systent,
an incremental worth—cost analysis can be performed using diagrams of
incremental reliability such as that shown in Figure 4.4,

Example 4.6

A system is to be designed with an overall reliability of 0.999 using
components having individual reliabilities of 0.7. What is the minimum
number of components that must be connected in parallel?

P

]

f

®
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From Equation 4.10
(1-0.999)=(1-0.7)"
0.001=03"
n=5.74

since (he number of components must be an integer, the minimum
number of components is 6.

[t should be noted that increasing the number of paraliel elements may
actually decrease the reliability of the system if a component failure mode
exists which in itself causes a system failure. An example of this is
deseribed in Section 5.9.

4.4 Series—parallel systems

The series and parallel systems discussed in the two previous sections
form the basis for analysing more complicated configurations. The general
principle used is to reduce sequentially the complicated configuration by
combining appropriate series and parallel branches of the reliability
model until a single equivalent element remains. This equivalent element
then represents the reliability (or unreliabitity) of the original configura-
tion. The following examples illustrate this technique which is generally
known as a (network) reduction technique.

Example 4.7

Derive a general expression for the reliability of the model shown in
Figure 4.5 and hence evaluate the system reliability if all components
have a reliability of 0.9.

{1112}

S—.Y

—1 5 16 7| 8

e

Fig. 4.5 Reliability diagram of Example 4.7

This model could represent, for example, a duplicated control circuit
associated with the automatic pilot of an aeroplane. The reduction
Process is sequential and proceeds as follows.

Combine in series components 1-4 to form an equivalent component 9,
tombine in series components 5-8 to form an equivalent component 10
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and then combine in parallel equivalent components 9 and 10 to form an i P B
equivalent component 11 that represents the complete system. This ]
logical step process is illustrated in Figure 4.6. _: — $1 2 — ===
i —{«
& = —0
? g
R
o— —0 o—] 11 }—o }:_ 5 R —
10 &
;EE Fig. 4.7  Reliability diagram for Example 4.8
(a) First reduction {b) Second reduction 3
§
Fig. 4.6 Reduction of Example 4.7. =
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If R\, R,, ..., Ry are the reliabilities of components 1,2, ..., 8 respec-
tively then

Ry=R,R;R;R,

R;0=RsR¢R:Rs

Ry =1-(1-Rg)(1-R,p)
=Ro+ R0~ RyRyo

O

H_f.. 4._-‘&’ Reduction of Example 4.8. (a) First reduction. (b} Second reduction.
[} Third reduction

- =R1R;R3R,+ RsR¢R;Rg— R{R,R;R,RsR4R;R I
1RKR3R, sieR7Rg 1R GG R Re 7Kg Il Ry, ..., Rs; and Q.. .... Qs are the reliabilities and unreliabilities of
In deriving expressions of this type, it is possible to produce a number components 1, ..., 5 respectively, then
of apparently different equations when the final expression is written in .= 0,Q
'- 3(Ua

terms of both Rs and Qs. These apparently different versions could all he
correct and should reduce to the same one if manipulated and expressed

in terms of either R or Q.
Using the data of Example 4.7, then

R;;=0.9*+0.9*-0.9°=0.8817

O:=1-(1-QX1- Q,)(1-Qy)
= Q1+ Q;+ Q- Q,Q,- Q,Q4- QsQ, +0Q,Q,Q;
0y = QsQ, ‘
= Q5(Q+Q,+Q,0Q,-0,Q,- Q,Q,Q, - Q,Q,0,+Q,Q.Q,Qy)
For the data given, R, =0.8 thus Q, =0.2 and Qs =0.07712.

Example 4.8 A1t equivalent expression to the above could have been deduced in

ler of R.
Derive a general expression for the unreliability of the model shown in SmaeLR.
Figure 4.7 and hence evaluate the unreliability of the system if all H,= R3;+R,— R;R,
components have a reliability of 0.8. R, = R,R,R

The logical steps for this example are: combine components 3 and # 1o
form equivalent component 6, combine components 1 and 2 with equiv
ent component 6 to give equivalent component 7 and finally co
component 5 with equivalent component 7 to give equivalent component
8 that represents the system reliability. These reduction steps are shuwn

in Figure 4.8,

Ry=Rs+R,~RsR,

's+ RiRy(R3+ Ry~ R3R) ~ RsR,Ry(Ry+ R, — R4R,)
et R, = 0.8, gives:

H,=0.92288 or Qu=1-0.92288=0.07712

40 S e L e S R T P P PR
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4.5 Partially redundant systems

The previous sections have been concerned only with series systems
(non-redundant) and parallel systems (fully redundant). In many systems,
these two extreme situations are not always applicable as there may be
some parts of the system that are partially redundant. The concepts of
partial redundancy were presented in Chapter 3 in the discussion of the
binomial distribution. The techniques described in this chapter for
series/parallel systems cannot be used directly for cases involving partial
redundancy. The principles that have been described together with the
inclusion of binomial distribution concepts can, however, enable any
series-parallel system containing regions of partial redundancy to be
evaluated.

In order to illustrate this intermingling of the two techniques, consider
the following example.

Example 4.9

Derive a general expression for the unreliability of the system whose
reliability model is shown in Figure 4.9. Consider the case in which all
parallel branches of this system are fully redundant with the exception of
that consisting of components 4, 5 and 6 for which any 2 of the branches
are required for system success.

2 4
1
5
3
’ 6
1
7

Fig. 4.9 Reliability diagram of Example 4.9

The principle of network reduction applies equally well to this problem,
i.e., components 2 and 3 are combined to give equivalent component 8;
components 4, 5 and 6 are combined to give equivalent component 9,
component 1 and equivalent components 8 and 9 are combined to give
equivalent component 10 and finally equivalent component 10 is com-
bined with component 7 to give the system equivalent component 11.
These steps are shown in Figure 4.10.
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1 8 9 10
o— 1<
7 7
(a} (b} (c)

Fig. 4.10 Reduction of Example 4.9. (a) First reduction. (b) Second reduction.
(c) Third reduction

The only essential difference between this example and those consi-
dered previously in this chapter is that the reliability of equivalent
component 9 cannot be evaluated using the equations of Section 4.3 but,
instead, must be evaluated from the binomial distribution concepts de-
scribed in Chapter 3. The binomial distribution can be applied directly if
components 4, 5 and 6 are identical. A fundamentally similar approach is
used for non-identical components.

If R\,...,R;and Q,,..., Q, are the reliabilities and unreliabilities of
components 1,...,7, then
Q:=Q,Q;
Ry 0=R,RgR,
Q1= 0Q10Q,

=Qy(1- R, RgRy)
= Qv(l - Rl(l - 0203)R9)
=Q,(1 ~R,Ry+ R;R,Q,Q5)

R, is evaluated by applying the binomial distribution to components 4, 5
and 6, '
If R4=R5=R6=R and O4=QS=06=O' then

R, = R*+3R%Q
and Q,=3RQ*+Q’

If R‘ # Rs % R5 and Q4 # Q5 # QG; then
Ry=R4RsR¢+ R,RsQ+ RsR;Q,+ R4R, Qs

and Qy = R,QsQs+ R5QQs+ RsQ,Q;5+ Q,QsQs

—In the special case when all components have a reliability of 0.8

R, =0.8960,
and Q,, =0.06237.

Q,=0.1040
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4.6 Standby redundant systems x is frequently cycled between an idle and inactive mode and an active
made. This can occur in the case of computer systems and frequently

4.6.1 Redundancy concepts 1: when two or more are used in a redundant process or control application,
; they are allowed to share the operating duties and each have the ability to

In Section 4.3 it was assumed that a redundant system consisted of two or
more branches connected in parallel and that both branches were operat-
ing simultaneously.

In some system problems, however, one or more branches of the
redundant components may not be continuously operating but remain, in
normal operating circumstances, in a standby mode, i.e., they are anly
switched into an operating mode when a normally operating component
fails. The essential difference between these two types of redundancy is | 4.6.2 Perfect switching
illustrated in Figure 4.11.

pick up the duties of another if the latter should fail during operation.
Both modes of redundancy exist in practice and the reader will no doubt
be able to compile a list of alternative applications of each.

[n the case of standby redundancy, the additional features that exist are
the cyclic duty of the redundant component(s) and the necessity of
switching from one branch to another.

% Consider the case of a perfect switch, i.e., it does not fail during operation

and does not fail in switching from the normal operating position to the
[ & ] A — standby position. A typical standby redundant system can be as shown in
i’ Figure 4.11b.
| I 0 \ [T it 15 assumed that B does not fail when in the standby position, then
B [— B g it can only fail given that A has already failed, i.e. B is operating.

Ierefore, the failure of this system is given by failure of A and failure
(a) (b) : of B, given A has failed.
Using the symbolism of Chapter 2, the probability of system failure is

Q=0Q(A)- QB|A)
which, if it is assumed that A and B are independent, reduces to:
l-r) N OA. QB (4.11)

Equation 4.11 appears to be identical to Equation 4.9 and gives the
impression that the probability of failure of a standby redundant system is
identical to that of a parallel redundant system. This is not true however
since the numerical values used in Equations 4.11 and 4.9 are different.
Since B is used only for short periods it is not likely that its failure
probability will be the same as if it is used continuously. This leads to the
necessity of considering time dependent probabilities, whereas up to this
peint only time independent probabilities have been considered, i.e., it
has been assumed that the probabilities do not change with the time for
which the component is exposed to failure. Time dependent probabilities

Fig. 4.11 Redundancy modes. (a) Parailel redundancy. (b) Standby redundancy

It is not the purpose of this book to explain which of the two
redundancy modes should be used in any specific engineering application
but to recognize that both can exist in practice and to explain how each
can be analysed. It is however worth mentioning some of the factors
involved in deciding which is most appropriate.

In some applications it is physically not possible for both branches to he
operating. This could occur for instance when both A and B in Figure
4.11 are used to control some other device. If for some reason A and B
produced different outputs, the device would receive opposing instruc-
tions. This can be overcome by including a logic gate between the paralict
branches and the device so that both A and B may operate but the device
receives only one set of instructions and the other is blocked by the gate. i

M AR

e

In other apPlications it may be pn?.ferable for a component to remain idle f are considered in Chapter 7 and the problem of standby redundancy is

unless requnreq to operat.e. followm_g the malfunction. of another compo- % reconsidered then.

nent because its probability of failure may be insignificant when not

operating comparec! tp its probability of failure wher? in an.active and 1 4.6.3 TImperfect switching

operating mode. This is frequently the case for mechanical devices such as &}

motors and pumps. In such cases, standby redundancy is more appro- 4 Consider the situation in which the switch has a probability of failing to

priate. There are instances in which the failure probability of a component change over from the branch containing component A to that containing

or system is less, when continuously operated, compared with that whenit = component B when A fails. Let the probability of a successful change-
b

15
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over be Ps and the probability of an unsuccessful change over e
Py(=1-Ps).

The problem can now be solved using the conditional probability
approach discussed in Chapter 2.

P(system failure) = P(system failure given successful changeover)

x P(successful changeover)
+ P(system failure given unsuccessful changeover)
x P(unsuccessful changeover)

therefore Q =Q, - Qg - Ps+Qa- Pg
= QaQpPs+ QA(1-Py)
= QaQpPs+Qa—QaPs
= Qa— QaPs(1-Qp) (4.12)

The value of Qg in this equation is affected by the time dependent
problem of B being operated for short periods as discussed in Section
4.6.2.

Now consider the situation encountered if the switch can fail in its
initial operating position as well as failing to change over when required.
Since the failure of the switch in its operating position is likely to be
identical whether it is connected to A or to B, it can be considered as a
component in series with the parallel branch formed by A and B. This
leads to the network model shown in Figure 4.12 in which the switch
appears as two components; the first represents its switching mode with a
probability of successful changeover of Ps and the second represents its
normal operating mode with a reliability of Rs and an unreliability of Qs.

Fig. 4.12 Standby redundancy with imperfect switch

As the second component representation of the switch is in series with
the previously considered standby redundant branches, the probability of
system failure (or success) can be found by combining its effect with
Equation 4.12 to give

Q= [QA - QaP(1—- QB)] + Qs — [QA — QaP(1- Qs)]Qs (4-13)
or R=Rs1- (QA —QaP(1— Os)) (4-14)
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4.6.4 Standby redundancy calculations

Example 4.10

Consider Figure 4.11b. Evaluate the reliability of this system if A has a
reliability of 0.9, B has a reliability given A has failed of 0.96 and,

(a) the switch is perfect,

(b) the switch has a probability of failing to changeover of 0.08, and
(c) as (b) but the switch has an operating reliability of 0.98.

(a) from Equation 4.11, R=1-0.1x0.04=0.996

(b) from Equation 4.12, R=1-(0.1-0.1x0.92(1-0.04))
=0.988

(¢) from Equation 4.14, R =0.98x0.988 =0.969

Example 4.11

Consider the system model shown in Figure 4.13 and assume that A, B
and S have the reliability indices given in Example 4.10 and part (c). If
components C and D have reliabilities of 0.99 and 0.8 respectively,
evaluate the reliability of the system.

Fig. 4.13 Reliability diagram of Example 4.11

The reliability of this system can be evaluated using the network
reduction technique described for series—parallel systems by first evaluat-
ing the equivalent component representing A, B and S. combining this
with D and finally combining this result with C.

The reliability of the branch containing A, B and S is given in Example
4.10 as

R =0.969
The reliability of the system is therefore given by

R = Rc(1-Qp(1-0.969))
=0.99(1-0.2(1 - 0.969)) = 0.984
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4.7 Conclusions

This chapter has illustrated network modelling of systems and the reliabil-
ity evaluation of these networks. The discussion has focused on series,
parallel redundant and standby redundant systems as well as combina-
tions of these. More complex arrangements require additional techniques
which are described in the next chapter.

In network modelling of systems, the reliability network is frequently
not identical to the physical system or network. The analyst must trans-
late the physical system into a reliability network using the system
operational logic and a sound understanding of the physical behaviour
and requirements of the system.

The examples used in this chapter have shown how an increasing
number of series components decreases the system reliability whilst an
increasing number of parallel and standby redundant components in-
creases the system reliability. The choice of parallel, or standby redun-
dant systems, must be made by the system designer using engineering
knowledge of the performance of the components and devices. The merits
of each method are affected by the physical requirements of the system and
by the difference in reliability of the component or device in the respec-
tive modes of redundancy.

Problems

The system shown in Figure 4.14 is made up of ten components. Components
3, 4 and 5 are not identical and at least one component of this group must be
available for system success. Components 8, 9 and 10 are identical and for this
particular group it is necessary that two out of the three components functions
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Fig. 4.14
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satisfactorily for system success. Write an expression for the system reliability
in terms of the R values given. Also evaluate the system reliability if the
reliability of each component =0.8.

A system consists of four components in parallel. System success requires that
at least three of these components must function. What is the probability of
system success if the component reliability is 0.9? What is the system
reliability if five components are placed in parallel to perform the same
function?

A system contains two subsystems in series. System | has four possible
operating levels, and System 2 has three possible operating levels as shown in
the following table.

System | System 2
Output Probability Output Probability
100% 0.8 100% 0.7
5% 0.1 50% 0.1
25% 0.0 0% 0.2
0% 0.05

Develop an operating level probability table for the system.

A series system has 10 identical components. If the overall system reliability
must be at least 0.99, what is the minimum reliability required of each
component?

A series system has identical components each having a reliability of 0.998.
What is the maximum number of components that can be allowed if the
minimum system reliability is to be 0.90?

A parallel system has 10 identical components. If the overall system reliability
must be at least 0.99, how poor can these components he?

A parallel system has identical components having a reliability of 0.5. What is
the minimum number of components if the system reliability must be at least
0.99?

Write an expression for the reliability of the system shown in Figure 4.15.
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What is the system reliability if
R,=R,=R;=R,=0.85and R, =R, = R, =0.95?

9 Consider the reliability block diagram shown in Figure 4.16. System success
requires at least one path of subsystem 1 and at least two paths of subsystem 2
to be working. Evaluate the reliability of the system if the reliability of
components 1-6 is 0.9, the reliability of component 7 is 0.99 and the reliability
of components 8-10 is 0.85. How many of these systems must be connected in
parallel to achieve a minimum system reliability of 0.9997
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