Canonical Correlation: Equations

Psy 524
Andrew Ainsworth
Data for Canonical Correlations

- CanCorr actually takes raw data and computes a correlation matrix and uses this as input data.

- You can actually put in the correlation matrix as data (e.g. to check someone else's results)
The input correlation set up is:

\[
\begin{array}{cc}
R_{xx} & R_{xy} \\
R_{yx} & R_{yy}
\end{array}
\]
Equations

- To find the canonical correlations:
 - First create a canonical input matrix. To get this, the following equation is applied:

\[
R = R_{yy}^{-1} R_{yx} R_{xx}^{-1} R_{xy}
\]
To get the canonical correlations, you calculate the eigenvalues of R and take the square root

$$r_{ci} = \sqrt{\lambda_i}$$
Equations

- In this context the eigenvalues represent percent of overlapping variance accounted for in all of the variables by the two canonical variates
 - i.e. it is the squared correlation
Equations

- Testing Canonical Correlations

 Since there will be as many CanCorrs as there are variables in the smaller set, not all will be meaningful (or useful).
Equations

- Wilk’s Chi Square test – tests whether a CanCorr is significantly different than zero.
\[\chi^2 = -\left[N - 1 - \left(\frac{k_x + k_y + 1}{2} \right) \right] \ln \Lambda_m \]

Where \(N \) is number of cases, \(k_x \) is number of x variables and \(k_y \) is number of y variables

\[\Lambda_m = \prod_{i=1}^{m} (1 - \lambda_i) \]

Lamda, \(\Lambda \), is the product of difference between eigenvalues and 1, generated across \(m \) canonical correlations.
From the text example - For the first canonical correlation:

\[\Lambda_2 = (1 - .84)(1 - .58) = .07 \]

\[\chi^2 = -\left[8 - 1 - \left(\frac{2 + 2 + 1}{2} \right) \right] \ln .07 \]

\[\chi^2 = -(4.5)(-2.7) = 12.15 \]

\[df = (k_x)(k_y) = (2)(2) = 4 \]
The second CanCorr is tested as

\[\Lambda_1 = (1 - .58) = .42 \]

\[\chi^2 = - \left[8 - 1 - \left(\frac{2 + 2 + 1}{2} \right) \right] \ln .42 \]

\[\chi^2 = -(4.5)(-.87) = 3.92 \]

\[df = (k_x - 1)(k_y - 1) = (2 - 1)(2 - 1) = 1 \]
Equations

- Canonical Coefficients
 - Two sets of Canonical Coefficients are required
 - One set to combine the Xs
 - One to combine the Ys
 - Similar to regression coefficients
\[B_y = (R_{yy}^{-1/2})' \hat{B}_y \]

Where \((R_{yy}^{-1/2})'\) is the transpose of the inverse of the "special" matrix form of square root that keeps all of the eigenvalues positive and \(\hat{B}_y\) is a normalized matrix of eigen vectors for \(yy\)

\[B_x = R_{xx}^{-1}R_{xy}B_y^* \]

Where \(B_y^*\) is \(B_y\) from above dividing each entry by their corresponding canonical correlation.
Equations

- **Canonical Variate Scores**
 - Like factor scores (we’ll get there later)
 - What a subject would score if you could measure them directly on the canonical variate

\[
X = Z_x B_x \\
Y = Z_y B_y
\]
Matrices of Correlations between variables and canonical variates; also called loadings or loading matrices

\[A_x = R_{xx} B_x \]
\[A_y = R_{yy} B_y \]
Equations

<table>
<thead>
<tr>
<th></th>
<th>Canonical Variate Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First</td>
</tr>
<tr>
<td>First Set</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>-.74</td>
</tr>
<tr>
<td>TC</td>
<td>.79</td>
</tr>
<tr>
<td>Second Set</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>-.44</td>
</tr>
<tr>
<td>BC</td>
<td>.88</td>
</tr>
</tbody>
</table>
Equations

- Percent of variance in a single variable accounted for by it’s own canonical variate
 - This is simply the squared loading for any variable
 - e.g. The percent of variance in Top Shimmies explained by the first canonical variate is \(-0.74^2 \approx 55\%\)
Equations

○ Redundancy

Within – Average percent of variance in a set of variables explained by their own canonical variate

\[
pv_{xc} = \sum_{i=1}^{k_x} \frac{a_{ixc}^2}{k_x}
\]

\[
pv_{yc} = \sum_{i=1}^{k_y} \frac{a_{iyd}^2}{k_y}
\]

\[
pv_{xc_1} = \frac{(-.74)^2 + (.79)^2}{2} = .58
\]
Equations

- Redundancy
 - Across – average percent of variance in the set of Xs explained by the Y canonical variate and vice versa

\[rd = (pv)(r_c^2) \]

\[rd_{x_1 \rightarrow y} = \left[\frac{(-.74)^2 + .79^2}{2} \right] (.84) = .48 \]