From a standard deck of cards, one card is drawn. What is the probability that the card is black and a jack? \(P(\text{Black and Jack}) \)

\[
P(\text{Black}) = \frac{26}{52} \text{ or } \frac{1}{2}, \quad P(\text{Jack}) = \frac{4}{52} \text{ or } \frac{1}{13} \quad \text{so } \quad P(\text{Black and Jack}) = \frac{1}{2} \times \frac{1}{13} = \frac{1}{26}
\]

A standard deck of cards is shuffled and one card is drawn. Find the probability that the card is a queen or an ace. \(P(\text{Q or A}) = P(\text{Q}) = \frac{4}{52} \text{ or } \frac{1}{13} + P(\text{A}) = \frac{4}{52} \text{ or } \frac{1}{13} = \frac{2}{13} \)

WITHOUT REPLACEMENT: If you draw two cards from the deck without replacement, what is the probability that they will both be aces? \(P(\text{AA}) = \frac{4}{52} \times \frac{3}{51} = \frac{1}{221} \).

WITHOUT REPLACEMENT: What is the probability that the second card will be an ace if the first card is a king? \(P(\text{A|K}) = \frac{4}{51} \) since there are four aces in the deck but only 51 cards left after the king has been removed.

WITH REPLACEMENT: Find the probability of drawing three queens in a row, with replacement. We pick a card, write down what it is, then put it back in the deck and draw again. To find the \(P(\text{QQQ}) \), we find the probability of drawing the first queen which is \(\frac{4}{52} \). The probability of drawing the second queen is also \(\frac{4}{52} \) and the third is \(\frac{4}{52} \). We multiply these three individual probabilities together to get \(P(\text{QQQ}) = \frac{4}{52} \times \frac{4}{52} \times \frac{4}{52} = \frac{1}{221} \).

Probability of getting a royal flush = \(P(10 \text{ and Jack and Queen and King and Ace of the same suit}) \)

What's the probability of being dealt a royal flush in a five card hand from a standard deck of cards? (Note: A royal flush is a 10, Jack, Queen, King, and Ace of the same suit. A standard deck has 4 suits, each with 13 distinct cards, including these five above.) (NB: The order in which the cards are dealt is unimportant, and you keep each card as it is dealt -- it's not returned to the deck.)

The probability of drawing any card which could fit into some royal flush is \(\frac{5}{13} \). Once that card is taken from the pack, there are 4 possible cards which are useful for making a royal flush with that first card, and there are 51 cards left in the pack. Therefore the probability of drawing a useful second card (given that the first one was useful) is \(\frac{4}{51} \). By similar logic you can calculate the probabilities of drawing useful cards for the other three. The probability of the royal flush is therefore the product of these numbers, or \(\frac{5}{13} \times \frac{4}{51} \times \frac{3}{50} \times \frac{2}{49} \times \frac{1}{48} = 0.0000154 \).