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ABSTRACT. This paper extends the theory of turbulence of Hjorth to certain
classes of equivalence relations that cannot be induced by Polish actions. It
applies this theory to analyze the quasi-isometry relation and finite Gromov-
Hausdorff distance relation in the space of isometry classes of pointed proper
metric spaces, called the Gromov space.
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1. INTRODUCTION

This article originates in the study of the generic geometry of the leaves of a
foliated space. That study aims at answering the following question: what geo-
metric properties are common to all (or to almost all, either in category theoretical
sense or in a measure theoretic sense) the leaves? Examples of such geometric
properties include: (a) number of ends; (b) growth type; (c) continuous spectrum;
(d) asymptotic dimension; (e) coarse cohomology.
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We begun that study as follows. Gromov [6, Chapter 3], [15] described a space,
the Gromov space of the title which is denoted here by M., whose points are isom-
etry classes of pointed, complete, proper metric spaces, and which is endowed with
a topology which resembles the compact open topology on the space of continuous
functions on R. A foliated space, X, endowed with a metric on the leaves under
which each leaf is a complete Riemannian manifold admits a canonical mapping
into the Gromov space M. This mapping assigns to a point z in X the isometry
class of the pointed holonomy covering of the leaf through x, with distinguished
point x. This canonical mapping is continuous if X is quasi-analytic [2]], [7]; in
general it is continuous on the residual set of leaves without holonomy, and there-
fore it is Baire measurable.

The space M., supports several equivalence relations of geometric interest. For
example, the relation of being (coarsely) quasi-isometric, the relation of being at fi-
nite Gromov-Hausdorff distance, the relation of being bi-Lipschitz equivalent, and
others. Obviously the canonical mapping of X into M., is invariant with respect to
the equivalence relation “being in the same leaf” over X and any of the equivalence
relations mentioned above over M,.

Somewhat informally, a geometric property can be thought of as a mapping,
v : M, — P, of M, into a space P that is constant on the equivalence classes of
one of the equivalence relations over M, mentioned above. The general question
posed in the first paragraph is thus: what type of situations will make the mapping
X — P given as the composite of v with the canonical mapping of X into M, be
constant on a large saturated subset of X ? Fairly standard arguments of topological
dynamics prove that if X is topologically ergodic (i.e. transitive, that is, has a dense
leaf) and v and P have suitable topological properties, then the geometric invariant
must be constant on a residual saturated subset of X.

More generally, P may be endowed with an equivalence relation having suitable
topological properties and «y be invariant with respect to the geometric equivalence
relation over M, being studied and that equivalence relation over P. Then the
opening question is formulated thus: Is there a residual saturated subset of X over
which + is constant up to equivalence in P? This property is precisely formulated
below and is called generic ergodicity with respect to the relation over P.

The above lead us to investigate the structure of a variety of equivalence relations
in the Gromv space. Their dynamic complexity was reminiscent of the complex-
ity exhibited by the turbulent group actions of Hjorth [8]], and this motivated the
development of the theory of turbulent relations carried out in this paper.

A section by section description of the contents of this paper now follows. In
Section [2] we analyze a topology on the space of subsets of a space appropriate
for working with equivalence relations. This topology is essentially the Vietoris
topology [[13]] but the properties that we need are not found on the literature on the
topic. These topological properties are of a categorical nature, and are needed to
obtain a new version (Theorem 2.17) of the Kuratowski-Ulam theorem [12} p. 222]
which describes how topological properties of a subset of a space over which an
equivalence relation is defined translate to properties of the intersection of that set
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with the orbits of the equivalence relation (indeed, our version of the Kuratowski-
Ulam theorem also applies to non-equivalence relations). The Kuratowski-Ulam
theorem is one of key tools for studying generic ergodicity of one relation with
respect to another.

In Section[3|we briefly review the basic concepts of classification of equivalence
relations. Complexity of an equivalence relation is quantified by comparing that
relation with one of the standard examples, like the identity relation over a space or
the relation “being on the same orbit” of a group action, for instance. Two concepts
used for describing the relative complexity of two equivalence relations, E over X
and F over Y, are reducibility and generic ergodicity. The relation E is Borel
reducible to F, denoted by £ <p F, if there is an (E, F')-invariant Borel mapping
0 : X — Y (thatis, 0 takes equivalence classes of F into equivalence classes of F’)
such that the mapping § : X/E — Y/F induced by 6 between quotient spaces is
injective. The relation E is generically F-ergodic if for any (£, F')-invariant Borel
mapping 6 : X — Y there is a residual saturated subset C' C X such the mapping
6 : C/E — Y/F induced by 6 between quotient spaces is constant.

The more elementary equivalence relations, called smooth or concretely classi-
fiable, are those Borel reducible to the identity relation over a standard Borel space.
For example, the equivalence relation of being isometric in the set of compact met-
ric spaces is smooth because the space of equivalence classes of this relation is
itself a Polish metric space when endowed with the Gromov-Hausdorff metric.

At a higher level of complexity are the equivalence relations that are classifi-
able by isomorphism classes of countable structures. A countable structure is a
structure on the natural numbers that is determined by a countable family of re-
lations. This set of countable structures is endowed with a Polish topology, and
carries a continuous action of S, the Polish group of permutations of the natural
numbers, so that two countable structures are isomorphic if and only if they are in
the same orbit of this So,-action. Thus, an equivalence relation over a Borel space
is classifiable by countable structures if it is Borel reducible to the relation given
by the action of S, on the space of countable structures. A variety of examples of
equivalence relations that are classifiable by countable structures and which arise
in dynamical systems are given in Kechris [10]], Hjorth [, Preface].

A key concept in the analysis of the complexity of Polish group actions (clas-
sification by countable structures and generic ergodicity) is that of turbulence, in-
troduced by Hjorth [8]. For a Polish group action to be turbulent, not only the
action must be highly complex (transitive, minimal) but the group itself must be
highly complex (actions of locally compact groups are not turbulent). Precisely,
the action is turbulent when its orbits are dense and meager, and its local orbits
are somewhere dense, where the local orbits are the orbits of any restriction of the
given action to a local action of an open identity neighborhood in the group on an
open subset of the space.

The relations of being at finite Gromov-Hausdorff distance and being quasi-
isometric in the Gromov space M, are not reducible to an equivalence relation
given by a Polish group action [[1]]. Therefore, the theory of turbulence for group
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actions needs to be amplified to a theory of turbulence for general equivalence re-
lations. This amplification is carried out in this paper in the setting of uniform
equivalence relations. A uniform equivalence relation is a pair, (), E), consist-
ing of a uniformity V with a distinguished entourage E which is an equivalence
relation. A first example of uniform equivalence relation arises from the contin-
uous action of a Polish group, GG, on a Polish space, X. The uniformity on X
is generated by the entourages { (z,gx) | x € X & g € W }, where {IW} is a
neighborhood system of the identity of G, and the equivalence relation is given by
xFEgy if and only if gr = y for some g € G. A second example arises from a
distance-like mapping, d : X x X — [0, co], that satisfies the standard properties
of a distance but it is allowed to have d(x, y) = oo for some x,y € X. The unifor-
mity is generated by { (z,2’) | d(z,2") < €}, € > 0, and the equivalence relation
is given by xFyy if and only if d(x,y) < oo. The pair (d, E4) (or simply d) is
called a metric equivalence relation.

Generalizing the case of Polish actions, a uniform equivalence relation (V, E)
on a space X is called turbulent when the equivalence classes of F are dense and
meager, and its local equivalence classes are somewhere dense, where the local
equivalence classes are the equivalence classes of the equivalence relation on any
open subset U C X generated by (U x U) NV for any entourage V' of V.

As said, the main goal of this paper is to develop the theory of turbulent equiv-
alence relations and then use it to analyze the complexity of several metric equiv-
alence relations in the Gromov space, proving that they are turbulent and not re-
ducible to Polish actions (which in turn justifies our extension of the Hjorth turbu-
lent theory). A general scheme for this kind of analysis is described in Section 6,
and consists in a sequence of hypothesis that collective-wise will eventually guar-
antee that a metric equivalence relation that satisfies them is turbulent and is not
reducible to the equivalence relation given by a Polish action.

In Section[7] as a prelude to the study of the “turbulent dynamics” of the Gromov
space, we study the metric equivalence relation (ds, Foo) on C'(R) defined by the
supremum distance, where C'(R) is equipped with the compact-open topology.

Section [§] reviews the construction of the Gromov space M., and the pointed
Gromov-Hausdorff distance with possible infinite values, dg g, between isometry
classes of pointed proper metric spaces. This distance defines the relation “be-
ing at finite Gromov-Hausdorff distance” over M., denoted by Egy. Another
equivalence relation over M, introduced in this section is “being quasi-isometric,”
denoted by Egr, which turns out to be induced by a distance function with possible
infinite values, dg;.

Sections E]and analyze the metric equivalence relations given by (dgm, Ecm)
and (dgr, Eqr) over M,.

Our analysis culminates in the following theorem.

Theorem 1.1. If (d, E) is (ds, Exo), (dor, Ecr) or (dgr, Eqr), then:

(i) The metric equivalence relation (d, F) is turbulent.
(ii) E is generically E}gfw—ergodic for every Polish Soo-space Y .
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Parts (ii) of this result applies to the case of Y being the S.,-space of countable
structures and thus can be seen as justification of a metric space version of the
so called Gromov’s principle for discrete groups: “No statement about all finitely
presented groups is both non-trivial and true.”

Problems on the classification theory of metric spaces were brought to light by
Vershik [[19]. That paper revisits the Uhryson space, a universal Polish metric
space (every Polish space is isometric to a closed subset of Uhryson space), and
uses it to show that the classification of Polish metric spaces up to isometry is not
smooth. The problem of describing the complexity of the classification of Polish
metric spaces up to isometry, and certain subfamilies of Polish metric spaces, was
taken up later in Gao-Kechris [4]. Work on the classification of the quasi-isometry
relation over the space of finitely generated groups was done by Thomas [[18]].

While the Gromov space and the Uhryson space are certainly not unrelated, they
are not interchangeable for analyzing our initial problem on the generic geometry
of the leaves of a foliated space. In particular, there is not such object as the
canonical mapping from a foliated space into the hyperspace of closed subsets
of Uhryson space.

Now that we have analyzed the dynamical structure of the Gromov space, it
makes sense to revisit the initial problem at the beginning of this introduction,
using our approach of studying generic geometric properties of the leaves of a foli-
ated space via the canonical mapping of the foliated space into the Gromov space.
For instance, we can formulate questions like what conditions on a foliated space
guarantee that the restriction of dg g or dg; to its canonical image in M, is turbu-
lent. It also makes sense to analyze how several conditions on the dynamics of the
foliated space affect generic geometric properties of its leaves. This is particularly
dramatic for codimenson one foliated manifolds with sufficient transverse smooth-
ness. For example, by a theorem of Duminy, an exceptional minimal set of one of
such foliations must contain a leaf with a Cantor set of ends, but it is not know if it
contains a residual set of leaves with a Cantor set of ends.

2. CONTINUOUS RELATIONS

Let 2 = {0, 1} denote the two-point set. If X is any set, then 2%, the set of
mappings X — 2, is naturally identified with the set of all subsets of X by means
of the characteristic mapping of a subset.

For a subset A C X, let

Py={BCX|BnA#0}.
There is a natural identification
24 =25\ P\, . (1)
Moreover Py = () and Py = 2% \ {(}}, and for any family {A; | i € I'} of subsets
of X, By, 4 = Uier Pa; and Pr,e a0 C Micr Pa;- If X is a topological
space, then 2% becomes naturally a topological space when endowed with the

topology that has the family { Py | U open in X} as a subbase. This is called the
Vietoris topology (Vietoris [20], Michael [[14]). In what follows, provided that X is
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a topological space and unless otherwise stated, 2% will always be endowed with
the Vietoris topology.
If B is a base for a topology on X, then

{ ﬂ Py | C is a finite subset of B }
veC

is a base for the Vietoris topology on 2% . It follows in particular that 2% is second
countable if X is second countable.

A (binary) relation, E, over sets, X and Y, is asubset E C X X Y. The sets X
and Y are called the source and target of E, respectively. The notation x E'y means
(z,y) € E. Forz € X, the (possibly empty) set E(z) = {y € Y | Ey } is called
the target fiber of E over z. The relation E' can be identified to its target fiber map
z € X — E(z) € 2¥. More generally, the notation E(S) = J,cq E(z) € 2¥
will be used for each S C X. The target fiber map can also be used to realize E(S)
as a subset of 2Y'; the context will clarify this ambiguity.

Definition 2.1. A relation, E, over two topological spaces, X and Y, is called
continuous if the target fiber map x € X +— E(z) € 2V is continuous.

The following result follows directly from (T)).

Lemma 2.2 ([15 Proposition 2.1]). A relation E C X X Y is continuous if and
onlyif{x € X | E(x) C F} is closed in X for any closed F' C Y.

Let mx and my denote the factor projections of X x Y onto X and Y, respec-
tively. If A C X, BC Y,and x € X, then

ANEYPg)=nx(EN(Ax B)), )
E(x)=ny(EN{z} xY)). 3)
The following lemma is an easy consequence of (2)).

Lemma 2.3. A relation E C X X Y is continuous if and only if the restriction
mx|g : E — X is an open mapping.

For a relation, F, over X and Y, the opposite of E is the relation E°P over Y
and X given by
EP ={(y,z) eY x X |zEy}.

The target fibers of E°P are E°P(y) = E~*(Py,), and are called source fibers of
E. Note thatforall A C X andall BCY,

(B)H(Pa) = E(4) , “)

(EN(Ax B))®®*=E®°N(BxA). (5)

Because of (@), E°? : Y — 2% is continuous if and only if, for any open set

O C X, theset E(O) isopeninY. In the case of equivalence relations, it is usually

said that E' is open when this property is satisfied; this term is now generalized to
arbitrary relations.
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Definition 2.4. A relation over topological spaces is called open if the opposite
relation is continuous, and it is called bi-continuous if it is continuous and open.

Relation E could also be open in the sense that the map £ : X — 2" is open;
this possible ambiguity will be clarified by the context.

If E' is a symmetric relation over a space X, then the source and target fibers are
equal, which are simply called fibers of E, and so F is bi-continuous if and only if
E is continuous.

Example 2.5. The following are basic examples of continuous and bi-continuous
relations.
(i) If F is the graph of amap f : X — Y, then E (respectively, £°P) is continu-
ous just when f is continuous (respectively, open). In particular, the diagonal
Ax C X x X is a bi-continuous relation over X because it is the graph of
the identity map of X.

(i) If F C X x Y is an open subset, then F is a bi-continuous relation over X
and Y.

(iii) If F is a continuous relation over X and Y, then EN (A x V') is a continuous
relation over A and V, for any A C X and any open V' C Y. Thus, by (3)), if
FE is bi-continuous, then £ N (U x V) is a bi-continuous relation over U and
V', for all open subsets U C X andV C Y.

(iv) An equivalence relation is bi-continuous just when the saturation of any open
set is an open set. In particular, the equivalence relation defined by the orbits
of a continuous group action is bi-continuous, and the equivalence relation
defined by the leaves of any foliated space is also bi-continuous.

For any family of relations F; C X x Y,i € I, and any A C Y/, the following
properties hold:

(UE) " (P =B (Pa) (©)

(ﬁ Ei) " (Pa) (Z]Efl(m :
| (UJr)™ = OE?p , @
((Z] E;)™ = (Z]Efp : ®

The following result is a direct consequence of (6) and (7).

Lemma 2.6. If E;, i € I, is a continuous (respectively, bi-continuous) relation
over X andY, then UZ-e 1 Ei is a continuous (respectively, bi-continuous) relation
over X andY .

Remark 1. The intersection of two continuous relations is a relation that need not
be continuous. For example, if 1 and R, are the relations over R given by the
graphs of two different linear mappings R — R, then Ry N Ry = {(0,0)} is
not a continuous relation. However, the intersection of two continuous relations is
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continuous when one of the relations is also an open subset (Example [2.5}(ii)), as
the next lemma shows.

Lemma 2.7. Let E be a continuous (respectively, bi-continuous) relation over X
andY, and let ' C X XY be an open subset. Then E N F' is continuous (respec-
tively, bi-continuous) relation over X andY .

Proof. Suppose that E is continuous. Let V' C Y be an open set, and let z €
(EN F)~(Py). Then thereis some y € (ENF)(z)NV = E(z)NF(z)NV.
Since F'is an open subset of X x Y that contains (z, y), there are open sets U C X
and W C Y such that (z,y) € U x W C F. By Example[2.3}(ii), E N (U x W)
is a continuous relation over U and W, and so (E N (U x W))~Y(Py) is open in
U, hence in X. Since x € (EN (U x W))~Y(Py) C (EN F)~Y(Py), this shows
that (E N F)~Y(Py) is open in X, and hence that E N F is a continuous relation.

If I is a bi-continuous relation, then &/ N F' is a bi-continuous relation because

of Example [2.5}(ii) and (8). O

The composition of two relations, £ C X x Y and FF C Y X Z, is the relation
FoFE C X x Z given by

FoE={(r,2) € X xZ|3ye€Ysuhthat xEyand yF'z } .

Composition of relations is an associative operation and A x is its identity at X.
Moreover

(FoE)® = E o FP . 9)

If E C X x X is arelation, the symbol E™, for positive n € N, denotes the n-fold
composition E o ---o0 F,and E° = Ax. If E' C X’ x Y is another relation over
topological spaces, let E x E’ be the relation over X x X’ and Y x Y’ given by

ExE ={(x,2,y,y) € X x X'xY xY' |zEyand 2'E'y } .
Note that
(E x E')°? = E°° x B'°P . (10)
For relations £ C X x Y and G C X x Z, let (E, G) denote the relation over
X and Y x Z given by
(E,G)={(z,y,2) € X XY x Z | zEyand Gz } .

Lemma 2.8. The following properties hold:

(i) If E and F are continuous (respectively, bi-continuous) relations, then F o E
is also continuous (respectively, bi-continuous) relation.
(ii) If E and E' are continuous (respectively, bi-continuous) relations, then E x
E' is a continuous (respectively, bi-continuous) relation.
(iii) If E and G are continuous relations, then (E, G) is a continuous relation.

Proof. In (i) and (ii), the statements about continuity hold because
(FoE) ' (Pw)=E~" (Pp-1(py)) »
(E X El)il(PVXV/) = Eil(Pv) X E,fl(PV/) ,
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forW C Z,V C Y and V' C Y”, and the statements about bi-continuity follow
from (9) and (10)). Property (iii) is a consequence of (i) and (ii) since

(F,G) = (F X G) o (Ax,Ax) s

where (Ax,Ax) is continuous because it is the graph of the diagonal mapping
x— (x,z). O

Because of Lemma [2.8}(i), the continuous relations (and also the bi-continuous
relations) over topological spaces are the morphisms of a category with the oper-
ation of composition. The assignment F — FE°P is a contravariant functor of the
category of bi-continuous relations to itself.

Lemma 2.9. Let X be a topological space and let Y be a second countable topo-
logical space. The following properties are true.

() If E C X x Y is a continuous relation, then
{x € X | E(z)isdenseinY }
is a G subset of X.
(i) If E, F C X x Y are continuous relations and E C F, then
{zx € X | E(x) is dense in F(x) }
is a Borel subset of X.

Proof. Let B be any countable base of non-empty open sets for the topology of Y.
Property (i) is true because

{z€ X |E()isdenseinY } = (| E"'(Py)
UeB

and Property (ii) is true because
{x € X | E(x)is densein F(x) }

={zeX|zeF Y (P)=aecE (P}
veB

= N (E P UX\F ' (Py) . O
veB

Definition 2.10. An equivalence relation over a topological space is called (fopo-
logically transitive (respectively, topologically minimal) if some equivalence class
is dense (respectively, every equivalence class is dense).

The following concepts and notation will be used frequently.

Definition 2.11. (i) A subset of a topological space is meager if it is the count-
able intersection of nowhere dense subsets.
(ii) A subset of a topological space is residual if it contains the intersection of a
countable family of dense open subsets.
(iii) A topological space is Baire if every residual subset is dense.
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Definition 2.12. Let P be a property that members of sets may or may not have.
Let X be a topological space.

(i) Property P is satisfied for residually many members of a topological space,
X, and denoted by (V*z € X)P(z), if the set {z € X | P(x) } is residual
in X.

(i1) Property P is satisfied for non-meagerly many members of X, and denoted
by (F*z € X)P(z), if the set { z € X | P(x) } is non-meager.

Corollary 2.13. If X is second countable and E is a topologically transitive, con-
tinuous equivalence relation over X, then E(x) is dense in X, V*z € X.

Proof. By Lemma[2.9}(i), the set
{x € X | E(x)is dense in X }
is a dense G subset of X. O

Lemma 2.14. Let X be a topological space, let Y be a second countable topolog-
ical space, and let E C X XY be a continuous relation. If every source fiber of E
is a Baire space, then the following properties hold:

(@) If Ais a Gg subset of Y, then
{x € X | E(z) N Ais residual in E(z) }

is a G5 subset of X.
(ii) If B is an F, subset of Y, then

{z € X | E(z) N B is non-meager in E(x)}

is an F; subset of X.
(iii) If B is a Borel subset of Y, then

{z € X | E(x) N B is residual in E(x) }

and
{zx € X | E(z) N B is non-meager in E(x) }

are Borel subsets of X.

Proof. To prove (i), write A = (), cn Un, where {Up, },,en is a countable family
of open subsets of Y. For each n € N, let B,, be a countable family of non-empty
open subsets of U,, that is a base for the topology of U,,. Then

{x € X | E(x) N Aisresidual in E(x) }
= ﬂ {z € X | E(x) N U, is residual in E(z) }

neN

= ({z € X | E(x) N U, is dense in E(z) }
neN

=) () E'®)
neN VeB,

is a G5 subset of X.
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Property (ii) is a consequence of (i) because, by [9, Proposition 8.26],

{x € X | E(z) N B is non-meager in E(z) }
=X \{ze X |E(@)n(X\B)isresidualin E(z) } , (11)
forany B C X.

To prove (iii), let C be the collection of all subsets B C Y such that, for any
open subset U C Y/, the sets

{z € X | E(x)yNnU N Bisresidual in E(z)NU }
and

{z € X | E(x) "U N B is non-meager in E(z) N U }

are both Borel subsets of X.

This collection C is a o-algebra of subsets of X. Indeed, it is closed under
complementation, because of and Example[2.5}(iii), and it is also closed under
countable intersections, because if {C), | n € IN} is a countable family of members
of C,and U C Y is any open set, then

{zeX| E(m)ﬁUﬂﬂCn is residual in E(z) N U }
=z € X | E(x)nUNC,isresidual in B(x) N U }

is a Borel subset of X. Therefore, for any countable family 5 of open, non-empty,
subsets of U that is a base for the topology of U, by [9} Proposition 8.26],

{zeX|E@)NUN ﬂCn is non-meager in E(z) N U }

n
= J{ze X | E(@)nV N[ Cyisresidual in E(z) NV }
veB n
= U ﬂ{x € X | E(x)NV NG, isresidual in E(x) NV }
vVeB n
is a Borel subset of X, and so (), C;, € C.
The collection C contains all the open subsets of X. Indeed, if V' C Y is any

open set, then use Example [2.5}(iii), and apply (i) and [9, Proposition 8.26] to
obtain that

{z € X | E(x) "U NV is non-meager in E(z) N\U} = E~*(Pyny)

Therefore C is a o-algebra that contains all the open subsets of X, and thus it also
contains all the Borel subsets of X, which establishes (iii). O

Lemma 2.15. Let E C X X Y be an open relation over X andY . IfA C BCY
and A is dense in B, then E='(Py,) is dense in E~'(Pg).
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Proof. Let O be an open subset of X. Since E(O) is open in Y and A dense in B,

ONE Y (Pg)#0 <= E(O)NB#
— EBO)NA#D<= ONEYPy)#0. O

Lemma 2.16. Let E be a bi-continuous relation over the topological spaces X
and 'Y, and assume that Y is second countable. If B is open and dense in'Y, then
BN E(x) is open and dense in E(x) V*z € X.

Proof. Let {U, }necn be a countable base for the topology of Y. Write
On=(X\E Y (Py,))UE Y (Py,nB) .

The boundary 0E~!(Py;, ) is a meager set in X because E~!(Py;,) is open in X.
Since U,, N B is dense in U,,, Lemma implies that E~'(Py, ) is dense in
E~Y(Py,). Hence

(X\ E~1(Py,)) UE™(Py,nB)

is open and dense in X \ OE~1(Py,), and therefore the interior of O,, is open and
dense in X. This proves that [),, Oy, is a residual subset of X. If x is in [, - On,
then E(x) N B is dense in E(z), for otherwise there would be some 7 in N such
that E(x) N BN U, = 0 and E(x) N U, # (), which conflicts with the definition
of O,,. [l

The following is a generalization of the Kuratowski-Ulam Theorem [12} p. 222].

Theorem 2.17. Let X and Y be topological spaces, with'Y second countable, and
let E be a bi-continuous relation over X and'Y . The following are true:

(i) if A C Y has the Baire property, then A N E(x) has the Baire property in
E(x)V'zx € X;
(ii) if A is meagerinY, then AN E(x) is meager in E(x) V'z € X;
(iii) if A is residual in'Y, then AN E(x) is residual in E(x) Vix € X.
Furthermore, if E(x) is dense in' Y and if E(x) is a Baire space for residually
many x € X, then the converses to (ii) and (iii) are also true.

Proof. Lemma implies (iii), which in turn implies (ii).
To prove (i), suppose that A C Y has the Baire property. This means that
A = UAM for some meager set M C Y and some open set U C Y. So

ANE(z)=(UNE(x)A(MNE())

for all z € X. Here, U N E(z) is open in E(z), and M N E(x) is meager in E(x)
Yz € X by (ii).

Assume next that F(X) is dense in Y and that E(z) is a Baire space V*x €
X. Let A be a non-meager subset of Y with the Baire property. Because of [9]
Proposition 8.26], there is a non-empty open U C Y such that AN U is residual in
U; hence, by (iii), AN U N E(x) is residual in U N E(z) V*z € X. Because of [9,
8.22], ANU has the Baire property in X, and thus in U; hence, by (i), ANUNE(x)
has the Baire property in U N E(x) V*z € X. Because E is continuous and F(X)
is dense in Y, E~!(Py) is an open non-empty subset of X. Since E(z) is also
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a Baire space V*z € X, it follows from [9 Proposition 8.26] that A N E(x) is
not meager in E(z) V*x € E~Y(Py). Thus 3*z € X such that A N E(z) is
not meager in E(x). This proves the converse of (ii), which in turn implies the
converse of (iii). U

Remark 2. The classical Kuratovski-Ulam Theorem (loc. cit., cf. also [9, Theo-
rem 8.41]) is obtained from Theorem 2.17]by taking X =Y = X; x Xy, where
X1 and X, are second countable spaces, and E equal to the equivalence relation
whose equivalence classes are the fibers {x1} x Xo for 21 € Xj.

Corollary 2.18. Let X and Y be second countable topological spaces, and let
AE C X x Y. Suppose that E is a bi-continuous relation whose source and
target fibers are Baire spaces. Then (x,y) € AV*y € E(x) V*z € X if and only
if(z,y) € AV'z € E°P(y)V'yeY.

Proof. Lemma [2.3] implies that the restrictions of the projections 7y and 7y to
E are open mappings. Hence, by Example [2.5}(i), their corresponding graphs,
IIgx C Ex XandIlgy C E x Y, are bi-continuous relations. Moreover, for
reXandyey,

Iy (z) = {a} x B(x) , IRy (y) = EP(y) x {y}
AN () ={a} x (AN E)(z) ,  ANTRy(y) = (ANE)P(y) x {y} .
Then, by Theorem [2.17],

(x,y) € AV'y € E(x)V'r € X
<= (AN E)(z) isresidual in E(x) V'z € X
<= AN FEisresidual in E
< (AN E)°(y) is residual in E°P(y) V'y € Y
= (r,y) € AV'2 € E®(y)V'yeY . O

Corollary 2.19. The following properties hold:

(i) Let X and'Y be second countable topological spaces, and let E,, C X XY
be a bi-continuous relation for eachn € N. If A C X and B C Y are
residual subsets, then there are residual subsets C C A and D C B such that
DN E,(x) is residual in E,(z) forall x € C and alln € N, and C N EpP (y)
is residual in E;f (y) forall y € D and all n € N,

(ii) Let X be a second countable topological space, and E, C X x X a bi-
continuous relation for each n € N. If A C X is a residual subset, then
there is some residual subset C C A such that C N E,(x) is residual in
E,(x) forall x € C and all n € N.

Proof. To prove (i), define sequences of residual subsets, C; C X and D; C Y, by
the following induction process on ¢ € N. Set Cyp = A and Dy = B. Assuming
that C; and D; have been defined, let

Ciy1={2x€ X | D;NE,(z)isresidual in E,,(z) V' € X & Vn € N},
Diy1={yeY | CinEPX(y)isresidual in EP(y) V'yeY &Vne N} .
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By Theorem C; is residual in X and D; is residual in Y, for all ¢ € N,
and therefore C' = (), C; is residual in A and D = (), D; is residual in B.
Moreover, for all n € N, D N By (x) = ;e (Di N En(x)) is residual in E,(z)
forall z € C, and C'N ExP(y) = ),(Ci N ExP(y)), is residual in EpP (y), for all
yeD.

To prove (ii), let Cy = A and, assuming that C; has been defined, let

Ciy1 ={z € X |C;NE,(x) isresidual in E(z) V'z € X & Vn € N } .
By Theorem [2.17} C; is residual in X, for all i € N. Therefore C' = ﬂiGN C; is

residual in A, and C' N Ey,(z) = (;en(Ci N Ep(2x)) is residual in E;, (), for all
z € Candalln € N. O

3. CLASSIFICATION AND GENERIC ERGODICITY

Let X and Y be topological spaces, andlet £ C X x X and FF C Y XY be
equivalence relations. A mapping, 6 : X — Y, is called (E, F')-invariant if

rEx’ = 0(x)FO(z’)

for all x,2’ € X. Such (E, F)-invariant mapping 6 induces a mapping, denoted
by 0 : X/E — Y/F, between the corresponding quotient spaces.

The relation E is said to be Borel reducible to F', denoted by E' <p F, if there
is an (E, F')-invariant Borel mapping 6 : X — Y such that

rEr’ < 0(z)FO(2’)

for all z,2' € X; i.e., the induced mapping # : X/E — Y/F is injective. If
E <p Fand F <p FE, then FE is said to be Borel bi-reducible with F', and is
denoted by E ~p F.

The relation F is said to be generically F-ergodic if, for any (E, F')-invariant,
Baire measurable mapping 6 : X — Y, there is some residual saturated C' C X
such that § : C/(E N (C x C)) — Y/F is constant.

Remark 3. 1f E is a generically F'-ergodic relation over X, then any equivalence
relation over X that contains FE is also generically F'-ergodic.

The partial pre-order relation <pg establishes a hierarchy on the complexity of
equivalence relations over topological spaces. Two key ranks of this hierarchy are
given by the following two concepts of classification of relations. In the first one,
FE is said to be concretely classifiable (or smooth, or tame) if E <p AR (recall
that Ag C R x R denotes the diagonal). This means that the equivalence classes
of E can be distinguished by some Borel mapping X — R.

Theorem 3.1. Let X and Y be second countable topological spaces. If E is a con-
tinuous, topologically transitive equivalence relation over X, then E is generically
Ay -ergodic.

Proof. Letf : X — Y be (E, Ay )-invariant and Baire measurable. By [9] The-
orem 8.38], 6 is continuous on some residual saturated set Cy C X. By Corol-
lary there is residual saturated C; C X such that E'(x) is dense in X, for all
x € Cq. Then Cy N C is a residual subset of X where 6 is constant. O
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Remark 4. In the above proof, if X is a Baire space, then Cy N C # (.

Corollary 3.2. Let X be a second countable space and let E be a continuous
equivalence relation over X. If E is topologically transitive, then any E-saturated
subset of X that has the Baire property is either residual or meager.

Proof. For any saturated subset of X with the Baire property, apply Theorem [3.1]
to its characteristic function X — 2. ]

Corollary 3.3. Let X be a second countable Baire space and let E be a continuous
equivalence relation over X. If E is topologically transitive and its equivalence
classes are meager subsets of X, then E is not concretely classifiable.

Proof. By Theorem[3.1] each (E, Ar)-invariant Borel map 6 : X — R is constant
on some residual saturated subset of X. So f : X/E — R/Ar = R cannot be
injective because X is a Baire space and the equivalence classes are meager. [

The second classification concept can be defined by using [ ; 2N" endowed
with the product topology, which is a Polish space. Each element of [[>° ; 2N" can
be considered as a structure on IN defined by a sequence (R,,), where each R,, is a
relation over N with arity n. Two such structures are isomorphic when they corre-
spond by some permutation of IN, which defines the isomorphism relation = over
| o} 2N" Then a relation E is classifiable by countable structures (or models) if
E <p =. This means that there is some Borel map 6 : X — [, 2N" such that
xFEz’ if and only if (x) = 0(a’). Here, it is also possible to use the structures on
N defined by arbitrary countable relational languages, cf. [8, Section 2.3].

The equivalence relation defined by the action of a group G on a set X will be
denoted by Eé( ; in this case, the notation O(z) will be used for the orbit of each
x € X instead of Eé( (z). If G is a Polish group, the family of all relations defined
by continuous actions of G on Polish spaces has a maximum with respect to <p,
which is unique up to ~p and is denoted by E¢Z° [3,[11].

As a special example, the group S, of permutations of IN becomes Polish with
the topology induced by the product topology of NV, where N is considered with
the discrete topology. Then the canonical action of Sy, on [[>2 ; 2N" defines the
isomorphism relation = over the space of countable structures, which is a repre-
sentative of Eg:o [18]].

Classification by countable structures and generic ergodicity are well understood
for equivalence relations defined by Polish actions in terms of a dynamical concept
called turbulence which was introduced by Hjorth [8].

4. TURBULENT UNIFORM RELATIONS

A uniform equivalence relation, or simply a uniform relation, over a set, X,
is a pair, (V, F), consisting of a uniformity } on X and an equivalence relation
E over X such that £ € V. Note that (V, F) is determined by the entourages
(members of V) that are contained in F, and that VV induces a uniform structure on
each equivalence class of E.
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One important example of a uniform relation is that given by the action of a
topological group, G, on a set, X. This is of the form (V, Eéf ), where V is the
uniform structure on X generated by the entourages

VW:{($,QI’)|$€X&QGW}, (12)

where W belongs to the neighborhood system of the identity of G. Thus a uniform
relation over a topological space can be considered as a generalized dynamical
system.

Another important example of uniform relation is the following. A metric (or
distance function) with possible infinite values on a set is a functiond : X x X —
[0, oo] satisfying the usual properties of a metric (d vanishes just on the diagonal of
X x X, is symmetric and satisfies the triangle inequality). It defines an equivalence
relation over X denoted by E;iX and given by x Ej( y if and only if d(z,y) < occ.
There is a uniform relation induced by d of the form (V, Eé( ), where a base of V
consists of the entourages

Ve=A{(z,y) e X x X | d(z,y) <e€}. (13)

The term metric equivalence relation (or metric relation) will be used for the pair
(d, Ej( ) (or even for d). Like the usual metrics, metrics with possible infinite
values induce a topology which has a base of open sets consisting of open balls;
unless otherwise indicated, the ball of center x and radius R will be denoted by
Bx(z, R) or By(z, R), or simply by B(x, R).

Remark 5. Other generalizations of metrics also define uniform relations, like
pseudo-metrics with possible infinite values, defined in the obvious way, or when
the triangle inequality is replaced by the condition d(z,y) < p(d(z,z) + d(z,y))
for some p > 0 and all z,y,z € X (generalized pseudo-metrics with possible
infinite values). They give rise to the concepts of pseudo-metric relation and gen-
eralized pseudo-metric relation.

Remark 6. Let d and d’ be metric relations over X that induce respective uniform
relations (V, E) and (V', E'). If d < d,thenV C V' and E C F'.

Definition 4.1. Let (V, E) be a uniform relation over a topological space X. For
any non-empty open U C X andany V € V with V' C E, the set
oo
EUV)=JWvn@wxo)"
n=0
is an equivalence relation over U called a local equivalence relation. The E(U, V' )-

equivalence class of any z € U is called a local equivalence class of x, and denoted
by E(z,U,V).

For a relation given by the action of a group GG on a space X, the local equiva-
lence classes are called local orbits in Hjorth [8]], and the notation O(x, U, W) is
used instead of EZ (z,U,V) when V = Vi according to (T2). Similarly, for a
uniform relation induced by a generalized pseudo-metric d on a set X, the notation
Ec)f (z,U,¢) is used instead of Ej( (z,U,V) when V = V, according to (13).
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Definition 4.2. A uniform relation is called turbulent if:

(i) every equivalence class is dense,
(i1) every equivalence class is meager, and
(iii) every local equivalence class is somewhere dense.

Remark 7. Definition does not correspond exactly to the definition of turbu-
lence introduced by Hjorth for Polish actions [8, Definition 3.12]. To generalize
exactly Hjorth’s definition, condition (iii) of Definition 4.2{should be replaced with
condition (iii’):

(iii’) every equivalence class meets the closure of each local equivalence class.
In fact, (i) already follows from (iii’). In the case of Polish actions, (iii) and (iii’)
can be interchanged in the definition of turbulence by [8, Lemmas 3.14 and 3.16];
thus Definition 4.2 generalizes Hjorth’s definition. But in our setting, that equiva-
lence is more delicate and our results become simpler by using (iii).

Remark 8. Let (V, E) and (V', E’) be uniform relations over a topological space
X such that V C V' and E C E’. If the local equivalence classes of (V, E)
are somewhere dense (Definition [@.2}(iii)), then the local equivalence classes of
(V', E') are also somewhere dense.

Example 4.3. The following simple examples illustrate the generalization of the
concept of turbulence for uniform relations.

(i) If E is an equivalence relation over a topological space X, then the family
V ={V Cc X xX|E C V}isa uniformity on X, and (V,E) is a
uniform relation. Therefore E is the only entourage of V' contained in F, and
E(z,U,E) = E(z) N U for any open U C X and all z € U, so it follows
that (V, F) is turbulent if the equivalence classes of F are dense and meager.

(ii) Let G be a first countable topological group whose topology is induced by a
right invariant metric dg. Suppose that G acts continuously on the left on a
topological space X. Then this action induces a pseudo-metric relation d on
X with Ef = EZ and

d(z,y) = inf{da(lg,9) |ge G& gr =y}

for (z,y) € Eé , where 14 denotes the identity element of GG. The pseudo-
metric relation d induces the same uniform relation as the action of G on X,
and therefore d is turbulent if and only the action is turbulent.

(iii) Let Z be the additive group of integers with the discrete topology, and let
G C ZN denote the topological subgroup consisting of the sequences (z,)
such that z,, = 0 for all but finitely many n € N. For some fixed irrational
number 6, consider the continuous action of G on the circle S* = R/Z given
by (x,,) - [r] = [r + 60>, x,), where [r] is the element of S! represented by
r € R. The orbits of this action are dense and countable. For each N € N,
the sets

Wy ={(xy) €G|z,=0Vn€e{0,...,N}}

are clopen subgroups of G which form a base of neighborhoods of the identity
element. The induced action of each Wy on S' has the same orbits as G so
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O([r],U,Wx) = UNO([r]) forallopen U C S* and each [r] € U. It follows
that this action is turbulent. In fact, the uniform equivalence relation induced
by this action is of the type described in (i): we have Egl C V for each
entourage V. Moreover, for any invariant metric on GG, the induced pseudo-
metric relation d on S! is determined by d([r], [s]) = oo if O([r]) # O([s])
and d([r], [s]) = 0if O([r]) = O([s]). However, the action of G on S* given
by (z,) - [r] = [r + 0z0] has the same orbits but is not turbulent: each point is
a local orbit. Indeed this second action induces the same uniform equivalence
relation as the action of Z given by x - [r] = [r + 6x], which is not turbulent
because Z is locally compact.

Definition 4.4. A uniform relation (), F) on a space X is generically turbulent if:

(i) the equivalence class of x is dense in X V*z € X,
(i1) every equivalence class is meager, and
(iii) any local equivalence class of = is somewhere dense V*x € X.

5. TURBULENCE AND GENERIC ERGODICITY

From now on, only metric relations over topological spaces will be considered
because that suffices for the applications given in this paper. Some restriction on
the topological structure of the space, and some compatibility of that structure with
the metric relation will be required, and these are given in the following definition;
they are restrictive enough to prove the desired results, and general enough to be
satisfied in the applications.

Definition 5.1. A metric relation d on a space X is said to be of type [ if:
(1) X is Polish;
(ii) the topology induced by d on X is finer or equal than the topology of X; and
(iii) there is a family & of relations over X such that:
(a) each E € & is symmetric,
(b) each F € £ is a G5 subset of X x X,
(c¢) for each r > 0, there are some E, F' € £ so that

E(z) C By(z,r) C F(x)
forallz € X,
(d) foreach E € &, there are some r, s > 0 so that
By(z,r) C E(x) C By(z,s)

forallxz € X,

(e) each E € & is continuous, and

(f) forall E,F,G € Eandx € X,if Eo F D G, then EN (F(z) x G(z))
is an open relation over F'(x) and G(x).

Remark 9. In Definition [5.1] observe the following:

(1) The family £ can be chosen to be countable and completely ordered by inclu-
sion; thatis, £ = {E,, | n € Z} so that E,,, C E,, if m <n.
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(ii) Each E € £isa G subset of X and, foreachz € X, E(z) = EN({z} x X)
is a Gs subset of X = X x {x}. Therefore, by [9, Theorem 3.11], F and
E(x) are Polish subspaces of X x X and X, respectively; in particular, they
are Baire spaces.

(iii) Since EX = pee B, ametric relation of type L is continuous, by Lemma
however, its fibers need not be Polish spaces.

(iv) By properties (iii)-(a),(f), forall £, F,G € £andx € X,if Eo G D F, then
E N (F(z) x G(zx)) is a continuous relation over F'(z) and G(z).

(v) It will become clear that the general results presented in this paper hold if
the metric equivalence relation is of type I only on some dense Gs subset.
For the sake of simplicity, that generality is avoided since the conditions of
Definition |5.1] are satisfied in applications to be given.

Lemma 5.2. Let d be a metric relation of type I over a space X, let £ = { E,, |
n € Z } be a family of subsets of X x X satisfying the conditions of Definition
and Remark [9(i). Let G be a Polish group and let Y be a Polish G-space. If
0: X —>Yisan (Ef , Eg )-invariant Borel map, then, for any neighborhood W
of the identity element 1 in G,V € Z,V*x € X, andV*x' € Ey(x), there is some
open neighborhood U of x in X such that, Vk € Z andVz" € UNEy(x) N Ey(2'),
dg € W so that g - 0(x) = 6(z").

Proof. Fix an open neighborhood W of 14 in G. The result follows from Corol-
lary [2.18] and the following Claim 1]

Claim 1. V¢ € Z,Vz € X and V*z' € Ey(z), there exists some open neighborhood
U of 2/ in X such that, Vk € Z and V*2" € U N Ex(2") N Ey(xz), 3g € W so that
g-0(x') =0(").

To prove this claim, let W’ be a symmetric open neighborhood of the identity
1¢ € G such that W’ C W. Since G is a Polish group, there are countably many
elements g; € G, i € N, such that G C |J;cny W'gi. Therefore, given ¢ € Z and
r € X, the set O(Ey(z)) C U;eny W'gi - 0(x). The preimage of W'g; - 6(x) via
the mapping 6 : Ey(x) — Y is analytic in Ey(z) because W'g; - 6(z) is analytic
[9}, Proposition 14.4-(i1)]. Hence it has the Baire property [9, Theorem 21.6], and
so there are open subsets O; C Fy(x) and residual subsets C; C O; such that
\U; O; is dense in Ey(x) and 6(C;) C W'g; - 0(x). By using Definition (iii)—(f)
and Remark [9}(iv) applied to the relation Ej, N (Eg(z) x Ey(x)) over Ey(x), and
by Corollary 2.19}(ii) and Example [2.5}(iii), it follows that there is some residual
D; C C; such that Ex(z') N D; is residual in Ex(2’) N O; for all 2/ € D; and
keZ.

The union A = |J, D; is residual in Ey(z). If 2’ € A, then 2/ € D; for some ¢
and so 0(x') = ¢'g;-0(z) for some g’ € W'. Let U be any open neighborhood of z’
in X sothat UNEy(z) C O;. Then UNEy(2')ND; is residual in UNEy (2’ )N Ey(z)
Vk € N. Moreover, for each 2" € Ei(z') N D;, there is some ¢” € W’ so that
0(z") = g"g; - 6(x). Therefore, if

g= g//g/fl c W/W/fl cwW,
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then
g9-0(z') = gg'gi - 0(z) = ¢"g; - 0(x) = 0(z") ,
which completes the proof of Claim|I] ([

Corollary 5.3. Under the conditions of Lemma for any neighborhood W of
the identity element 1¢ of G and ¥V*x € X, 3k € Z such that, V*x' € Ey(x),
Jdg € W so that g - 6(x) = (/).

Proof. Fix any ¢ € Z and any open neighborhood W of 15 in G. Then, Yz €
X and V*2' € FEy(x), let U be an open neighborhood of x in X satisfying the
statement of Lemma [5.2] By Definition [5.1}(ii),(iii)-(c) and Remark [9}(i), there is
some k < / so that E(x) C U, obtaining that, V2" € Ex(z) N Ey(z'), 3g € W so
that g - 6(x) = 0(2"). Then the result follows from Theorem Definition
(iii)-(f) and Remark [9}(iv) with the relation E; N (Ey(z') x Ex(z')) over Ey(z)
and Ej(z'). O

Theorem 5.4. Let d be a metric relation of type I on a space X and let Y be a Pol-
ish Soo-space. If there are residually many x € X for which any local equivalence
class of x is somewhere dense, then Ej( is generically Egoo -ergodic.

Proof. Letf : X — Y be an (E;lX , ngoo)-invariant Borel map. Consider a family
of subsets of X x X, & = {E,, | n € Z}, satisfying the conditions of Defini-
tion[5.T]and Remark O} (i). The sets

Wy ={heSx|h(l)=(VE<NY,

with N € N, form a base of neighbourhoods of the identity 1g_ in S, which are
clopen subgroups. Define I : X x N — N U {oo} by setting I(x, N) equal to the
least ¢ € N such that, V*z' € E_y(z), 3h € Wy so that h-0(x) = 0(z') if there is
such an ¢, and setting I (x, N') = oo if there is not such an ¢. Let N and N U {00}
be endowed with the discrete topologies.

Claim 2. I is Baire measurable.
The proof of Claim [2]is as follows. Let £, N € N. The set
Sy ={(,h-y)lyeY, he Wy}
is analytic in Y x Y, and E_, is a Polish space by Remark @-(ii). So Ryy =
E_; N (0 x 0)~1(Sy) is analytic in E_, [9, Proposition 14.4-(ii)], and therefore
Ry n has the Baire property 9, Theorem 21.6]. Hence there is some open Uy ny C
E_; so that Ry ny A Uy n is meager in E_,. The restriction £_, — X of the
first factor projection X x X — X is continuous and open by Lemma [2.3] so its
graph I, C E_; x X is a bi-continuous relation according to Example[2.5}(i). By
Theorem (ii), there is some residual D, y C X such that (R, y A Uy n) N
IT,” (x) is meager in IT," (z) Vo € Dy n. Notice that IT)" (z) = {z} x E_y(x) =
E_y(z) and
(Re,ny & Upn) NP () = {z} x (Re,n(2) A Urn(2))
= R&N(az) A U&N(.T) .
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Hence Ry y(x) A Up n(x) is meager in E_y(x) Vo € Dy . On the other hand,

Iﬁl({ov T 76}) = U (QZ,N X {N}) )
N=0
where
Qv ={z€ X | (E_rNRy)(x)is residual in E_,(z) } .
Since

QNNDyny={z€Dyn|(E_4NUpn)(x)isdensein E_y(x)},

it follows that (), x has the Baire property in X by Lemmas2.7|and (ii), which
completes the proof of Claim 2]

By [9l Theorem 8.38], Claim[2] and Corollary[5.3] there is some dense G's subset
Cp C X such that 6 is continuous on Cp, I is continuous on Cyp x N, and I(Cp x

N) C N.
For each k € Z, any non-empty open U C X and all z € U, let
Oz, U,k) = | J(Ern (U x U))(x) -
i=0

The following properties are consequences of Definition [E-(iii)—(c),(d):
e for any ¢ > 0, there is some k € Z so that Q(x, U, k) C E (x,U,¢) for
allz € U, and
e for every k € Z, there exists some ¢ > 0 such that E5(z,U,¢) C
Q(z,U, k) forallz € U.
Hence, by hypothesis, there is some residual C; C X such that, for any U, z and k
as above, if z € C1, then Q(z, U, k) is somewhere dense. By Corollary (ii),
there is some residual C' C Cp N C; such that Ey(z) N C is residual in Ey(x) for
allz € Cand k € Z.
Fix z,y € C and some complete metric inducing the topology of Y’

Claim 3. There exist sequences, (z;) and (y;) in C with z1 = z and y; = v, (¢;)
and (h;) in S, (U;) and (V) consisting of open subsets of X, and (n;) and (k;)
in N, such that:
@ gi - 0(x) = 0(x;);
(i) hi-0(y) = 0(vi);
(ii1) Tit1 € Ui+1 nNcnN Q(ml, Ui, —ni);
(V) yir1 € Vipr NC N Q(yi, Vi, —ki);
V) U; DV; D Uita;
(vi) diam(0(U; N C)) < 274
(vii) (Uix1 N C) x {Niz1} € I Y(niyq) for

Nit1 = sup{gi1(0), 9,5 (0) | £ <i+1};
(viii) (Vi1 NC) x {K;} € I7Y(k;) for
K = sup{ hi(),hi H(0) | £ <} 5
(ix) gj+1(¢) = gi+1(¢) and g]j:l (0) = 91'111 (0)forl <i+1<j+1;
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(x) hj(£) = hi(£) and b (€) = b ' (0) for € < i < j;
(xi) Q(x;, Ui, —n;) NV, is dense in V; and
(xil) Q(yi, Vi, —ki) NUj4q is dense in U, 4.

If this assertion is true, then there exist ¢ = lim; g; and A = lim; h; in S, by
Claim [3}(ix),(x), and so g - (x) = h - 6(y) by Claim [3}(1)—~(vi), showing the result.

The construction of the sequences of Claim [3|is made by induction on ¢ € N.
Letzg =z, Uy = X, no = 0and go = ho = 1g_, and choose Vj and kg so that
y € Vpand

(Von C) x {0} € I (ko) .

Suppose that, for some fixed ¢+ € N, you have constructed all the terms of these
sequences with indices < ¢. Then construct x;41, g;4-1 and U;; in the following
manner. (The construction of y; 1, h;11 and V; 4, is analogous.)

Take a non-empty open U C V; such that Q(y;, Vi, —k;) N U is dense in U. You
may assume that diam(0(UNC)) < 27°~1 because 6 is continuous on Cy. Choose
Tit1 € Q(ZL‘z, Ui, —ni) N U, and take zg, ..., zx € U; so that zg = x;, 2, = T;41
and z, € E_,,,(zq—1) fora € {1,...,k}. You may assume that i > 0 because (ix)
does not restrict the choice of g;.

Claim 4. We can assume that z, € C foralla € {0, ..., k}.

Claim [ follows by showing the existence of elements
Z, € UiN(EX, "N (Py)nC
fora € {0,...,k} sothat 2, = x;,and 2, € E_,,(2/,_,) fora € {1,...,k}; then
we can choose x| = z;, instead of x;1, and 2/, instead of z,. We have
=2, € UN(EX, ) (Py)nC.
Now, assume that 2/, is constructed for some a < k. Since z, € C' and Eﬁ;f_l is
continuous by Lemma[2.8}(i), the set
En(2)NU; N (EX Y™ (Py)nC
is residual in
En,(7) NU; N (ESS7H N (Py)
So, by Remark [O}(ii), there is some
2oy € By (2,) NU; N (EX ™ (Py)nC
as desired.

Continuing with the proof of Claim [3| Claim 4| gives I(z4, N;) = n; for all
a € {0, ..., k} by the induction hypothesis with Claim (Vii).

Claim 5. We can assume that, for each a < k, there exists some f, € Wy, such

that f, - e(za) = 9(2a+1)'

Like in Claim 4, we show that the condition of this claim is satisfied by a new
finite sequence of points

Z, € U;n (EX, 9" (Py)nC
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sothatzy, = z;and z, € E_,,,(2}_,) fora € {1,...,k};in particular, I(2}, N;) =
n; as above. This new sequence is constructed by induction on a. First, let z{, = ;.
Now, assume that z, was constructed for some a < k. Since I(z), N;) = n;,
V2 € E_p,(2,), 3f € Wn;, sothat f - 0(z,) = 6(z). So the set of points
2 € E_pn,(2,)NU;N(EX "N Py)nC
such that 3f € Wy, so that f - 6(z,) = 0(z) is residual in
E_p,(zl) U0 (BX "N (Py)nC.
Hence f, - 0(z;,) = (2, ) for some f, € Wy, and some
Zhi1 € B, () NU; N (BX " Y(Py)nC

by Remark [O}(ii), completing the proof of Claim 5]

According to Claim[3} f7* - 0(x;) = 0(xi41) for f} = fr—1--- fo € Wh,. Then
let g;+1 = f;]g;. Moreover we can take some open neighborhood U, of ;11 in
U and some n; 11 € N such that diam(0(U;1 N C)) < 27" and

(Uigr N C) x {Niz1} C I (niy1)
where N is defined according Claim [3}(vii). These choices of 1, gi+1, Uit1
and n;; satisfy the conditions of Claim 3] O

Remark 10. This proof is inspired by that of [8, Theorem 3.18].

6. A CLASS OF TURBULENT METRIC RELATIONS

Over a set X, consider a family of relations, U = {Up, C X x X | R,r >0},
satisfying the following hypothesis.

Hypothesis 1. (i) mR,r>0 Ur,r = Ax;

(i1) each Ug, is symmetric;

(iii) if R < S, then Ug, D Ug, for all r > 0;

(iv) Ury = User Ur,s for all R, > 0; and

(v) there is some function ¢ : (R.)? — R such that, for all R, S,r,s > 0,

R<o(R,7),
(R<S&r<s)= ¢(R,r) < ¢(S,s),
UqS(R,rJrs),r o U¢(R,r+s),s - URW—&-S :

By Hypothesis |1} the sets Ug, form a base of entourages of a Hausdorff uni-
formity, also denoted by &/, on X. This uniformity is metrizable because the en-
tourages U,, 1 /p, n € Z, form a countable base for it.

For each r > 0, let £, = (g~ Ur,- This set is symmetric by Hypothesis
(i1); moreover

Es ° Er C Er+s ) (14)
for r, s > 0, by Hypothesis[T}(v).
Lemma 6.1. For R,r > 0and S = ¢(¢(R,r),r) (Where ¢ is the function given
in Hypothesis (v)), the set Ug, C Int(Ug,,).
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Proof. Let (z,y) € Us,. By Hypothesis (iv), there is some r9 < r such that
(x,y) € Ugy,. Let g = 7;7740. By Hypothesis ),
Usry ©UspgoUspy C U¢(¢(R,r)ﬁ%),m oU $(d(Rr),E10) g © Us(R.r),m
© Ystr, e © Vot © Unir -
So, by Hypothesis [1}(ii), Us,r, () X Us,r, (y) C Ug,y, which implies that (z,y) €
Int(UR,r). O
Corollary 6.2. For eachr > 0, the set E, = (\psoInt(Ur,).
Hypothesis (iii) and Corollaryimply that E, = (,~, Int(U,,,) forall r >
0 and so F; is a G subset of X x X. Hence the relations F, satisfy Deﬁnition
(iii)-(a),(b).
Letd: X x X — [0, o0] be defined by
d(z,y) =inf{r >0 (z,y) € E, }; (15)
in particular, d(z,y) = oo if z is not in any of E,.(y), r > 0. It easily follows from
Hypothesis|1|that d is a metric relation over X. Observe also that
By(z,r) C E.(x) C By(x,s)
for 0 < r < s. Therefore
Ef =&, (16)
r>0
and Bg(xz,r) C Ugy(x) for all R,7 > 0 and € X, which implies that the
topology induced by d on X is finer than the topology induced by the uniformity &/

on X. Consequently, d satisfies the conditions (ii) and (iii)-(c),(d) of Definition[5.1]
with the relations E,..

Example 6.3. Let {dr | R > 0} be a family of pseudo-metrics on a set, X, such
that
R<S=dr <dg, (17)
(dr(z,y) =0VR>0) =z =y. (18)
Then the sets
Uryr ={(z,y) € X x X [ dgr(z,y) <7}
clearly satisfy Hypothesis in particular, Hypothesis (V) is satisfied with ¢(R, ) =
R since the triangle inequality of each dr and give
UR,’/‘ o US,S - Umin{R,S},T—i—s (19)

for all R, S,r,s > 0. It follows that Ug (z) is open for all z € X and R,7 >
0. In this case, the relations Ug , induce the topology defined by the family of
pseudo-metrics dg, and the corresponding sets E, define the metric relation d =
SUP R~ dR-

To prove that d, the metric equivalence relation given by (13)), satisfies the re-
maining conditions of Definition[5.1] suppose that the following additional require-
ment is satisfied.
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Hypothesis 2. (i) X is a Polish space (with the topology induced by the unifor-
mity U);
(ii) for all R,r,s > 0 and x € X, if y € E(x), then there are some 7',¢ > 0
such that Uz 4(y) C Es o Ug(z); and,
(iii) forall7,s > 0and z € X, ify € Es(x) and V is a neighborhood of y in X,
then there is a neighborhood W of y in X such that

E.(W)NE,(Es(x)) C E.(V N Es(x)) .
Proposition 6.4. IfU satisfies Hypothesis 2, then d is of type L.

Proof. It only remains to show that d satisfies Definition [5.1}(iii)-(e),(f).
Hypothesis [2}-(ii) simply means that E is open and hence continuous because it
is symmetric.
Letr,s,t >0,z € X andy € Es(zx). Suppose that E,. o E; D Ey, and let V be
a neighborhood of y in X. By Hypothesis [2}(iii), there is some open neighborhood
W of y in X such that

E.(W) N Ey(z) C E.(W) N Ex(Ey(2)) C Ex(V N Ey(x)).

Since E.(W) is open in X, this proves that E, N (Es(z) x Ey(x)) is an open
relation over F(x) and Ey(x). O

Remark 11. In some applications, the following condition, which is stronger than
Hypothesis [2}(ii), is satisfied: for all R, r, s > 0, there are some 7', ¢ > 0 such that
UrioEs C EsoUg,. This means that each F is “uniformly open” (or “uniformly
continuous,” because it is symmetric).

To show that d is turbulent, assume also the following additional hypothesis.

Hypothesis 3. (i) Ej( has more than one equivalence class;
(i) for all z,y € X and R,r > 0, there is some s > 0 such that Ug ,(x) N
E(y) # 0; and
(iii) for all R, > 0 and x € X, there are some S,s > 0, some dense subset
D C Uss(z) N EX(z), and some d-dense subset of D whose points can be
joined by d-continuous paths in Ug ().

Lemma 6.5. The relation Ec)l( is minimal.

Proof. This follows from Hypothesis [3}(ii) and (16). O
Lemma 6.6. Ifr < s, then E,.(z) C Es(x) forall x € X.

Proof. If y € E,.(r) and R > 0, then Uy ¢ s—r(y) N Uyr,s)r(z) # 0. So
Y € Ngso Ur,s = Es(x) by Hypothesis [T}(ii),(v). O
Lemma 6.7. Int(E,(z)) = 0 forall x € X and r > 0.

Proof. Suppose that Int(E,(x)) # (0. Then, for each y € X, the intersection
Es(y) N E.(x) # 0 for some s > 0, by Lemma and (16). Therefore y €
E,+s(z) by (T4). So X = E () by (T6), contradicting Hypothesis (i). O

Proposition 6.8. The relation Ej( is turbulent.
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Proof. The relation Ej( is minimal because of Lemma Each equivalence class
of EX is meager because of Lemmas and and (16). Finally, the local
equivalence classes of Ej( are somewhere dense because of Hypothesis (iii). (]

Theorem [5.4] and Propositions [6.4] and [6.8] have the following immediate con-
sequence.

Proposition 6.9. For any Polish So.-space Y, the relation Eé( is generically Egoo-
ergodic.

Remark 12. It is easy to somewhat weaken Hypothethis [3}(ii) to treat generic tur-
bulence.

Remark 13. If we also assume that, for all » > 0 and residually many =,y € X,
there exists sp > 0 such that Fs(y) \ E,(x) is dense in E4(y) for all s > sq,
then the proof of [8, Theorem 8.2] can be adapted to show that Eff <B Eg for
any Polish group G and any Polish G-space Y. However the proof is not given
because, in the applications, this is proved in [1]].

7. THE SUPREMUM METRIC RELATION

A concrete case of Example is C(R), the space of real valued continu-
ous functions on R endowed with the compact-open topology, and the supremum
metric relation, d,, which is induced by the supremum norm, || ||, defined by
|| flloo = sup,er |f(z)|. For each R > 0, let dr be the pseudo-metric on C'(R)
induced by the semi-norm || || given by || f||r = supj,<g|f(x)|. Clearly, this
family of pseudo-metrics satisfies the conditions and (I8), and induces the
compact-open topology of C'(R.). Moreover do, = Suppsdg. In this case, each
Ur,r (respectively, E,) consists of the pairs (f, g) that satisfy || f — g||r < r (re-
spectively, | f(z) — g(x)| < r forall z € R).

The following notation will be used: Fo, = Edcoo ,and Boo(f,7) = Ba__ (f,7)
for each f € C(R) and r > 0. Two functions, f,g € C(R), are in the same
equivalence class of E, if and only if f — g is bounded; in particular, the bounded
functions of C'(R) form an equivalence class of F.

Theorem|1.1{for (doo, E) follows from Propositions [6.4|and once Hy-

potheses are shown in this case.

Remark 14. Let C,(R) C C(R) be the subset of bounded continuous functions.
The sum of functions makes the space C'(R) into a Polish group, and C;(R) into a
subgroup. The orbit relation of the action of C;(R.) on C'(R) given by translation
is Ew. Therefore, by virtue of Theorem [1.1}(iii) for (deo, Exo ), there is no Polish
topology on C(R) with respect to which this action is continuous.

For instance, consider the restriction of the compact-open topology to Cy(R).
Then the action of C,(R) on C(R) is continuous, C(R) is metrizable because
C(R) is completely metrizable, and Cy,(R) is separable because it contains Cp(R),
which is dense in C'(R) and separable (by the Stone-Weierstrass theorem). But
Cy(R) is not completely metrizable with the compact-open topology; in particular,
it is not closed in C'(R.).

(R)
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Consider now the topology on Cy(R) induced by || ||oo- Then the action of
Cy»(R) on C(R) is continuous, and Cp(R) is completely metrizable; indeed, it is a
Banach algebra with || || . However C;(R) is not separable with || ||, which can
be shown as follows. For each z € {+1}%, let & € C(R) be the function whose
graph is the union of segments between all consecutive points in the graph of .
Then { Bo(#,1) | # € {£1}%} is an uncountable family of disjoint open subsets
of Cy(R). So Cp(R) is not second countable, and therefore it is not separable.

According to Example the sets Up, satisfy Hypothesis [I] and induce dw.
In this case, the inclusion becomes the equality
E.oE;=FE, (20)

for all 7, s > 0; this holds because, if g € E,;4(f), then
S
— (g — E E .
f+——(g= D € E9) N EJ)
It is well known that C'(R) is Polish (Hypothesis [2}(i)). The following lemma
shows that Hypothesis [2}(ii) is satisfied in this case.

Lemma7.1. Ug, 0o Es = EsoUR; = Uprys forall R,r,s > 0.
Proof. If S > R, then

dr(f,h) < dr(f,9) +dr(g,h) < dr(f,g) +ds(g,h)

for all f,g,h € C(R), because dg < dg. This implies that Ur, o Ug s and
Us s o Ug, are both contained in Ug ;4 , which in turn implies that Ug , o E; and
E, o U, are both contained in Ug ;.

To prove the reverse inclusions, let f € C(R) and g € Ug+5(f). Then

ho=f+ (9 1) € Uns(£) NUns(g)

N
hy = — (g — Ur., NURs .
1 f+r+s(g f) € Ury(f) N URs(9)

By continuity, hg € Us s(f) and hy € Ugs(g) forsome S > R. Let A : R — [0, 1]

be any continuous function supported in [—S, S] such that A = 1 on [— R, R|. Then

f + )\(hO - f) € Es(f) N UR,T(Q) 5
g+ A1 —g) € Urr(f) N Es(yg)

which implies that g € (Ug,, o E5)(f) N (Es o Ugy)(f). O
Corollary 7.2. If R, S,r,s > 0, then Ur; © Us s = Unin{R,S},r+s-
Proof. The inclusion “C” is (19), and “D>” follows from Lemma O

By and Lemma 7.1} and because the sets Ug ;- are open in Example 6.3} the
following lemma implies Hypothesis [2}(iii) in this case.

Lemma 7.3. If T,r,s,t > 0, f € C(R) and g € Es(f) are such that Upy(g) C
Urs(f) for somet' > t, then

UT,t+r(9) N Erys(f) = E-(Uri(g) NEs(f)) -
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Proof. The inclusion “2>” follows from and Lemma([7.1] To prove “C”,leth €
Urt+r(9)NEri5(f). By and Lemmal(7.1] there are some g € E,.(h)NUry(g)
and fo € E.(h) N E¢(f). By continuity, go € Uz 4(9) C Uy 5(f) for some
T' > T. Let A : R — [0, 1] be any continuous function supported in [—7",7"|
such that A\ = 1 on [-7, 7. Then

fo+Ago — fo) € Ex(h) N Urs(g) N Es(f) ,
obtaining that h € E,.(Ur(g) N Es(f)). O

The fact that E, has more than one class (Hypothesis[3}(i)) is obvious because
doo(f,g) = oo if f is bounded and g unbounded. Hypotheses [3}(ii),(iii) is a con-
sequence of the following lemmas.

Lemma 7.4. Forevery f,g € C(R) and every R,r > 0, if s > dr/(f, g) for some
R' > R, then Un,,(f) 1 Es(g) # 0.

Proof. Let A : R — [0, 1] be a continuous function supported in [—R’, R’] such
that \ = 1 on [—-R, R]. Then g + A(f — g) € Ur,(f) N Es(g). O

Lemma 7.5. For every R,r > 0 and every f € C(R), the set Ur,(f) N Exo(f)
is doo-path connected.

Proof. Forevery g € Ug,(f) N Ex(f), the mapping t — tf + (1 —t)g defines a
dso-continuous path in Ug . (f) N Exo(f) from g to f. O

Remark 15. The symmetric relations over C'(R) with fibers the balls B (f, )
cannot be used instead of the relations F, to show that d is of type I. For instance,
each ball By (f,r) is not G in C(R); otherwise it would be Polish, and therefore
it would be a Baire space with the induced topology. But () is residual in Boo (f, )
for all r > 0, as the following argument shows. Take sequences 0 < r, T r and
0 < Ry, T oo. For each n, let U, be the set of functions g € B (f, ) such that
sup |f(x) —g(x)[ > rn .
|z|>Rn

It is easy to check that the sets U,, are open and dense in B (f, ) and their inter-
section is empty.

8. THE GROMOV SPACE

Let M be a metric space and let dj;, or simply d, be its distance function. The
Hausdorff distance between two non-empty subsets, A, B C M, is given by

Hy (A, B) = max{ilelg ;gg d(a,b),igg ;IGlg d(a, b)} .
Observe that Hy(A, B) = Hy(A, B), and Hy(A, B) = 0 if and only if A = B.
Also, it is well known and easy to prove that H; satisfies the triangle inequality,
and its restriction to the family of non-empty compact subsets of M is finite valued,
and moreover complete if M is complete.
Let M and N be arbitrary non-empty metric spaces. A metric on M LI N is
called admissible if its restrictions to M and NN are dj; and dy, where M and N
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are identified with their canonical injections in M U N. The Gromov-Hausdorff
distance (or GH distance) between M and N is defined by

dea(M,N) = i%fHd(M,N) ,

where the infimum is taken over all admissible metrics d on M LI N. It is well
known that dgy (M, N) = dgy (M, N), where M and N denote the completions
of M and N, dgy (M, N) = 0if M and N are isometric, dp satisfies the triangle
inequality, and dgg (M, N) < oo if M and N are compact.

There is also a pointed version of dgy which satisfies analogous properties:
the (pointed) Gromov-Hausdorff distance (or GH distance) between two pointed
metric spaces, (M, x) and (N, y), is defined by

dgﬂ(M,l';N,y) :i%fmax{d(x7y)aHd(M¢ N)} 3 (21)

where the infimun is taken over all admissible metrics d on M U N.
If X is any metric space and f : M — X and g : N — X are isometric
injections, then it is also well known that

dagr(M,N) < Hqy (f(M),g(N)) ,
dar (M, r; N, y) < max{dx(f(z),9(y)), Hax (f(M),g(N))}; (22)

indeed, these inequalities follow by considering, for each € > 0, the unique admis-
sible metric d. on M U N satisfying

d€(u,v) = dx(f(U),g(U)) te

forallu € M andv € N.

A metric space, or its distance function, is called proper (or Heine-Borel) if ev-
ery open ball has compact closure. This condition is equivalent to the compactness
of the closed balls, which means that the distance function to a fixed point is a
proper function. Any proper metric space is complete and locally compact, and its
cardinality is not greater than the cardinality of the continuum. Therefore it may
be assumed that their underlying sets are subsets of R. With this assumption, it
makes sense to consider the set M, of isometry classes, [M, x], of pointed proper
metric spaces, (M, x). The set M., is endowed with a topology introduced by
M. Gromov [6l Section 6], [|5], which can be described as follows.

For a metric space X, two subspaces, M, N C X, two points, x € M and
y € N, and areal number R > 0, let Hy, r(M,x; N,y) be given by

HdX’R(M,x;N,y):max{ sup dx(u,N), sup dX(v,M)}.
u€By(z,R) vEBN(y,R)

Then, for R,r > 0,let Up,, C M, x M, denote the subset of pairs ([M, z], [N, y])
for which there is an admissible metric, d, on M LI N so that

maX{d(I’y)a-Hd,R(Mux;N7 y)} <r.

The following lemma is obtained exactly like (22).
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Lemma 8.1. For ([M,z],[N,y]) € My x M to be in Ur, it suffices that there
exists a metric space, X, and isometric injections, f : M — X and g : N — X,
such that

max{dx (f(z),9(y)), Hix,r(f(M), f(x); g(N),g(y))} <.

The following notation will be used: for a relation ' on M, and [M, z] € M,,
E([M,x]) will be simply written as E(M, ), and for a metric relation d on M,
and [M, z], [N,y] € My, d([M, z],[N,y]) will be denote by d(M, z; N, y).

The sets Ug - obviously satisfy Hypothesis (i)—(iv), and the following lemma
shows that they also satisfy Hypothesis[T}(v).

Lemma8.2. IfR,r,s > 0, then Ug ,oUg ¢ C UR yts, where S = R+2max{r, s}.

Proof. Let [M,x],[N,y] € M and [P, z] € Us,(N,y) NUs (M, ). Then there
are admissible metrics, d on M LI P and d on N U P, such that d(x,2) < r,
ro == Haqs(M,z; P,2) < r,d(y,2) < s and sy := Hys(N,y; P, z) < s. Letd
be the admissible metric on M LI N such that

d(u,v) = inf{ d(u, w) + d(w,v) |w € P}
forallu € M and v € N. Then
d(z,y) < d(z,2) +d(z,y) <r+s.
For each u € Bjs(x, R), there is some w € P such that d(u, w) < rg. Then
dp(z,w) < d(z,z) +dy(z,u) +du,w) <r+R+mry<S.

So there is some v € N such that d(w, v) < sq, and we have

d(u,v) < d(u,w) + d(w,v) < ro+ g .
Hence d(u, N) < 1o + so for all u € Bys(z, R). Similarly, d(v, M) < 1o + so
for all v € Bn(y, R). Therefore H; ,(M,x;N,y) < ro + so < 7+ s. Then
[N) y] € UR,T+S(M7$)' g

Since the sets Ug,, satisfy Hypothesis |1} they form a base of entourages of a
metrizable uniformity on M,.. Endowed with the induced topology, M., is what is
called the Gromov space in this paper. It is well known that M, is a Polish space
(see e.g. Gromov [6] or Petersen [16]); in particular, a countable dense subset is
defined by the pointed finite metric spaces with Q-valued metrics.

Some relevant subspaces of M, are defined by the following classes of metric
spaces: proper ultrametric spaces, proper length spaces, connected complete Rie-
mannian manifolds, connected locally compact simplicial complexes, connected
locally compact graphs and finitely generated groups (via their Cayley graphs).

The following (generalized) dynamics can be considered on M.,:

The canonical metric relation: The canonical partition Ec,, is defined by
varying the distinguished point; i.e., E,, consists of the pairs of the form
([M,x],[M,y]) for any proper metric space M and all z,y € M. There
is a canonical map M — M., x — [M, x|, which defines an embedding
Isom(M)\M — M., whose image is Ecan (M, x) for any z € M. Observe
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that M./ Eay can be identified to the set of isometry classes of proper
metric spaces.

The GH metric relation: It is defined by the pointed GH distance dgg. The
notation Fgg = Eé\g; will be used. Since E..y C Egpg, the quotient set
M., /Egp can be identified to the set of classes of proper metric spaces
defined by the relation of being at finite GH distance.

The Lipschitz metric relation: The Lipschitz partition, Eyp,, is defined by
the existence of pointed bi-Lipschitz bijections. It is induced by the Lip-
schitz metric relation, di;,, which is defined by using the infimum of the
logarithms of the dilatations of bi-Lipschitz bijections.

The QI metric relation: The quasi-isometric partition (or QI partition), Eqy,
is the smallest equivalence relation over M, that contains Egy U Epip. It
is induced by the quasi-isometric metric relation (or QI relation), dgp, de-
fined as the largest metric relation over M, smaller than both dgy and
drip (¢f. [17, Lemma 6]). The quotient set M., /Eqgr can be identified to
the set of quasi-isometry classes of proper metric spaces.

The dilation flow: It is the multiplicative flow defined by A-[M, x] = [AM, z],
where AM denotes M with its metric multiplied by A. This flow is used to
define the asymptotic and tangent cones.

The purpose of this paper is to study the GH and QI metric relations.
Some technical results and concepts related to the definition of M., which will
be used in the next section, are given presently.

Lemma 8.3. Ler [M, z],[N,y|] € M, and r > 0. If d is an admissible metric on
M U N such that d(x,y) < r and Hy(M, N) < r, then d is proper.

Proof. Foreveryv € N,
dn(y,v) < d(z,y) +d(z,v) <r+d(z,0),
and so
Bd(l‘, R) C BM(%, R) U BN(y7 R+ T)

for all R > 0. The statement follows from this because M and N are proper. [
Lemma 84. Let [M,z],[N,y|,[P,z] € My and R,r > 0. Suppose that the
pointed metric spaces (Bp(z, R + 2r), z) and (By(y, R + 2r),y) are isometric,
and that there is an admissible metric, d, on M U N such that d(x,y) < r and

Hy r(M,z;N,y) < r. Then there exists a proper admissible metric, d', on M LU P
such that d'(x,z) < rand Hy r(M,x; P, z) <.

Proof. Let A = By (z, R+ 2r), B= Bn(y, R+ 2r) and C = Bp(z, R + 2r),
and let ¢ : (B,y) — (C,z) be an isometry. Let d’ be the admissible metric on
M U P satisfying

d (u,w) = inf{ dps(u,u') + d(u',v) + dp(d(v),w) |v' € A&ve B}

)
foru € M and w € P. Observe that d'(u, ¢(v)) = d(u,v) foru € Aand v € B;
in particular, d'(z, z) < r.
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For each u € Bys(z, R), there is some v € N such that d(u,v) < r. Since
dn(y,0) < d(y, @) + das(,w) + d(u,v) < R+2r

we getd'(u, ¢(v)) = d(u,v) < r, and therefore d’(u, P) < r. Similarly, d’(w, M) <
r forall w € Bp(z, R), obtaining Hy p(M,x; P, z) <.

Forany S > 0and w € PN By (z,5), there is some v € B such that d(x,v) +
dp(p(v),w) < S. So

dp(z,w) <dp(z,¢(v)) +dp(p(v),w) < R+2r+5,
obtaining
By(z,S) C By(x,S)U Bp(z, R+ 2r+S) .

Hence By /(x,S) is compact since M and P are proper. This shows that d’ is
proper. (]

9. THE GH METRIC RELATION

The relations Ug, on M., defined in Section @, satisfy Hypothesis m of Sec-
tion @ Consider the family of symmetric relations E,. C M, x M,, forr > 0,
whose fibers are E,.(M,x) = (\zso Ur,r(M,x). The notation Bgy (M, ;1) =
By ([M, z],7) will be used.

Lemma 9.1. If0 < r < s, then
Bea(M,z;r) C E.(M,z) C Bag(M,x;s) .

Proof. The first inclusion is obvious. To prove the second one, let [N, y] € E,. (M, z).
For each R > 0 there exists an admissible metric, dr, on M LI N such that
dr(xz,y) < rand Hg, p(M,z; N,y) < r. Let w be a free ultrafilter of [0, c0).
Then there is a unique admissible metric, d, on M LI N such that

- T

d(u,v) = lim dg(u,v)+ i
R—w
forallw € M and v € N. For each € > 0 there exists {) € w such that
d(u,v) < dr(u,v) + % +e,
for all R € 2. Then

sS—r s+
d(z,y) < dp(z,y) + —— +e< ——+e,
for all R € €2, and, because this holds for each € > 0,
d(z,y) < st <s.

Next, for every u € M, if R € Qis > d(x,u), then dgr(u, N) < r, and
so d(u, N) < s as before. Similarly, d(v, M) < s for all v € N. Therefore
Hy(M,N) < s. O

Corollary 9.2. The metric relation over M, defined by the sets U , is dgp.
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By Propositions [6.4] and [6.8H6.9] and Corollary [9.2] the case of (dg, Egp) in

Theorem [I.T|follows by showing that the sets U, also satisfy Hypotheses It
was already noted that M., is Polish (Hypothesis [2}(1)).

Lemma 9.3. If R,r,s > 0, then Ug42745s 0 Ur, C Es 0 Ug,.

Proof. Let S = R+2r+s. If [M,z] € M, and [N,y] € Uss0Upr,(M,z), then
there is [P, z] € Ug,(M,x) N Uss(N,y). This means that there are admissible
metrics, d on M LI P and d on N U P, such thatd(z, z) < r, Hg (M, z; P,z) <,
d(y,z) < s and Hjs(N,y; P,z) < s. Moreover, because of Lemma d may
be assumed to be a proper metric. The subset

P'=(N\ Bn(y,S))UBp(2,S)Cc NUP
is closed and so it becomes a proper metric space when endowed with the metric
induced by d.

Claim 6. The metric space [P, 2] satisfies dgpy (N, y; P, z) < s.

Since N \ P’ C By(y,S) and P’ \ N = Bp(z, S), the Hausdorff distance

HJ(N,P,):IH&X{ sup d(v,P'), sup J(w,N)}
vEBN (y,S) wEBp(z,S)

SHJ7S(N7y;P’Z) <s,

and so Claim [6] follows from (22)).
From Claim [6|and Corollary it follows that [P, z] € E5(N,y).

Claim7. Bp/(z, R+ 2r) = Bp(z, R+ 2r).

The inclusion “D” of this identity is obviously true. To prove that the reverse
inclusion “C” is also true, it suffices to note that Bp/(z, R + 2r) N N = (), which
is true because, if there is v € Bp/(z, R + 2r) N N, then

dn(y,v) <d(y,z)+d(z,v) <s+R+2r=25,

which contradicts that By (y, S) N P = .
From Claim [7| and Lemma it follows that [P, z] € Ugr,(M,z). Hence
[N,y] € EsoUr,(M,x). O

A subset A of a metric space X is called a nelﬂ if there is an € > 0 such that
dx(u, A) < eforall u € X, and it is called separated if there is some § > 0 such
that dx (a,b) > 0 for all a,b € A with a # b; the terms e-net and 0-separated are
also used in these cases.

A separated subset of a metric space is discrete and therefore closed. Hence,
every separated subset of a proper metric space is a proper metric space when
endowed with the induced metric.

If A C X is an e-net of a metric space (X, dx), then Hy, (X, A) < €. So, if
A is endowed with the induced metric from (X, dx), then dgy (X, z; A, x) < €

IThis term is used by Gromov with this meaning [6, Definition 2.14]. Other authors use it with
other meanings.
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for every z € A by (22)); thus, by Lemma[9.1] [4,z] € E5(X, z) for any 6 > e if
moreover X is proper and A separated.

Lemma 9.4. Let ¢ > 0. For every metric space M and every e-separated subset
S C M, there exists an e-separated e-net of M that contains S.

Proof. By Zorn’s lemma, the family of e-separated subsets of M that contain S,
ordered by inclusion, has a maximal element. It is easily checked that that maximal
element is an e-net. O

The following is some kind of reverse of Lemma[8.2]
Lemma9.5. If R,r,5 > 0, then Ug y4+s C Urs 0 Ug,,.

Proof. Let [M,z] € M, and [N,y] € Ugr+s(M,z). Then there is an admissible
metric, d, on M U N such that d(z,y) < ro+ sp and Hq r(M,z; N,y) < ro+ so
for some ro € (0,7) and sp € (0,s). By Lemma d may be assumed to be a
proper metric.

Take any € > 0 such that g + 2¢ < r and sp + 2¢ < s. By Lemma[9.4] there
are e-separated e-nets, A of By/(z, R) and B of By(y, R), such that x € A and
y € B.

For each u € Bys(x, R), there is some v € N such that d(u,v) < 9+ sp. Then
there is some v' € B so that dy (v,v’) < e. So

d(u,v") < d(u,v) +dn(v,0") <ro+ 80 +e,

giving d(u, B) < ro+sp+e. Similarly, d(v, A) < ro+sp+eforallv € By(y, R).

Let ¥ denote the set of pairs (u,v) € A x B such that d(u,v) < 19 + s + €
and min{dys(z,u),dn(y,v)} < R;in particular, (z,y) € X. The set X is finite
because A and B are separated and d is proper. For each (u,v) € 3, let I, , denote
an Euclidean segment of length d(u, v), whose metric is denoted by d,, ,,. Let h :
U(u,v)EE 0I,, — M U N be a map that restricts to a bijection h : 9I,,, — {u, v}
for all (u,v) € X. Then let

P=MUN)U, || luo-
(u,v)ex
The space M, N and each I, , may be viewed as subspaces of P;in particular,

0L, , = {u,v} in P. Let P be endowed with the metric d whose restriction to
M U N is d, whose restriction to each I, , is d,, ,, and such that

d(w,w') = min{dy,(w, u) + dar(u, v') + dy o (', 0'),
du,’U (’LU, U) + dN(U’ U/) + du’,v’(vla w,)}
for (u,v), (v/,v") € B, w € I, and w' € Iy 4.

Let P C P be the finite subset consisting of the points w € I, with (u,v) €

and
ro+ €

ro + So + 2€
Let 2 be the unique point in P N I ,, and consider the restriction of d to P.

dyp(w,u) = d(u,v) .



TURBULENT RELATIONS 35

If (u,v) € ¥ and w is the unique point in P N I,, ,,, then

R To+ €
d <d _
(u7w) - u’v(u’w) < ro + So + 2¢
Sod(x,z) <ro+e<r du,P)<ro+eforallu € A, and d(w, M) < ro+ ¢
for all w € P. Since A is an e-net in By (z, R), it also follows that d(u, P) <
ro + 2¢ for all u € Bys(x, R). Similarly, d(y, z) < s, d(v, P) < so + 2¢ for all

v € By(y, R), and d(w, N) < sg + € for all w € P. Thus
HJ’R(M,x;P,z) <rg+22e<r, HiR(N,y;P,Z) <sp+2<s,

obtaining [P, z] € Ur,(M,z) N Ugs(N,y) by Lemma[8.1] Therefore [N, z] €
UrsoUpy(M,x). O

d(u,v) <ro+e.

The following corollary gives Hypothesis [2}(ii).
Corollary 9.6. Uy, o E, C Es0Ug, for R,r,s > 0 and
T =R+2r+s+2max{r,s} .

Proof. Let S = R+ 2r + s. By Lemmas[8.2][0.3]and [0.5]
UT,T oE, C UT,T © UT,S - US,'I‘-I—S - US75 © UR,T’ C Eso UR,T .

In this case, Hypothesis [2}(iii) is the statement of the next lemma.

Lemma 9.7. Forallr,s > 0, [M,z] € M,, [N,y] € Es(M,x), and any neigh-
borhood V' of [N,y] in M., there is another neighborhood W of [N,y| in M.
such that

E, (W) B (Es(M,z)) C E-(V N Ey(M,z)) .

Proof. By Lemma [8.4] there is some S > 0 and some open neighborhood W of
[N, y]in M, such that, for all [N’ y'] € M, and [N",y"] € W,if (By: (v, S), V)
is isometric to (By#(y",S),y"), then [N, y'] € V. Since [N,y] € Urs(M,x)
for T'= S+ s + r, we can also assume that W C Ur 4(M, z).

For any [P, z] € E, (W) N E,(Es(M,x)), there are some [N1,y;] € W and
[No,y2] € Es(M,z) such that [P, z] € E,.(Ni,y1) N E.(N2,y2). There are
admissible metrics, d; on M LI Ny and d; on Ny LI P, so that dy(x,91) < s,
Hg, 7(M,z; N1,y1) < s, di(y1,2) < 7 and Hg r(N1,y1; P, 2) < r. Take a
sequence 1), T oo in R with Ty > T'; setalso 71 = T. For eachn € N,
let (N2, y2,,) denote an isometric copy of (N2,y2). Then there are admissible
metrics, da,, on M L No,, and da,, on Ny, Ul P, such that da (7, y2.,) < s,
Hdgyn,Tn (M7 I NQ,TL: y2,n) <s, d2,n(y2,n7 Z) < rand HJQ’an (NQ,na Y2.n; P, Z) <
T,

Let d denote the metric on M U Ny U (|2, N2,,) L P which extends d;, dy,
ds , and ng for all n € N, and such that

d(ua ’LU) = lnf{ dy (uv Ul) + Jl (Ulv U)),
d2,n(ua U2,n) + CZQ,n(UQ,naw) ‘ V1 € va Va.n € NQ,’m n e N}
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foru e M andw € P,

d(vi,vay) = inf{ di(vi,u) + dop(u,v2,p),
di(v1,w) + dap(w,v2) |u€e M, we P}

for v1 € Ny and v, € Na,,, and

d(v2,m, va,n) = Inf{ dom (Va,m, u) + don(u, v2,n),

C{27m(7)2’m, w) + C{Q,n(w,vgm) |lue M, we P}

for vam € Nay and vy, € Noy, with m # n. By Lemma [8.4] we can assume
that the metrics d1, d, da,, and do, are proper for all n € N, and therefore d is
proper as well. The set

n=0

N/ = BN1 (yh T) U <|_| (BNQ,n (y2,n’ Tn) \ BNz,n (3/2,717 Tn—l)))

is closed in M LI Ny U (||>2 N2,») U P, and therefore it becomes a proper metric
space with the restriction of d.

Then Hy(M,x; N',y1) < s and Hy(N',y1; P,z) < r, as in Claim[6] and so
dau(M,z; N',y1) < s and dgg(N',y1; P,z) < r by (22)), which in turn im-
plies [N, y1] € Es(M,z) N E.(P,z) by Lemma9.1} On the other hand, like in
Claim([7] it follows that By+(y1, S) = Bn, (1, S), obtaining [N', y1] € V because
[N1,y1] € W. Therefore [P, z] € E.(V N Es(M, x)). O

The fact that E i has more than one class (Hypothesis [3}(i)) is obvious because
any bounded metric space is at infinite GH distance from any unbounded one.
Hypothesis [3}(ii) is a consequence of the following result.

Lemma 9.8. For all [M,x|,[N,y] € M. and R,r > 0, there is some s > 0 such
that Ug (M, x) N Es(N,y) # 0.

Proof. Let A and B denote the balls of radius R 4 27 in M and N with centers x
and vy, respectively. For any so > dgr (A, z; B,y), let d be an admissible metric
on AU B such that d(x,y) < sp and Hy(A, B) < so. Then let d’ be the admissible
metric on M U N satisfying

d (u,v) = inf{dp(u,u") + d(u',v") +dy(v',v) |u' € A&V € B}

forall w € M and v € N. Like in the proof of Lemma it follows that d’ is
proper, and its restriction to A L B equals d; in particular, d’(z, y) < so.

Let A’ and B’ denote the balls of radius R + 2r + 5o in M and N with centers x
and v, respectively. The set N’ = A’ LI (N \ B') is closed in M LI N, and therefore
it becomes a proper metric space with the restriction of d’. Take any

s > max{sg, R+ 2r +d'(z, N\ B")} .
If N\ B’ # (), then
d (u,v) < dp(u,z) +d'(2,0) < R+ 2r + d'(x,0)
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forallv € N\ B’ and u € A’, obtaining
Hy(A,N\B)<R+2r+d(z,N\B')<s.

It follows that Hy (N, N') < s, and therefore dgp (N, y; N',x) < s by (22), ob-

taining [N’, z] € E4(N,y) by Lemma[9.1] Like in Claim[7] we also get By (x, R+
2r) = A, and therefore [N', z] € Ug (M, z) by Lemma 8.4 O

The proof of Hypothesis [B}(iii) is as follows. Let R,7 > 0 and [M,z] € M,,
and take any S > R and s > 0 such that s < r and R + 2 max{s,r — s} < S. Let
D denote the set of points [N, y] € M, such that there is some admissible metric,
d, on M U N so that d(z,y) < s, Hy (M, z;N,y) < sand Hy(M,N) < oo.
Thus D C US,S(M, x) N EGH(M, :L‘)

Lemma 9.9. D is dense in Ug s(M,x) N Eqgu (M, ).

Proof. It has to be shown that, for every 7', ¢,t' > 0 and [N,y] € Ugs(M,z) N
Bau (M, x;t'), the intersection Uz (N, y) N D # (. Let (N1, y1) and (N2, y2) be
two isometric copies of (N, y). There are admissible metrics, d; on M L Ny and
ds on M U Na, such that dy (z,y1) < s, Hgy r(M,z; N1,y1) < s, do(z,y2) <t
and Hg, (M, Ny) < t'. Let d denote the metric on M LI N7 LI No whose restrictions
to M LI Ny and M U N are d; and ds, respectively, and such that

d(vi,v2) = inf{ dy(v1,u) + da(u,v2) |u e M}

for all vy € N7 and vy € Na. Moreover, ds is proper by Lemma and dy can be
assumed to be proper by Lemma obtaining that d is proper as well. With

T' = max{S, T} + 2max{s,t} +t + s,

let A = By(x, T 4+ 2t'), By = Bn,(y1,T") and By = By, (y2,T"), and define
N’ = By LU (Ny \ By). Since N’ is closed in M LI N7 LI Ny, it becomes a proper
metric space with the restriction of d. We have d(z,y;) = dy(z,y1) < s. With
arguments used in Claims@and we get HCZ,R(M’ x; N’ y1) < s and

H;(M,N') < max{Hg, (A, By),t'} < 0.

It follows that [N', y1] satisfies the condition to be in D with the restriction of dto
the subset M LI N’ of M LI N7 LI No. On the other hand, since d(y1,2) < t' + s,
with the arguments of Claim[7] we also get

Bni(y1,T +2t) = By, (y1, T + 2t) = By(y, T + 2t)
and therefore [N', y1] € Ur+(N, y) by Lemma O

Let & be the set of points [M, z] € D such that M is separated (in itself). From
Lemma [9.4] it easily follows that £ is dgy-dense in D. Take any € > 0 such that
s+2e <rand R+ 2max{s+¢,r—s—e} <S.Let Abe a separated e-net of
M that contains =, whose existence is guaranteed by Lemma|9.4] and consider the
restriction of djs to A. Observe that [A, 2| € E,_s_(M,x) because r —s —e > .
Then the proof of Hypothesis [3}(iii) is completed by the following lemma.
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Lemma 9.10. Any point of £ can be joined to [ A, x| by a d¢p-continuous path in
Urr(M,x).

Proof. For any [N,y] € &, there is some admissible metric, d, on M U N such
that d(z,y) < s, so = Hgs(M,z;N,y) < sand s; := Hg(M,N) < oo.
Moreover d is proper by Lemma Observe that Hy g(A, z; N,y) < so + € and
Hy(A,N) < s +e

Let X be the family of pairs (u,v) € A x N such that d(u,v) < s; + € and, if
u € By(x,S) orv € By(y,S), then d(u,v) < sg + ¢ in particular, (z,y) € X.
Like in the proof of Lemma , define I, , and d,, , for each (u,v) € X, as well
ash | )ex = AUN,

(AUN) U, || Tuw,
(uv)GE

and the metric d on P. Since d is proper and A and NV are separated, the d-balls in
ALIN are finite. Therefore, any ball in P is contained in a finite union of segments
I, and so Pis proper.

Foreacht € I = [0,1], let P, C P be the subset consisting of the points
w € I, with dy »(w,u) = td(u,v) for (u,v) € X, and let z; denote the unique
point of /% N I, ,. Each P, is a discrete subspace of 18, and therefore it becomes

a proper metric space with the restriction of d. Moreover (Py, z9) = (A, ) and
(P1,z1) = (N,y). Forallt,t’ € I, (u,v) € ¥,w € P,NI,,andw' € Py N1,

d(w,w") = dy(w,w') = d(u,v) |t —t|

< {(51 +e€) |t —t'| forarbitrary (u,v) € ¥

23
(so+e€)|t—1t| ifue Ba(z,S)orve By(y,S) . @)

Thus d(z, z¢) < (so +€) [t — /| and H;(Py, Py) < (s1+¢€) |t —t|. By 22), it
follows that [P, z;] € Equ(M,z) for all t € I, and the mapping t +— [Py, z] is
dg g-continuous.

From (23),, it also follows that d(u, P,) < (so + )t for all u € By(x,S) and

t € I. Moreover the ball Bp, (2, S) is contained in the union of the segments I,, ,,
for (u,v) € ¥ withu € Ba(z,S) orv € By(y,S). So d(w, P;) < (so + €)t for
allw € Bp(z,S) by @]} It follows that

is(A @ Prz) < (so+e)t <s+e,
obtaining
[Py, 2] € Us ste(A,x) CUss4e0 Er—s—e(M,x) C Up,y(M,x)
by Lemmas [8.1]and [8.2] O

Hypotheses [TH3] have just been proved, and that suffices to obtain Theorem
for (dGH, EGH)-
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Remark 16. Like in Remark[15] it can be proved that () is residual in Bgy (M, ;1)
for all » > 0 if M is unbounded. In this case, for sequences 0 < 7, T 7 and
0 < R, 1 oo, consider the sets U, consisting of the points [N, y] € Bgp (M, x;r)
such that

H, (M \ Bar(z, Rn). N\ Bn (v, Rn)) >,

for every admissible metric, d, on M U N.

10. THE QI METRIC RELATION

Consider the notation of Sections [8]and O
Proposition 10.1. The fibers of Eqr are meager in M.

The proof of Propositionrequires an analysis of d¢g7, which in turn requires
an analysis of dgg and dp.

Recall that a map between metric spaces, ¢ : M — N, is called bi-Lipschitz if
there is some A > 1 such that

%dM(u, v) < dn(o(u), ¢(v)) < Adar(u,v)

for all u,v € M. The term A-bi-Lipschitz may be also used in this case.

Recall also that a (coarse) quasi-isometry of M to N is a bi-Lipschitz bijection
¢: A — Bfornets A C M and B C N. The existence of a quasi-isometry
of M to N is equivalent to the existence of a finite sequence of metric spaces,
M = My, ..., My, = N, such that dgp(Ma;—o, Ma;—1) < oo and there is a bi-
Lipschitz bijection My;_; — Mo; foralli € {1,...,k}. A pointed (coarse) quasi-
isometry is defined in the same way, by using a pointed bi-Lipschitz bijection be-
tween nets that contain the distinguished points. The existence of a pointed quasi-
isometry has an analogous characterization involving pointed Gromov-Hausdorff
distances and pointed bi-Lipschitz bijections.

As noted in Section [8] dp;, is the metric equivalence relation over M, de-
fined by setting dpip(M,z; N,y) equal to the infimum of all » > 0 such that
there is a pointed e”-bi-Lipschitz bijection ¢ : (M,x) — (N,y); in particular,
drip(M, x; N,y) = oo if there is no such a ¢. On the other hand, dg; (M, z; N, y)
equals the infimum of all sums

k
> dan(Maig, w2i2; Mai—1,02i-1) + duip(Mai—1, 32i-1; Mai, ;)
i=1
for finite sequences [M,z] = [My,xo],...,[Mak,z2x] = [N,y] in M,. For

[M,z] € M, and r > 0, the notation By(M,z;r) = By, ([M,x],r) and
Bqi(M,x;7) = Bag, ([M,],r) will be used.

Lemma 10.2. [f [N,y| € Ug,(M,z) and By(x,q) \ Bym(z,p) # 0 forr > 0
and R > q > p > 2r, then BN (y,q + 2r) \ Bn(y,p — 2r) # (.
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Proof. By hypothesis, there is some admissible metric d on MUN so that d(x,y) <
rand Hy p(M,x; N,y) < r, and there is some v € M such that p < d(x,u) < q.
Since Hy r(M,x; N,y) < r, there is some v € N so that d(u,v) < r. Then

dn(y,v) < d(z,u) + d(y, z) + d(u,v) < q+2r,
and, similarly, dy (y,v) > p — 2r, completing the proof. 0

Corollary 10.3. If dgy (M, z; N,y) < r and By(2,q) \ By (z,p) # 0 forr >0
and q > p > 2r, then BN (y,q + 2r) \ By (y,p — 2r) # 0.

Lemma 10.4. If dpip(M,x; N,y) < r and By(x,q) \ Bu(z,p) # 0 for some
r>0andq>p >0, then BNy(y,e"q) \ Bn(y,e"p) # 0.

Proof. By hypothesis, there is some pointed e”-bi-Lipschitz bijection ¢ : (M, z) —
(N,y), and there is some u € M such that p < d(z,u) < ¢. Then

dn(y, ¢(uv)) < e"dy(w,u) < e'q,

and, similarly, dx (y, ¢(u)) > e~ "p, showing the result. O

Proof of Proposition[I0.1] Recall that the pointed compact spaces define a class
of Eqp, which is meager in M, by Theorem (i) for (dgp, Eqr). Moreover
any metric space bi-Lipschitz equivalent to a bounded one is also bounded. So the
pointed compact metric spaces also form a class of FEg;. Thus, to prove Proposi-
tion it is enough to consider the fiber Eq;(M,y) for any unbounded proper
metric space M. Hence there are sequences p,, g, T oo such that g, > p, > 0

Claim 8. Let r,s > 0 and n € N so that p,, > 2r and 2s < e "(¢, — 2r). If
[N,y] € Bor(M, x;r), then

Bn(y,e"(qn +2r) +2s) \ Bn(y, e " (pn —2r) —25) # 0. (24)

To prove this assertion, fix any S > e" (g, + 2r). Since [N, y] € Bor(M, z;7),
there is a finite sequence, [M,x] = [My,z),. .., [Mag, xer] in M,, for some
positive integer k, such that [May, xo;] € Ug s(N,y) and

k
ZdGH(M2if2a$2if2; Mo, x9i-1) + drip(Mai—1, x2i—1; Moy, x9;) <1 .
i—1

Take 71, ..., 79, > 0 such that E?il rj < rand
> dGH(Mj,1,$]’,1;Mj,SCj) 1f]1s odd
r:
’ drip(Mj—1,2j-1; Mj,z;) if jis even

forj e {1,...,2k}. Let7; = Zi:l rq. Arguing by induction on j, using Corol-
lary [10.3]and Lemma([10.4] it follows that

B, (x, €™ (qn + 275)) \ Baty, (22k, €777 (qn — 275)) # 0
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for all 5. So

BMQk (:EZkv ET(Qn + QT)) \BMgk (:EQka eir(Qn - QT)) 7‘& 0.

Then follows by Lemma[10.2] completing the proof of Claim ]
Since Eqr(M,z) = Ur2; Bor(M,x;r), the result follows from the following
claim.

Claim 9. Bgi(M, z;r) is nowhere dense in M, for each 7 > 0.

Let [N,y] € Bgr(M,z;r). Given S,s > 0, there is some n € N such that
pn >2rand S < e (g, — 2r) — 2s. Thus is satisfied with these [N, y], r, s
and n. Let

N'=N\ (BN(% €' (qn +2r) +25) \ By (y,e™"(qn — 2r) — 25))
With the restriction of dy, N is a proper metric space with By (y, S) = By (y, S),
obtaining [N, y] € Ugs. But [N',y] & Bgr(M, z;r) by Claimbecause
Bni(y,€ (g +2r) +25) \ Bni(y,e " (pn — 2r) — 25) = 0.

So Uss(N,y) ¢ Bgr(M,z;r). Then Claim @ follows since s can be chosen
arbitrarily small, and S arbitrarily large by choosing n arbitrarily large. U
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