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ABSTRACT. This paper extends the theory of turbulence of Hjorth to certain
classes of equivalence relations that cannot be induced by Polish actions. It
applies this theory to analyze the quasi-isometry relation and finite Gromov-
Hausdorff distance relation in the space of isometry classes of pointed proper
metric spaces, called the Gromov space.
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1. INTRODUCTION

This article originates in the study of the generic geometry of the leaves of a
foliated space. That study aims at answering the following question: what geo-
metric properties are common to all (or to almost all, either in category theoretical
sense or in a measure theoretic sense) the leaves? Examples of such geometric
properties include: (a) number of ends; (b) growth type; (c) continuous spectrum;
(d) asymptotic dimension; (e) coarse cohomology.
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We begun that study as follows. Gromov [6, Chapter 3], [5] described a space,
the Gromov space of the title which is denoted here byM∗, whose points are isom-
etry classes of pointed, complete, proper metric spaces, and which is endowed with
a topology which resembles the compact open topology on the space of continuous
functions on R. A foliated space, X , endowed with a metric on the leaves under
which each leaf is a complete Riemannian manifold admits a canonical mapping
into the Gromov spaceM∗. This mapping assigns to a point x in X the isometry
class of the pointed holonomy covering of the leaf through x, with distinguished
point x. This canonical mapping is continuous if X is quasi-analytic [2], [7]; in
general it is continuous on the residual set of leaves without holonomy, and there-
fore it is Baire measurable.

The spaceM∗ supports several equivalence relations of geometric interest. For
example, the relation of being (coarsely) quasi-isometric, the relation of being at fi-
nite Gromov-Hausdorff distance, the relation of being bi-Lipschitz equivalent, and
others. Obviously the canonical mapping of X intoM∗ is invariant with respect to
the equivalence relation “being in the same leaf” overX and any of the equivalence
relations mentioned above overM∗.

Somewhat informally, a geometric property can be thought of as a mapping,
γ :M∗ → P , ofM∗ into a space P that is constant on the equivalence classes of
one of the equivalence relations overM∗ mentioned above. The general question
posed in the first paragraph is thus: what type of situations will make the mapping
X → P given as the composite of γ with the canonical mapping of X intoM∗ be
constant on a large saturated subset ofX? Fairly standard arguments of topological
dynamics prove that ifX is topologically ergodic (i.e. transitive, that is, has a dense
leaf) and γ and P have suitable topological properties, then the geometric invariant
must be constant on a residual saturated subset of X .

More generally, P may be endowed with an equivalence relation having suitable
topological properties and γ be invariant with respect to the geometric equivalence
relation over M∗ being studied and that equivalence relation over P . Then the
opening question is formulated thus: Is there a residual saturated subset of X over
which γ is constant up to equivalence in P ? This property is precisely formulated
below and is called generic ergodicity with respect to the relation over P .

The above lead us to investigate the structure of a variety of equivalence relations
in the Gromv space. Their dynamic complexity was reminiscent of the complex-
ity exhibited by the turbulent group actions of Hjorth [8], and this motivated the
development of the theory of turbulent relations carried out in this paper.

A section by section description of the contents of this paper now follows. In
Section 2 we analyze a topology on the space of subsets of a space appropriate
for working with equivalence relations. This topology is essentially the Vietoris
topology [13] but the properties that we need are not found on the literature on the
topic. These topological properties are of a categorical nature, and are needed to
obtain a new version (Theorem 2.17) of the Kuratowski-Ulam theorem [12, p. 222]
which describes how topological properties of a subset of a space over which an
equivalence relation is defined translate to properties of the intersection of that set
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with the orbits of the equivalence relation (indeed, our version of the Kuratowski-
Ulam theorem also applies to non-equivalence relations). The Kuratowski-Ulam
theorem is one of key tools for studying generic ergodicity of one relation with
respect to another.

In Section 3 we briefly review the basic concepts of classification of equivalence
relations. Complexity of an equivalence relation is quantified by comparing that
relation with one of the standard examples, like the identity relation over a space or
the relation “being on the same orbit” of a group action, for instance. Two concepts
used for describing the relative complexity of two equivalence relations, E over X
and F over Y , are reducibility and generic ergodicity. The relation E is Borel
reducible to F , denoted by E ≤B F , if there is an (E,F )-invariant Borel mapping
θ : X → Y (that is, θ takes equivalence classes ofE into equivalence classes of F )
such that the mapping θ̄ : X/E → Y/F induced by θ between quotient spaces is
injective. The relation E is generically F -ergodic if for any (E,F )-invariant Borel
mapping θ : X → Y there is a residual saturated subset C ⊂ X such the mapping
θ̄ : C/E → Y/F induced by θ between quotient spaces is constant.

The more elementary equivalence relations, called smooth or concretely classi-
fiable, are those Borel reducible to the identity relation over a standard Borel space.
For example, the equivalence relation of being isometric in the set of compact met-
ric spaces is smooth because the space of equivalence classes of this relation is
itself a Polish metric space when endowed with the Gromov-Hausdorff metric.

At a higher level of complexity are the equivalence relations that are classifi-
able by isomorphism classes of countable structures. A countable structure is a
structure on the natural numbers that is determined by a countable family of re-
lations. This set of countable structures is endowed with a Polish topology, and
carries a continuous action of S∞, the Polish group of permutations of the natural
numbers, so that two countable structures are isomorphic if and only if they are in
the same orbit of this S∞-action. Thus, an equivalence relation over a Borel space
is classifiable by countable structures if it is Borel reducible to the relation given
by the action of S∞ on the space of countable structures. A variety of examples of
equivalence relations that are classifiable by countable structures and which arise
in dynamical systems are given in Kechris [10], Hjorth [8, Preface].

A key concept in the analysis of the complexity of Polish group actions (clas-
sification by countable structures and generic ergodicity) is that of turbulence, in-
troduced by Hjorth [8]. For a Polish group action to be turbulent, not only the
action must be highly complex (transitive, minimal) but the group itself must be
highly complex (actions of locally compact groups are not turbulent). Precisely,
the action is turbulent when its orbits are dense and meager, and its local orbits
are somewhere dense, where the local orbits are the orbits of any restriction of the
given action to a local action of an open identity neighborhood in the group on an
open subset of the space.

The relations of being at finite Gromov-Hausdorff distance and being quasi-
isometric in the Gromov space M∗ are not reducible to an equivalence relation
given by a Polish group action [1]. Therefore, the theory of turbulence for group
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actions needs to be amplified to a theory of turbulence for general equivalence re-
lations. This amplification is carried out in this paper in the setting of uniform
equivalence relations. A uniform equivalence relation is a pair, (V, E), consist-
ing of a uniformity V with a distinguished entourage E which is an equivalence
relation. A first example of uniform equivalence relation arises from the contin-
uous action of a Polish group, G, on a Polish space, X . The uniformity on X
is generated by the entourages { (x, gx) | x ∈ X & g ∈ W }, where {W} is a
neighborhood system of the identity of G, and the equivalence relation is given by
xEGy if and only if gx = y for some g ∈ G. A second example arises from a
distance-like mapping, d : X ×X → [0,∞], that satisfies the standard properties
of a distance but it is allowed to have d(x, y) =∞ for some x, y ∈ X . The unifor-
mity is generated by { (x, x′) | d(x, x′) < ε }, ε > 0, and the equivalence relation
is given by xEdy if and only if d(x, y) < ∞. The pair (d,Ed) (or simply d) is
called a metric equivalence relation.

Generalizing the case of Polish actions, a uniform equivalence relation (V, E)
on a space X is called turbulent when the equivalence classes of E are dense and
meager, and its local equivalence classes are somewhere dense, where the local
equivalence classes are the equivalence classes of the equivalence relation on any
open subset U ⊂ X generated by (U × U) ∩ V for any entourage V of V .

As said, the main goal of this paper is to develop the theory of turbulent equiv-
alence relations and then use it to analyze the complexity of several metric equiv-
alence relations in the Gromov space, proving that they are turbulent and not re-
ducible to Polish actions (which in turn justifies our extension of the Hjorth turbu-
lent theory). A general scheme for this kind of analysis is described in Section 6,
and consists in a sequence of hypothesis that collective-wise will eventually guar-
antee that a metric equivalence relation that satisfies them is turbulent and is not
reducible to the equivalence relation given by a Polish action.

In Section 7, as a prelude to the study of the “turbulent dynamics” of the Gromov
space, we study the metric equivalence relation (d∞, E∞) on C(R) defined by the
supremum distance, where C(R) is equipped with the compact-open topology.

Section 8 reviews the construction of the Gromov space M∗, and the pointed
Gromov-Hausdorff distance with possible infinite values, dGH , between isometry
classes of pointed proper metric spaces. This distance defines the relation “be-
ing at finite Gromov-Hausdorff distance” over M∗, denoted by EGH . Another
equivalence relation overM∗ introduced in this section is “being quasi-isometric,”
denoted byEQI , which turns out to be induced by a distance function with possible
infinite values, dQI .

Sections 9 and 10 analyze the metric equivalence relations given by (dGH , EGH)
and (dQI , EQI) overM∗.

Our analysis culminates in the following theorem.

Theorem 1.1. If (d,E) is (d∞, E∞), (dGH , EGH) or (dQI , EQI), then:

(i) The metric equivalence relation (d,E) is turbulent.
(ii) E is generically EYS∞-ergodic for every Polish S∞-space Y .
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Parts (ii) of this result applies to the case of Y being the S∞-space of countable
structures and thus can be seen as justification of a metric space version of the
so called Gromov’s principle for discrete groups: “No statement about all finitely
presented groups is both non-trivial and true.”

Problems on the classification theory of metric spaces were brought to light by
Vershik [19]. That paper revisits the Uhryson space, a universal Polish metric
space (every Polish space is isometric to a closed subset of Uhryson space), and
uses it to show that the classification of Polish metric spaces up to isometry is not
smooth. The problem of describing the complexity of the classification of Polish
metric spaces up to isometry, and certain subfamilies of Polish metric spaces, was
taken up later in Gao-Kechris [4]. Work on the classification of the quasi-isometry
relation over the space of finitely generated groups was done by Thomas [18].

While the Gromov space and the Uhryson space are certainly not unrelated, they
are not interchangeable for analyzing our initial problem on the generic geometry
of the leaves of a foliated space. In particular, there is not such object as the
canonical mapping from a foliated space into the hyperspace of closed subsets
of Uhryson space.

Now that we have analyzed the dynamical structure of the Gromov space, it
makes sense to revisit the initial problem at the beginning of this introduction,
using our approach of studying generic geometric properties of the leaves of a foli-
ated space via the canonical mapping of the foliated space into the Gromov space.
For instance, we can formulate questions like what conditions on a foliated space
guarantee that the restriction of dGH or dQI to its canonical image inM∗ is turbu-
lent. It also makes sense to analyze how several conditions on the dynamics of the
foliated space affect generic geometric properties of its leaves. This is particularly
dramatic for codimenson one foliated manifolds with sufficient transverse smooth-
ness. For example, by a theorem of Duminy, an exceptional minimal set of one of
such foliations must contain a leaf with a Cantor set of ends, but it is not know if it
contains a residual set of leaves with a Cantor set of ends.

2. CONTINUOUS RELATIONS

Let 2 = {0, 1} denote the two-point set. If X is any set, then 2X , the set of
mappings X → 2, is naturally identified with the set of all subsets of X by means
of the characteristic mapping of a subset.

For a subset A ⊂ X , let

PA = {B ⊂ X | B ∩A 6= ∅ } .
There is a natural identification

2A = 2X \ PX\A . (1)

Moreover P∅ = ∅ and PX = 2X \ {∅}, and for any family {Ai | i ∈ I} of subsets
of X , PS

i∈I Ai
=
⋃
i∈I PAi and PT

i∈I Ai
⊂
⋂
i∈I PAi . If X is a topological

space, then 2X becomes naturally a topological space when endowed with the
topology that has the family {PU | U open in X} as a subbase. This is called the
Vietoris topology (Vietoris [20], Michael [14]). In what follows, provided thatX is
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a topological space and unless otherwise stated, 2X will always be endowed with
the Vietoris topology.

If B is a base for a topology on X , then{ ⋂
U∈C

PU | C is a finite subset of B
}

is a base for the Vietoris topology on 2X . It follows in particular that 2X is second
countable if X is second countable.

A (binary) relation, E, over sets, X and Y , is a subset E ⊂ X × Y . The sets X
and Y are called the source and target of E, respectively. The notation xEy means
(x, y) ∈ E. For x ∈ X , the (possibly empty) setE(x) = { y ∈ Y | xEy } is called
the target fiber of E over x. The relation E can be identified to its target fiber map
x ∈ X 7→ E(x) ∈ 2Y . More generally, the notation E(S) =

⋃
x∈S E(x) ∈ 2Y

will be used for each S ⊂ X . The target fiber map can also be used to realizeE(S)
as a subset of 2Y ; the context will clarify this ambiguity.

Definition 2.1. A relation, E, over two topological spaces, X and Y , is called
continuous if the target fiber map x ∈ X 7→ E(x) ∈ 2Y is continuous.

The following result follows directly from (1).

Lemma 2.2 ([15, Proposition 2.1]). A relation E ⊂ X × Y is continuous if and
only if {x ∈ X | E(x) ⊂ F} is closed in X for any closed F ⊂ Y .

Let πX and πY denote the factor projections of X × Y onto X and Y , respec-
tively. If A ⊂ X , B ⊂ Y , and x ∈ X , then

A ∩ E−1(PB) = πX(E ∩ (A×B)) , (2)

E(x) = πY (E ∩ ({x} × Y )) . (3)

The following lemma is an easy consequence of (2).

Lemma 2.3. A relation E ⊂ X × Y is continuous if and only if the restriction
πX |E : E → X is an open mapping.

For a relation, E, over X and Y , the opposite of E is the relation Eop over Y
and X given by

Eop = { (y, x) ∈ Y ×X | xEy } .
The target fibers of Eop are Eop(y) = E−1(P{y}), and are called source fibers of
E. Note that for all A ⊂ X and all B ⊂ Y ,

(Eop)−1(PA) = E(A) , (4)

(E ∩ (A×B))op = Eop ∩ (B ×A) . (5)

Because of (4), Eop : Y → 2X is continuous if and only if, for any open set
O ⊂ X , the setE(O) is open in Y . In the case of equivalence relations, it is usually
said that E is open when this property is satisfied; this term is now generalized to
arbitrary relations.
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Definition 2.4. A relation over topological spaces is called open if the opposite
relation is continuous, and it is called bi-continuous if it is continuous and open.

Relation E could also be open in the sense that the map E : X → 2Y is open;
this possible ambiguity will be clarified by the context.

If E is a symmetric relation over a space X , then the source and target fibers are
equal, which are simply called fibers of E, and so E is bi-continuous if and only if
E is continuous.

Example 2.5. The following are basic examples of continuous and bi-continuous
relations.

(i) If E is the graph of a map f : X → Y , then E (respectively, Eop) is continu-
ous just when f is continuous (respectively, open). In particular, the diagonal
∆X ⊂ X × X is a bi-continuous relation over X because it is the graph of
the identity map of X .

(ii) If E ⊂ X × Y is an open subset, then E is a bi-continuous relation over X
and Y .

(iii) If E is a continuous relation over X and Y , then E∩ (A×V ) is a continuous
relation over A and V , for any A ⊂ X and any open V ⊂ Y . Thus, by (5), if
E is bi-continuous, then E ∩ (U × V ) is a bi-continuous relation over U and
V , for all open subsets U ⊂ X and V ⊂ Y .

(iv) An equivalence relation is bi-continuous just when the saturation of any open
set is an open set. In particular, the equivalence relation defined by the orbits
of a continuous group action is bi-continuous, and the equivalence relation
defined by the leaves of any foliated space is also bi-continuous.

For any family of relations Ei ⊂ X × Y , i ∈ I , and any A ⊂ Y , the following
properties hold: (⋃

i

Ei
)−1(PA) =

⋃
i

E−1
i (PA) , (6)

(⋂
i

Ei
)−1(PA) ⊂

⋂
i

E−1
i (PA) ,

(⋃
i

Ei
)op =

⋃
i

Eop
i , (7)

(⋂
i

Ei
)op =

⋂
i

Eop
i . (8)

The following result is a direct consequence of (6) and (7).

Lemma 2.6. If Ei, i ∈ I , is a continuous (respectively, bi-continuous) relation
over X and Y , then

⋃
i∈I Ei is a continuous (respectively, bi-continuous) relation

over X and Y .

Remark 1. The intersection of two continuous relations is a relation that need not
be continuous. For example, if R1 and R2 are the relations over R given by the
graphs of two different linear mappings R → R, then R1 ∩ R2 = {(0, 0)} is
not a continuous relation. However, the intersection of two continuous relations is
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continuous when one of the relations is also an open subset (Example 2.5-(ii)), as
the next lemma shows.

Lemma 2.7. Let E be a continuous (respectively, bi-continuous) relation over X
and Y , and let F ⊂ X × Y be an open subset. Then E ∩ F is continuous (respec-
tively, bi-continuous) relation over X and Y .

Proof. Suppose that E is continuous. Let V ⊂ Y be an open set, and let x ∈
(E ∩ F )−1(PV ). Then there is some y ∈ (E ∩ F )(x) ∩ V = E(x) ∩ F (x) ∩ V .
Since F is an open subset ofX×Y that contains (x, y), there are open sets U ⊂ X
and W ⊂ Y such that (x, y) ∈ U ×W ⊂ F . By Example 2.5-(iii), E ∩ (U ×W )
is a continuous relation over U and W , and so (E ∩ (U ×W ))−1(PV ) is open in
U , hence in X . Since x ∈ (E ∩ (U ×W ))−1(PV ) ⊂ (E ∩ F )−1(PV ), this shows
that (E ∩ F )−1(PV ) is open in X , and hence that E ∩ F is a continuous relation.

If E is a bi-continuous relation, then E ∩ F is a bi-continuous relation because
of Example 2.5-(ii) and (8). �

The composition of two relations, E ⊂ X × Y and F ⊂ Y × Z, is the relation
F ◦ E ⊂ X × Z given by

F ◦ E = { (x, z) ∈ X × Z | ∃y ∈ Y such that xEy and yFz } .

Composition of relations is an associative operation and ∆X is its identity at X .
Moreover

(F ◦ E)op = Eop ◦ F op . (9)
If E ⊂ X×X is a relation, the symbol En, for positive n ∈ N, denotes the n-fold
composition E ◦ · · · ◦E, and E0 = ∆X . If E′ ⊂ X ′ × Y ′ is another relation over
topological spaces, let E × E′ be the relation over X ×X ′ and Y × Y ′ given by

E × E′ = { (x, x′, y, y′) ∈ X ×X ′ × Y × Y ′ | xEy and x′E′y′ } .

Note that
(E × E′)op = Eop × E′op

. (10)
For relations E ⊂ X × Y and G ⊂ X × Z, let (E,G) denote the relation over

X and Y × Z given by

(E,G) = { (x, y, z) ∈ X × Y × Z | xEy and xGz } .

Lemma 2.8. The following properties hold:
(i) If E and F are continuous (respectively, bi-continuous) relations, then F ◦E

is also continuous (respectively, bi-continuous) relation.
(ii) If E and E′ are continuous (respectively, bi-continuous) relations, then E ×

E′ is a continuous (respectively, bi-continuous) relation.
(iii) If E and G are continuous relations, then (E,G) is a continuous relation.

Proof. In (i) and (ii), the statements about continuity hold because

(F ◦ E)−1(PW ) = E−1
(
PF−1(PW )

)
,

(E × E′)−1(PV×V ′) = E−1(PV )× E′−1(PV ′) ,
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for W ⊂ Z, V ⊂ Y and V ′ ⊂ Y ′, and the statements about bi-continuity follow
from (9) and (10). Property (iii) is a consequence of (i) and (ii) since

(F,G) = (F ×G) ◦ (∆X ,∆X) ,

where (∆X ,∆X) is continuous because it is the graph of the diagonal mapping
x 7→ (x, x). �

Because of Lemma 2.8-(i), the continuous relations (and also the bi-continuous
relations) over topological spaces are the morphisms of a category with the oper-
ation of composition. The assignment E 7→ Eop is a contravariant functor of the
category of bi-continuous relations to itself.

Lemma 2.9. Let X be a topological space and let Y be a second countable topo-
logical space. The following properties are true.

(i) If E ⊂ X × Y is a continuous relation, then

{x ∈ X | E(x) is dense in Y }

is a Gδ subset of X .
(ii) If E,F ⊂ X × Y are continuous relations and E ⊂ F , then

{x ∈ X | E(x) is dense in F (x) }

is a Borel subset of X .

Proof. Let B be any countable base of non-empty open sets for the topology of Y .
Property (i) is true because

{x ∈ X | E(x) is dense in Y } =
⋂
U∈B

E−1(PU ) ,

and Property (ii) is true because

{x ∈ X | E(x) is dense in F (x) }

=
⋂
U∈B
{x ∈ X | x ∈ F−1(PU )⇒ x ∈ E−1(PU ) }

=
⋂
U∈B

(
E−1(PU ) ∪ (X \ F−1(PU ))

)
. �

Definition 2.10. An equivalence relation over a topological space is called (topo-
logically transitive (respectively, topologically minimal) if some equivalence class
is dense (respectively, every equivalence class is dense).

The following concepts and notation will be used frequently.

Definition 2.11. (i) A subset of a topological space is meager if it is the count-
able intersection of nowhere dense subsets.

(ii) A subset of a topological space is residual if it contains the intersection of a
countable family of dense open subsets.

(iii) A topological space is Baire if every residual subset is dense.
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Definition 2.12. Let P be a property that members of sets may or may not have.
Let X be a topological space.

(i) Property P is satisfied for residually many members of a topological space,
X , and denoted by (∀∗x ∈ X)P (x), if the set {x ∈ X | P (x) } is residual
in X .

(ii) Property P is satisfied for non-meagerly many members of X , and denoted
by (∃∗x ∈ X)P (x), if the set {x ∈ X | P (x) } is non-meager.

Corollary 2.13. If X is second countable and E is a topologically transitive, con-
tinuous equivalence relation over X , then E(x) is dense in X , ∀∗x ∈ X .

Proof. By Lemma 2.9-(i), the set

{x ∈ X | E(x) is dense in X }
is a dense Gδ subset of X . �

Lemma 2.14. Let X be a topological space, let Y be a second countable topolog-
ical space, and let E ⊂ X ×Y be a continuous relation. If every source fiber of E
is a Baire space, then the following properties hold:

(i) If A is a Gδ subset of Y , then

{x ∈ X | E(x) ∩A is residual in E(x) }
is a Gδ subset of X .

(ii) If B is an Fσ subset of Y , then

{x ∈ X | E(x) ∩B is non-meager in E(x)}
is an Fσ subset of X .

(iii) If B is a Borel subset of Y , then

{x ∈ X | E(x) ∩B is residual in E(x) }
and

{x ∈ X | E(x) ∩B is non-meager in E(x) }
are Borel subsets of X .

Proof. To prove (i), write A =
⋂
n∈N Un, where {Un}n∈N is a countable family

of open subsets of Y . For each n ∈ N , let Bn be a countable family of non-empty
open subsets of Un that is a base for the topology of Un. Then

{x ∈ X | E(x) ∩A is residual in E(x) }

=
⋂
n∈N
{x ∈ X | E(x) ∩ Un is residual in E(x) }

=
⋂
n∈N
{x ∈ X | E(x) ∩ Un is dense in E(x) }

=
⋂
n∈N

⋂
V ∈Bn

E−1(PV )

is a Gδ subset of X .
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Property (ii) is a consequence of (i) because, by [9, Proposition 8.26],

{x ∈ X | E(x) ∩B is non-meager in E(x) }
= X \ {x ∈ X | E(x) ∩ (X \B) is residual in E(x) } , (11)

for any B ⊂ X .
To prove (iii), let C be the collection of all subsets B ⊂ Y such that, for any

open subset U ⊂ Y , the sets

{x ∈ X | E(x) ∩ U ∩B is residual in E(x) ∩ U }

and

{x ∈ X | E(x) ∩ U ∩B is non-meager in E(x) ∩ U }

are both Borel subsets of X .
This collection C is a σ-algebra of subsets of X . Indeed, it is closed under

complementation, because of (11) and Example 2.5-(iii), and it is also closed under
countable intersections, because if {Cn | n ∈ N} is a countable family of members
of C, and U ⊂ Y is any open set, then{

x ∈ X | E(x) ∩ U ∩
⋂
n

Cn is residual in E(x) ∩ U
}

=
⋂
n

{x ∈ X | E(x) ∩ U ∩ Cn is residual in E(x) ∩ U }

is a Borel subset of X . Therefore, for any countable family B of open, non-empty,
subsets of U that is a base for the topology of U , by [9, Proposition 8.26],{

x ∈ X | E(x) ∩ U ∩
⋂
n

Cn is non-meager in E(x) ∩ U
}

=
⋃
V ∈B

{
x ∈ X | E(x) ∩ V ∩

⋂
n

Cn is residual in E(x) ∩ V
}

=
⋃
V ∈B

⋂
n

{x ∈ X | E(x) ∩ V ∩ Cn is residual in E(x) ∩ V }

is a Borel subset of X , and so
⋂
nCn ∈ C.

The collection C contains all the open subsets of X . Indeed, if V ⊂ Y is any
open set, then use Example 2.5-(iii), and apply (i) and [9, Proposition 8.26] to
obtain that

{x ∈ X | E(x) ∩ U ∩ V is non-meager in E(x) ∩ U} = E−1(PU∩V ) .

Therefore C is a σ-algebra that contains all the open subsets of X , and thus it also
contains all the Borel subsets of X , which establishes (iii). �

Lemma 2.15. Let E ⊂ X × Y be an open relation over X and Y . If A ⊂ B ⊂ Y
and A is dense in B, then E−1(PA) is dense in E−1(PB).



12 J.A. ÁLVAREZ LÓPEZ AND A. CANDEL

Proof. Let O be an open subset of X . Since E(O) is open in Y and A dense in B,

O ∩ E−1(PB) 6= ∅ ⇐⇒ E(O) ∩B 6= ∅
=⇒ E(O) ∩A 6= ∅ ⇐⇒ O ∩ E−1(PA) 6= ∅ . �

Lemma 2.16. Let E be a bi-continuous relation over the topological spaces X
and Y , and assume that Y is second countable. If B is open and dense in Y , then
B ∩ E(x) is open and dense in E(x) ∀∗x ∈ X .

Proof. Let {Un}n∈N be a countable base for the topology of Y . Write

On =
(
X \ E−1(PUn)

)
∪ E−1(PUn∩B) .

The boundary ∂E−1(PUn) is a meager set in X because E−1(PUn) is open in X .
Since Un ∩ B is dense in Un, Lemma 2.15 implies that E−1(PUn∩B) is dense in
E−1(PUn). Hence (

X \ E−1(PUn)
)
∪ E−1(PUn∩B)

is open and dense in X \ ∂E−1(PUn), and therefore the interior of On is open and
dense in X . This proves that

⋂
nOn is a residual subset of X . If x is in

⋂
n∈N On,

then E(x) ∩ B is dense in E(x), for otherwise there would be some n in N such
that E(x) ∩ B ∩ Un = ∅ and E(x) ∩ Un 6= ∅, which conflicts with the definition
of On. �

The following is a generalization of the Kuratowski-Ulam Theorem [12, p. 222].

Theorem 2.17. LetX and Y be topological spaces, with Y second countable, and
let E be a bi-continuous relation over X and Y . The following are true:

(i) if A ⊂ Y has the Baire property, then A ∩ E(x) has the Baire property in
E(x) ∀∗x ∈ X;

(ii) if A is meager in Y , then A ∩ E(x) is meager in E(x) ∀∗x ∈ X;
(iii) if A is residual in Y , then A ∩ E(x) is residual in E(x) ∀∗x ∈ X .

Furthermore, if E(x) is dense in Y and if E(x) is a Baire space for residually
many x ∈ X , then the converses to (ii) and (iii) are also true.

Proof. Lemma 2.16 implies (iii), which in turn implies (ii).
To prove (i), suppose that A ⊂ Y has the Baire property. This means that

A = U4M for some meager set M ⊂ Y and some open set U ⊂ Y . So

A ∩ E(x) =
(
U ∩ E(x)

)
4
(
M ∩ E(x)

)
for all x ∈ X . Here, U ∩E(x) is open in E(x), and M ∩E(x) is meager in E(x)
∀∗x ∈ X by (ii).

Assume next that E(X) is dense in Y and that E(x) is a Baire space ∀∗x ∈
X . Let A be a non-meager subset of Y with the Baire property. Because of [9,
Proposition 8.26], there is a non-empty open U ⊂ Y such that A∩U is residual in
U ; hence, by (iii), A∩U ∩E(x) is residual in U ∩E(x) ∀∗x ∈ X . Because of [9,
8.22],A∩U has the Baire property inX , and thus in U ; hence, by (i),A∩U∩E(x)
has the Baire property in U ∩E(x) ∀∗x ∈ X . Because E is continuous and E(X)
is dense in Y , E−1(PU ) is an open non-empty subset of X . Since E(x) is also
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a Baire space ∀∗x ∈ X , it follows from [9, Proposition 8.26] that A ∩ E(x) is
not meager in E(x) ∀∗x ∈ E−1(PU ). Thus ∃∗x ∈ X such that A ∩ E(x) is
not meager in E(x). This proves the converse of (ii), which in turn implies the
converse of (iii). �

Remark 2. The classical Kuratovski-Ulam Theorem (loc. cit., cf. also [9, Theo-
rem 8.41]) is obtained from Theorem 2.17 by taking X = Y = X1 ×X2, where
X1 and X2 are second countable spaces, and E equal to the equivalence relation
whose equivalence classes are the fibers {x1} ×X2 for x1 ∈ X1.

Corollary 2.18. Let X and Y be second countable topological spaces, and let
A,E ⊂ X × Y . Suppose that E is a bi-continuous relation whose source and
target fibers are Baire spaces. Then (x, y) ∈ A ∀∗y ∈ E(x) ∀∗x ∈ X if and only
if (x, y) ∈ A ∀∗x ∈ Eop(y) ∀∗y ∈ Y .

Proof. Lemma 2.3 implies that the restrictions of the projections πX and πY to
E are open mappings. Hence, by Example 2.5-(i), their corresponding graphs,
ΠE,X ⊂ E ×X and ΠE,Y ⊂ E × Y , are bi-continuous relations. Moreover, for
x ∈ X and y ∈ Y ,

Πop
E,X(x) = {x} × E(x) , Πop

E,Y (y) = Eop(y)× {y} ,
A ∩Πop

E,X(x) = {x} × (A ∩ E)(x) , A ∩Πop
E,Y (y) = (A ∩ E)op(y)× {y} .

Then, by Theorem 2.17,

(x, y) ∈ A∀∗y ∈ E(x) ∀∗x ∈ X
⇐⇒ (A ∩ E)(x) is residual in E(x) ∀∗x ∈ X
⇐⇒ A ∩ E is residual in E

⇐⇒ (A ∩ E)op(y) is residual in Eop(y) ∀∗y ∈ Y
⇐⇒ (x, y) ∈ A ∀∗x ∈ Eop(y) ∀∗y ∈ Y . �

Corollary 2.19. The following properties hold:
(i) Let X and Y be second countable topological spaces, and let En ⊂ X × Y

be a bi-continuous relation for each n ∈ N. If A ⊂ X and B ⊂ Y are
residual subsets, then there are residual subsets C ⊂ A andD ⊂ B such that
D∩En(x) is residual inEn(x) for all x ∈ C and all n ∈ N, and C∩Eop

n (y)
is residual in Eopn (y) for all y ∈ D and all n ∈ N.

(ii) Let X be a second countable topological space, and En ⊂ X × X a bi-
continuous relation for each n ∈ N. If A ⊂ X is a residual subset, then
there is some residual subset C ⊂ A such that C ∩ En(x) is residual in
En(x) for all x ∈ C and all n ∈ N.

Proof. To prove (i), define sequences of residual subsets, Ci ⊂ X and Di ⊂ Y , by
the following induction process on i ∈ N. Set C0 = A and D0 = B. Assuming
that Ci and Di have been defined, let

Ci+1 = {x ∈ X | Di ∩ En(x) is residual in En(x) ∀∗x ∈ X & ∀n ∈ N } ,
Di+1 = { y ∈ Y | Ci ∩ Eop

n (y) is residual in Eop
n (y) ∀∗y ∈ Y & ∀n ∈ N } .
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By Theorem 2.17, Ci is residual in X and Di is residual in Y , for all i ∈ N,
and therefore C =

⋂
i∈NCi is residual in A and D =

⋂
i∈NDi is residual in B.

Moreover, for all n ∈ N, D ∩ En(x) =
⋂
i∈N(Di ∩ En(x)) is residual in En(x)

for all x ∈ C, and C ∩ Eop
n (y) =

⋂
i(Ci ∩ E

op
n (y)), is residual in Eop

n (y), for all
y ∈ D.

To prove (ii), let C0 = A and, assuming that Ci has been defined, let

Ci+1 = {x ∈ X | Ci ∩ En(x) is residual in E(x) ∀∗x ∈ X & ∀n ∈ N } .
By Theorem 2.17, Ci is residual in X , for all i ∈ N. Therefore C =

⋂
i∈NCi is

residual in A, and C ∩ En(x) =
⋂
i∈N(Ci ∩ En(x)) is residual in En(x), for all

x ∈ C and all n ∈ N. �

3. CLASSIFICATION AND GENERIC ERGODICITY

Let X and Y be topological spaces, and let E ⊂ X × X and F ⊂ Y × Y be
equivalence relations. A mapping, θ : X → Y , is called (E,F )-invariant if

xEx′ =⇒ θ(x)Fθ(x′)

for all x, x′ ∈ X . Such (E,F )-invariant mapping θ induces a mapping, denoted
by θ̄ : X/E → Y/F , between the corresponding quotient spaces.

The relation E is said to be Borel reducible to F , denoted by E ≤B F , if there
is an (E,F )-invariant Borel mapping θ : X → Y such that

xEx′ ⇐⇒ θ(x)Fθ(x′)

for all x, x′ ∈ X; i.e., the induced mapping θ̄ : X/E → Y/F is injective. If
E ≤B F and F ≤B E, then E is said to be Borel bi-reducible with F , and is
denoted by E ∼B F .

The relation E is said to be generically F -ergodic if, for any (E,F )-invariant,
Baire measurable mapping θ : X → Y , there is some residual saturated C ⊂ X
such that θ̄ : C/(E ∩ (C × C))→ Y/F is constant.

Remark 3. If E is a generically F -ergodic relation over X , then any equivalence
relation over X that contains E is also generically F -ergodic.

The partial pre-order relation ≤B establishes a hierarchy on the complexity of
equivalence relations over topological spaces. Two key ranks of this hierarchy are
given by the following two concepts of classification of relations. In the first one,
E is said to be concretely classifiable (or smooth, or tame) if E ≤B ∆R (recall
that ∆R ⊂ R×R denotes the diagonal). This means that the equivalence classes
of E can be distinguished by some Borel mapping X → R.

Theorem 3.1. LetX and Y be second countable topological spaces. IfE is a con-
tinuous, topologically transitive equivalence relation overX , thenE is generically
∆Y -ergodic.

Proof. Let θ : X → Y be (E,∆Y )-invariant and Baire measurable. By [9, The-
orem 8.38], θ is continuous on some residual saturated set C0 ⊂ X . By Corol-
lary 2.13, there is residual saturated C1 ⊂ X such that E(x) is dense in X , for all
x ∈ C1. Then C0 ∩ C1 is a residual subset of X where θ is constant. �
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Remark 4. In the above proof, if X is a Baire space, then C0 ∩ C1 6= ∅.

Corollary 3.2. Let X be a second countable space and let E be a continuous
equivalence relation over X . If E is topologically transitive, then any E-saturated
subset of X that has the Baire property is either residual or meager.

Proof. For any saturated subset of X with the Baire property, apply Theorem 3.1
to its characteristic function X → 2. �

Corollary 3.3. LetX be a second countable Baire space and letE be a continuous
equivalence relation over X . If E is topologically transitive and its equivalence
classes are meager subsets of X , then E is not concretely classifiable.

Proof. By Theorem 3.1, each (E,∆R)-invariant Borel map θ : X → R is constant
on some residual saturated subset of X . So θ̄ : X/E → R/∆R ≡ R cannot be
injective because X is a Baire space and the equivalence classes are meager. �

The second classification concept can be defined by using
∏∞
n=1 2Nn

endowed
with the product topology, which is a Polish space. Each element of

∏∞
n=1 2Nn

can
be considered as a structure on N defined by a sequence (Rn), where each Rn is a
relation over N with arity n. Two such structures are isomorphic when they corre-
spond by some permutation of N, which defines the isomorphism relation ∼= over∏∞
n=1 2Nn

. Then a relation E is classifiable by countable structures (or models) if
E ≤B ∼=. This means that there is some Borel map θ : X →

∏∞
n=1 2Nn

such that
xEx′ if and only if θ(x) ∼= θ(x′). Here, it is also possible to use the structures on
N defined by arbitrary countable relational languages, cf. [8, Section 2.3].

The equivalence relation defined by the action of a group G on a set X will be
denoted by EXG ; in this case, the notation O(x) will be used for the orbit of each
x ∈ X instead of EXG (x). If G is a Polish group, the family of all relations defined
by continuous actions of G on Polish spaces has a maximum with respect to ≤B ,
which is unique up to ∼B and is denoted by E∞G [3, 11].

As a special example, the group S∞ of permutations of N becomes Polish with
the topology induced by the product topology of NN, where N is considered with
the discrete topology. Then the canonical action of S∞ on

∏∞
n=1 2Nn

defines the
isomorphism relation ∼= over the space of countable structures, which is a repre-
sentative of E∞S∞ [8].

Classification by countable structures and generic ergodicity are well understood
for equivalence relations defined by Polish actions in terms of a dynamical concept
called turbulence which was introduced by Hjorth [8].

4. TURBULENT UNIFORM RELATIONS

A uniform equivalence relation, or simply a uniform relation, over a set, X ,
is a pair, (V, E), consisting of a uniformity V on X and an equivalence relation
E over X such that E ∈ V . Note that (V, E) is determined by the entourages
(members of V) that are contained in E, and that V induces a uniform structure on
each equivalence class of E.
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One important example of a uniform relation is that given by the action of a
topological group, G, on a set, X . This is of the form (V, EXG ), where V is the
uniform structure on X generated by the entourages

VW = { (x, gx) | x ∈ X & g ∈W } , (12)

where W belongs to the neighborhood system of the identity of G. Thus a uniform
relation over a topological space can be considered as a generalized dynamical
system.

Another important example of uniform relation is the following. A metric (or
distance function) with possible infinite values on a set is a function d : X ×X →
[0,∞] satisfying the usual properties of a metric (d vanishes just on the diagonal of
X×X , is symmetric and satisfies the triangle inequality). It defines an equivalence
relation over X denoted by EXd and given by xEXd y if and only if d(x, y) < ∞.
There is a uniform relation induced by d of the form (V, EXd ), where a base of V
consists of the entourages

Vε = { (x, y) ∈ X ×X | d(x, y) < ε } . (13)

The term metric equivalence relation (or metric relation) will be used for the pair
(d,EXd ) (or even for d). Like the usual metrics, metrics with possible infinite
values induce a topology which has a base of open sets consisting of open balls;
unless otherwise indicated, the ball of center x and radius R will be denoted by
BX(x,R) or Bd(x,R), or simply by B(x,R).

Remark 5. Other generalizations of metrics also define uniform relations, like
pseudo-metrics with possible infinite values, defined in the obvious way, or when
the triangle inequality is replaced by the condition d(x, y) ≤ ρ

(
d(x, z) + d(z, y)

)
for some ρ > 0 and all x, y, z ∈ X (generalized pseudo-metrics with possible
infinite values). They give rise to the concepts of pseudo-metric relation and gen-
eralized pseudo-metric relation.

Remark 6. Let d and d′ be metric relations over X that induce respective uniform
relations (V, E) and (V ′, E′). If d′ ≤ d, then V ⊂ V ′ and E ⊂ E′.

Definition 4.1. Let (V, E) be a uniform relation over a topological space X . For
any non-empty open U ⊂ X and any V ∈ V with V ⊂ E, the set

E(U, V ) =
∞⋃
n=0

(V ∩ (U × U))n

is an equivalence relation over U called a local equivalence relation. TheE(U, V )-
equivalence class of any x ∈ U is called a local equivalence class of x, and denoted
by E(x, U, V ).

For a relation given by the action of a group G on a space X , the local equiva-
lence classes are called local orbits in Hjorth [8], and the notation O(x, U,W ) is
used instead of EXG (x, U, V ) when V = VW according to (12). Similarly, for a
uniform relation induced by a generalized pseudo-metric d on a setX , the notation
EXd (x, U, ε) is used instead of EXd (x, U, V ) when V = Vε according to (13).
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Definition 4.2. A uniform relation is called turbulent if:
(i) every equivalence class is dense,

(ii) every equivalence class is meager, and
(iii) every local equivalence class is somewhere dense.

Remark 7. Definition 4.2 does not correspond exactly to the definition of turbu-
lence introduced by Hjorth for Polish actions [8, Definition 3.12]. To generalize
exactly Hjorth’s definition, condition (iii) of Definition 4.2 should be replaced with
condition (iii’):

(iii’) every equivalence class meets the closure of each local equivalence class.
In fact, (i) already follows from (iii’). In the case of Polish actions, (iii) and (iii’)
can be interchanged in the definition of turbulence by [8, Lemmas 3.14 and 3.16];
thus Definition 4.2 generalizes Hjorth’s definition. But in our setting, that equiva-
lence is more delicate and our results become simpler by using (iii).

Remark 8. Let (V, E) and (V ′, E′) be uniform relations over a topological space
X such that V ⊂ V ′ and E ⊂ E′. If the local equivalence classes of (V, E)
are somewhere dense (Definition 4.2-(iii)), then the local equivalence classes of
(V ′, E′) are also somewhere dense.

Example 4.3. The following simple examples illustrate the generalization of the
concept of turbulence for uniform relations.

(i) If E is an equivalence relation over a topological space X , then the family
V = {V ⊂ X × X | E ⊂ V } is a uniformity on X , and (V, E) is a
uniform relation. Therefore E is the only entourage of V contained in E, and
E(x, U,E) = E(x) ∩ U for any open U ⊂ X and all x ∈ U , so it follows
that (V, E) is turbulent if the equivalence classes of E are dense and meager.

(ii) Let G be a first countable topological group whose topology is induced by a
right invariant metric dG. Suppose that G acts continuously on the left on a
topological space X . Then this action induces a pseudo-metric relation d on
X with EXd = EXG and

d(x, y) = inf{ dG(1G, g) | g ∈ G & gx = y }
for (x, y) ∈ EXG , where 1G denotes the identity element of G. The pseudo-
metric relation d induces the same uniform relation as the action of G on X ,
and therefore d is turbulent if and only the action is turbulent.

(iii) Let Z be the additive group of integers with the discrete topology, and let
G ⊂ ZN denote the topological subgroup consisting of the sequences (xn)
such that xn = 0 for all but finitely many n ∈ N. For some fixed irrational
number θ, consider the continuous action ofG on the circle S1 ≡ R/Z given
by (xn) · [r] = [r + θ

∑
n xn], where [r] is the element of S1 represented by

r ∈ R. The orbits of this action are dense and countable. For each N ∈ N,
the sets

WN = { (xn) ∈ G | xn = 0 ∀n ∈ {0, . . . , N} }
are clopen subgroups ofGwhich form a base of neighborhoods of the identity
element. The induced action of each WN on S1 has the same orbits as G; so
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O([r], U,WN ) = U∩O([r]) for all openU ⊂ S1 and each [r] ∈ U . It follows
that this action is turbulent. In fact, the uniform equivalence relation induced
by this action is of the type described in (i): we have ES

1

G ⊂ V for each
entourage V . Moreover, for any invariant metric on G, the induced pseudo-
metric relation d on S1 is determined by d([r], [s]) = ∞ if O([r]) 6= O([s])
and d([r], [s]) = 0 if O([r]) = O([s]). However, the action of G on S1 given
by (xn) · [r] = [r+θx0] has the same orbits but is not turbulent: each point is
a local orbit. Indeed this second action induces the same uniform equivalence
relation as the action of Z given by x · [r] = [r + θx], which is not turbulent
because Z is locally compact.

Definition 4.4. A uniform relation (V, E) on a space X is generically turbulent if:
(i) the equivalence class of x is dense in X ∀∗x ∈ X ,

(ii) every equivalence class is meager, and
(iii) any local equivalence class of x is somewhere dense ∀∗x ∈ X .

5. TURBULENCE AND GENERIC ERGODICITY

From now on, only metric relations over topological spaces will be considered
because that suffices for the applications given in this paper. Some restriction on
the topological structure of the space, and some compatibility of that structure with
the metric relation will be required, and these are given in the following definition;
they are restrictive enough to prove the desired results, and general enough to be
satisfied in the applications.

Definition 5.1. A metric relation d on a space X is said to be of type I if:
(i) X is Polish;

(ii) the topology induced by d on X is finer or equal than the topology of X; and
(iii) there is a family E of relations over X such that:

(a) each E ∈ E is symmetric,
(b) each E ∈ E is a Gδ subset of X ×X ,
(c) for each r > 0, there are some E,F ∈ E so that

E(x) ⊂ Bd(x, r) ⊂ F (x)

for all x ∈ X ,
(d) for each E ∈ E , there are some r, s > 0 so that

Bd(x, r) ⊂ E(x) ⊂ Bd(x, s)

for all x ∈ X ,
(e) each E ∈ E is continuous, and
(f) for all E,F,G ∈ E and x ∈ X , if E ◦ F ⊃ G, then E ∩ (F (x)×G(x))

is an open relation over F (x) and G(x).

Remark 9. In Definition 5.1, observe the following:
(i) The family E can be chosen to be countable and completely ordered by inclu-

sion; that is, E = {En | n ∈ Z} so that Em ⊂ En if m ≤ n.
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(ii) EachE ∈ E is aGδ subset ofX and, for each x ∈ X ,E(x) ≡ E∩({x}×X)
is a Gδ subset of X ≡ X × {x}. Therefore, by [9, Theorem 3.11], E and
E(x) are Polish subspaces of X ×X and X , respectively; in particular, they
are Baire spaces.

(iii) SinceEXd =
⋃
E∈E E, a metric relation of type I is continuous, by Lemma 2.6;

however, its fibers need not be Polish spaces.
(iv) By properties (iii)-(a),(f), for all E,F,G ∈ E and x ∈ X , if E ◦G ⊃ F , then

E ∩ (F (x)×G(x)) is a continuous relation over F (x) and G(x).
(v) It will become clear that the general results presented in this paper hold if

the metric equivalence relation is of type I only on some dense Gδ subset.
For the sake of simplicity, that generality is avoided since the conditions of
Definition 5.1 are satisfied in applications to be given.

Lemma 5.2. Let d be a metric relation of type I over a space X , let E = {En |
n ∈ Z } be a family of subsets of X ×X satisfying the conditions of Definition 5.1
and Remark 9-(i). Let G be a Polish group and let Y be a Polish G-space. If
θ : X → Y is an (EXd , E

Y
G )-invariant Borel map, then, for any neighborhood W

of the identity element 1G inG, ∀` ∈ Z, ∀∗x ∈ X , and ∀∗x′ ∈ E`(x), there is some
open neighborhood U of x inX such that, ∀k ∈ Z and ∀x′′ ∈ U ∩Ek(x)∩E`(x′),
∃g ∈W so that g · θ(x) = θ(x′′).

Proof. Fix an open neighborhood W of 1G in G. The result follows from Corol-
lary 2.18 and the following Claim 1.

Claim 1. ∀` ∈ Z, ∀x ∈ X and ∀∗x′ ∈ E`(x), there exists some open neighborhood
U of x′ in X such that, ∀k ∈ Z and ∀∗x′′ ∈ U ∩ Ek(x′) ∩ E`(x), ∃g ∈ W so that
g · θ(x′) = θ(x′′).

To prove this claim, let W ′ be a symmetric open neighborhood of the identity
1G ∈ G such that W ′2 ⊂W . Since G is a Polish group, there are countably many
elements gi ∈ G, i ∈ N, such that G ⊂

⋃
i∈NW ′gi. Therefore, given ` ∈ Z and

x ∈ X , the set θ(E`(x)) ⊂
⋃
i∈NW ′gi · θ(x). The preimage of W ′gi · θ(x) via

the mapping θ : E`(x) → Y is analytic in E`(x) because W ′gi · θ(x) is analytic
[9, Proposition 14.4-(ii)]. Hence it has the Baire property [9, Theorem 21.6], and
so there are open subsets Oi ⊂ E`(x) and residual subsets Ci ⊂ Oi such that⋃
iOi is dense in E`(x) and θ(Ci) ⊂W ′gi · θ(x). By using Definition 5.1-(iii)-(f)

and Remark 9-(iv) applied to the relation Ek ∩ (E`(x) × E`(x)) over E`(x), and
by Corollary 2.19-(ii) and Example 2.5-(iii), it follows that there is some residual
Di ⊂ Ci such that Ek(x′) ∩ Di is residual in Ek(x′) ∩ Oi for all x′ ∈ Di and
k ∈ Z.

The union A =
⋃
iDi is residual in E`(x). If x′ ∈ A, then x′ ∈ Di for some i

and so θ(x′) = g′gi ·θ(x) for some g′ ∈W ′. Let U be any open neighborhood of x′

inX so thatU∩E`(x) ⊂ Oi. ThenU∩Ek(x′)∩Di is residual inU∩Ek(x′)∩E`(x)
∀k ∈ N. Moreover, for each x′′ ∈ Ek(x′) ∩ Di, there is some g′′ ∈ W ′ so that
θ(x′′) = g′′gi · θ(x). Therefore, if

g = g′′g′
−1 ∈W ′W ′−1 ⊂W ,
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then
g · θ(x′) = gg′gi · θ(x) = g′′gi · θ(x) = θ(x′′) ,

which completes the proof of Claim 1. �

Corollary 5.3. Under the conditions of Lemma 5.2, for any neighborhood W of
the identity element 1G of G and ∀∗x ∈ X , ∃k ∈ Z such that, ∀∗x′ ∈ Ek(x),
∃g ∈W so that g · θ(x) = θ(x′).

Proof. Fix any ` ∈ Z and any open neighborhood W of 1G in G. Then, ∀∗x ∈
X and ∀∗x′ ∈ E`(x), let U be an open neighborhood of x in X satisfying the
statement of Lemma 5.2. By Definition 5.1-(ii),(iii)-(c) and Remark 9-(i), there is
some k ≤ ` so that Ek(x) ⊂ U , obtaining that, ∀x′′ ∈ Ek(x)∩E`(x′), ∃g ∈W so
that g · θ(x) = θ(x′′). Then the result follows from Theorem 2.17, Definition 5.1-
(iii)-(f) and Remark 9-(iv) with the relation E` ∩ (E`(x′) × Ek(x′)) over E`(x′)
and Ek(x′). �

Theorem 5.4. Let d be a metric relation of type I on a space X and let Y be a Pol-
ish S∞-space. If there are residually many x ∈ X for which any local equivalence
class of x is somewhere dense, then EXd is generically EYS∞-ergodic.

Proof. Let θ : X → Y be an (EXd , E
Y
S∞

)-invariant Borel map. Consider a family
of subsets of X × X , E = {En | n ∈ Z }, satisfying the conditions of Defini-
tion 5.1 and Remark 9-(i). The sets

WN = {h ∈ S∞ | h(`) = ` ∀` ≤ N } ,
with N ∈ N, form a base of neighbourhoods of the identity 1S∞ in S∞, which are
clopen subgroups. Define I : X ×N→ N ∪ {∞} by setting I(x,N) equal to the
least ` ∈ N such that, ∀∗x′ ∈ E−`(x), ∃h ∈WN so that h ·θ(x) = θ(x′) if there is
such an `, and setting I(x,N) =∞ if there is not such an `. Let N and N ∪ {∞}
be endowed with the discrete topologies.

Claim 2. I is Baire measurable.

The proof of Claim 2 is as follows. Let `,N ∈ N. The set

SN = { (y, h · y) | y ∈ Y, h ∈WN }
is analytic in Y × Y , and E−` is a Polish space by Remark 9-(ii). So R`,N =
E−` ∩ (θ × θ)−1(SN ) is analytic in E−` [9, Proposition 14.4-(ii)], and therefore
R`,N has the Baire property [9, Theorem 21.6]. Hence there is some open U`,N ⊂
E−` so that R`,N 4 U`,N is meager in E−`. The restriction E−` → X of the
first factor projection X ×X → X is continuous and open by Lemma 2.3, so its
graph Π` ⊂ E−` ×X is a bi-continuous relation according to Example 2.5-(i). By
Theorem 2.17-(ii), there is some residual D`,N ⊂ X such that (R`,N 4 U`,N ) ∩
Πop
` (x) is meager in Πop

` (x) ∀x ∈ D`,N . Notice that Πop
` (x) = {x} × E−`(x) ≡

E−`(x) and

(R`,N 4 U`,N ) ∩Πop
` (x) = {x} × (R`,N (x)4 U`,N (x))

≡ R`,N (x)4 U`,N (x) .
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Hence R`,N (x)4 U`,N (x) is meager in E−`(x) ∀x ∈ D`,N . On the other hand,

I−1({0, . . . , `}) =
∞⋃
N=0

(Q`,N × {N}) ,

where
Q`,N = {x ∈ X | (E−` ∩RN )(x) is residual in E−`(x) } .

Since

Q`,N ∩D`,N = {x ∈ D`,N | (E−` ∩ UN )(x) is dense in E−`(x) } ,
it follows thatQ`,N has the Baire property inX by Lemmas 2.7 and 2.9-(ii), which
completes the proof of Claim 2.

By [9, Theorem 8.38], Claim 2, and Corollary 5.3, there is some denseGδ subset
C0 ⊂ X such that θ is continuous on C0, I is continuous on C0 ×N, and I(C0 ×
N) ⊂ N.

For each k ∈ Z, any non-empty open U ⊂ X and all x ∈ U , let

Q(x, U, k) =
∞⋃
i=0

(Ek ∩ (U × U))i(x) .

The following properties are consequences of Definition 5.1-(iii)-(c),(d):
• for any ε > 0, there is some k ∈ Z so that Q(x, U, k) ⊂ EXd (x, U, ε) for

all x ∈ U , and
• for every k ∈ Z, there exists some ε > 0 such that EXd (x, U, ε) ⊂
Q(x, U, k) for all x ∈ U .

Hence, by hypothesis, there is some residual C1 ⊂ X such that, for any U , x and k
as above, if x ∈ C1, then Q(x, U, k) is somewhere dense. By Corollary 2.19-(ii),
there is some residual C ⊂ C0 ∩ C1 such that Ek(x) ∩ C is residual in Ek(x) for
all x ∈ C and k ∈ Z.

Fix x, y ∈ C and some complete metric inducing the topology of Y

Claim 3. There exist sequences, (xi) and (yi) in C with x1 = x and y1 = y, (gi)
and (hi) in S∞, (Ui) and (Vi) consisting of open subsets of X , and (ni) and (ki)
in N, such that:

(i) gi · θ(x) = θ(xi);
(ii) hi · θ(y) = θ(yi);

(iii) xi+1 ∈ Ui+1 ∩ C ∩Q(xi, Ui,−ni);
(iv) yi+1 ∈ Vi+1 ∩ C ∩Q(yi, Vi,−ki);
(v) Ui ⊃ Vi ⊃ Ui+1;

(vi) diam(θ(Ui ∩ C)) < 2−i;
(vii) (Ui+1 ∩ C)× {Ni+1} ⊂ I−1(ni+1) for

Ni+1 = sup{ gi+1(`), g−1
i+1(`) | ` ≤ i+ 1 } ;

(viii) (Vi+1 ∩ C)× {Ki} ⊂ I−1(ki) for

Ki = sup{hi(`), h−1
i (`) | ` ≤ i } ;

(ix) gj+1(`) = gi+1(`) and g−1
j+1(`) = g−1

i+1(`) for ` ≤ i+ 1 ≤ j + 1;
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(x) hj(`) = hi(`) and h−1
j (`) = h−1

i (`) for ` ≤ i ≤ j;
(xi) Q(xi, Ui,−ni) ∩ Vi is dense in Vi; and

(xii) Q(yi, Vi,−ki) ∩ Ui+1 is dense in Ui+1.

If this assertion is true, then there exist g = limi gi and h = limi hi in S∞ by
Claim 3-(ix),(x), and so g · θ(x) = h · θ(y) by Claim 3-(i)–(vi), showing the result.

The construction of the sequences of Claim 3 is made by induction on i ∈ N.
Let x0 = x, U0 = X , n0 = 0 and g0 = h0 = 1S∞ , and choose V0 and k0 so that
y ∈ V0 and

(V0 ∩ C)× {0} ⊂ I−1(k0) .
Suppose that, for some fixed i ∈ N, you have constructed all the terms of these
sequences with indices ≤ i. Then construct xi+1, gi+1 and Ui+1 in the following
manner. (The construction of yi+1, hi+1 and Vi+1 is analogous.)

Take a non-empty open U ⊂ Vi such thatQ(yi, Vi,−ki)∩U is dense in U . You
may assume that diam(θ(U∩C)) < 2−i−1 because θ is continuous onC0. Choose
xi+1 ∈ Q(xi, Ui,−ni) ∩ U , and take z0, . . . , zk ∈ Ui so that z0 = xi, zk = xi+1

and za ∈ E−ni(za−1) for a ∈ {1, . . . , k}. You may assume that i > 0 because (ix)
does not restrict the choice of g1.

Claim 4. We can assume that za ∈ C for all a ∈ {0, . . . , k}.

Claim 4 follows by showing the existence of elements

z′a ∈ Ui ∩ (Ek−a−ni
)−1(PU ) ∩ C

for a ∈ {0, . . . , k} so that z′0 = xi, and z′a ∈ E−ni(z
′
a−1) for a ∈ {1, . . . , k}; then

we can choose x′i+1 = z′k instead of xi+1, and z′a instead of za. We have

z′0 = xi ∈ Ui ∩ (Ek−ni
)−1(PU ) ∩ C .

Now, assume that z′a is constructed for some a < k. Since z′a ∈ C and Ek−a−1
−ni

is
continuous by Lemma 2.8-(i), the set

Eni(z
′
a) ∩ Ui ∩ (Ek−a−1

−ni
)−1(PU ) ∩ C

is residual in
Eni(z

′
a) ∩ Ui ∩ (Ek−a−1

−ni
)−1(PU ) .

So, by Remark 9-(ii), there is some

z′a+1 ∈ Eni(z
′
a) ∩ Ui ∩ (Ek−a−1

−ni
)−1(PU ) ∩ C

as desired.
Continuing with the proof of Claim 3, Claim 4 gives I(za, Ni) = ni for all

a ∈ {0, . . . , k} by the induction hypothesis with Claim 3-(vii).

Claim 5. We can assume that, for each a < k, there exists some fa ∈ WNi such
that fa · θ(za) = θ(za+1).

Like in Claim 4, we show that the condition of this claim is satisfied by a new
finite sequence of points

z′a ∈ Ui ∩ (Ek−a−ni
)−1(PU ) ∩ C
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so that z′0 = xi and z′a ∈ E−ni(z
′
a−1) for a ∈ {1, . . . , k}; in particular, I(z′a, Ni) =

ni as above. This new sequence is constructed by induction on a. First, let z′0 = xi.
Now, assume that z′a was constructed for some a < k. Since I(z′a, Ni) = ni,
∀∗z ∈ E−ni(z

′
a), ∃f ∈WNi so that f · θ(za) = θ(z). So the set of points

z ∈ E−ni(z
′
a) ∩ Ui ∩ (Ek−a−1

−ni
)−1(PU ) ∩ C

such that ∃f ∈WNi so that f · θ(za) = θ(z) is residual in

E−ni(z
′
a) ∩ Ui ∩ (Ek−a−1

−ni
)−1(PU ) ∩ C .

Hence fa · θ(z′a) = θ(z′a+1) for some fa ∈WNi and some

z′a+1 ∈ E−ni(z
′
a) ∩ Ui ∩ (Ek−a−1

−ni
)−1(PU ) ∩ C

by Remark 9-(ii), completing the proof of Claim 5.
According to Claim 5, f∗i · θ(xi) = θ(xi+1) for f∗i = fk−1 · · · f0 ∈WNi . Then

let gi+1 = f∗i gi. Moreover we can take some open neighborhood Ui+1 of xi+1 in
U and some ni+1 ∈ N such that diam(θ(Ui+1 ∩ C)) < 2−i−1 and

(Ui+1 ∩ C)× {Ni+1} ⊂ I−1(ni+1) ,

where Ni+1 is defined according Claim 3-(vii). These choices of xi+1, gi+1, Ui+1

and ni+1 satisfy the conditions of Claim 3. �

Remark 10. This proof is inspired by that of [8, Theorem 3.18].

6. A CLASS OF TURBULENT METRIC RELATIONS

Over a set X , consider a family of relations, U = {UR,r ⊂ X×X | R, r > 0 },
satisfying the following hypothesis.

Hypothesis 1. (i)
⋂
R,r>0 UR,r = ∆X ;

(ii) each UR,r is symmetric;
(iii) if R ≤ S, then UR,r ⊃ US,r for all r > 0;
(iv) UR,r =

⋃
s<r UR,s for all R, r > 0; and

(v) there is some function φ : (R+)2 → R+ such that, for all R,S, r, s > 0,

R ≤ φ(R, r) ,

(R ≤ S & r ≤ s) =⇒ φ(R, r) ≤ φ(S, s) ,
Uφ(R,r+s),r ◦ Uφ(R,r+s),s ⊂ UR,r+s .

By Hypothesis 1, the sets UR,r form a base of entourages of a Hausdorff uni-
formity, also denoted by U , on X . This uniformity is metrizable because the en-
tourages Un,1/n, n ∈ Z+, form a countable base for it.

For each r > 0, let Er =
⋂
R>0 UR,r. This set is symmetric by Hypothesis 1-

(ii); moreover
Es ◦ Er ⊂ Er+s , (14)

for r, s > 0, by Hypothesis 1-(v).

Lemma 6.1. For R, r > 0 and S = φ(φ(R, r), r) (where φ is the function given
in Hypothesis 1-(v)), the set US,r ⊂ Int(UR,r).
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Proof. Let (x, y) ∈ US,r. By Hypothesis 1-(iv), there is some r0 < r such that

(x, y) ∈ US,r0 . Let r1 =
r − r0

2
. By Hypothesis 1-(v),

US,r1 ◦ US,r0 ◦ US,r1 ⊂ Uφ(φ(R,r),
r+r0

2
),r1
◦ U

φ(φ(R,r),
r+r0

2
),r0
◦ Uφ(R,r),r1

⊂ U
φ(R,r),

r+r0
2

◦ Uφ(R,r),r1 ⊂ UR,r .

So, by Hypothesis 1-(ii), US,r1(x)× US,r1(y) ⊂ UR,r, which implies that (x, y) ∈
Int(UR,r). �

Corollary 6.2. For each r > 0, the set Er =
⋂
R>0 Int(UR,r).

Hypothesis 1-(iii) and Corollary 6.2 imply thatEr =
⋂∞
n=1 Int(Un,r) for all r >

0 and soEr is aGδ subset ofX×X . Hence the relationsEr satisfy Definition 5.1-
(iii)-(a),(b).

Let d : X ×X → [0,∞] be defined by

d(x, y) = inf{ r > 0 | (x, y) ∈ Er } ; (15)

in particular, d(x, y) =∞ if x is not in any of Er(y), r > 0. It easily follows from
Hypothesis 1 that d is a metric relation over X . Observe also that

Bd(x, r) ⊂ Er(x) ⊂ Bd(x, s)
for 0 < r < s. Therefore

EXd =
⋃
r>0

Er , (16)

and Bd(x, r) ⊂ UR,r(x) for all R, r > 0 and x ∈ X , which implies that the
topology induced by d onX is finer than the topology induced by the uniformity U
on X . Consequently, d satisfies the conditions (ii) and (iii)-(c),(d) of Definition 5.1
with the relations Er.

Example 6.3. Let {dR | R > 0} be a family of pseudo-metrics on a set, X , such
that

R ≤ S =⇒ dR ≤ dS , (17)

( dR(x, y) = 0 ∀R > 0 ) =⇒ x = y . (18)

Then the sets
UR,r = { (x, y) ∈ X ×X | dR(x, y) < r }

clearly satisfy Hypothesis 1; in particular, Hypothesis 1-(v) is satisfied with φ(R, r) =
R since the triangle inequality of each dR and (17) give

UR,r ◦ US,s ⊂ Umin{R,S},r+s (19)

for all R,S, r, s > 0. It follows that UR,r(x) is open for all x ∈ X and R, r >
0. In this case, the relations UR,r induce the topology defined by the family of
pseudo-metrics dR, and the corresponding sets Er define the metric relation d =
supR>0 dR.

To prove that d, the metric equivalence relation given by (15), satisfies the re-
maining conditions of Definition 5.1, suppose that the following additional require-
ment is satisfied.
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Hypothesis 2. (i) X is a Polish space (with the topology induced by the unifor-
mity U);

(ii) for all R, r, s > 0 and x ∈ X , if y ∈ Es(x), then there are some T, t > 0
such that UT,t(y) ⊂ Es ◦ UR,r(x); and,

(iii) for all r, s > 0 and x ∈ X , if y ∈ Es(x) and V is a neighborhood of y in X ,
then there is a neighborhood W of y in X such that

Er(W ) ∩ Er(Es(x)) ⊂ Er(V ∩ Es(x)) .

Proposition 6.4. If U satisfies Hypothesis 2, then d is of type I.

Proof. It only remains to show that d satisfies Definition 5.1-(iii)-(e),(f).
Hypothesis 2-(ii) simply means that Es is open and hence continuous because it

is symmetric.
Let r, s, t > 0, x ∈ X and y ∈ Es(x). Suppose that Er ◦Es ⊃ Et, and let V be

a neighborhood of y in X . By Hypothesis 2-(iii), there is some open neighborhood
W of y in X such that

Er(W ) ∩ Et(x) ⊂ Er(W ) ∩ Er(Es(x)) ⊂ Er(V ∩ Es(x)).

Since Er(W ) is open in X , this proves that Er ∩ (Es(x) × Et(x)) is an open
relation over Es(x) and Et(x). �

Remark 11. In some applications, the following condition, which is stronger than
Hypothesis 2-(ii), is satisfied: for all R, r, s > 0, there are some T, t > 0 such that
UT,t◦Es ⊂ Es◦UR,r. This means that eachEs is “uniformly open” (or “uniformly
continuous,” because it is symmetric).

To show that d is turbulent, assume also the following additional hypothesis.

Hypothesis 3. (i) EXd has more than one equivalence class;
(ii) for all x, y ∈ X and R, r > 0, there is some s > 0 such that UR,r(x) ∩

Es(y) 6= ∅; and
(iii) for all R, r > 0 and x ∈ X , there are some S, s > 0, some dense subset
D ⊂ US,s(x) ∩ EXd (x), and some d-dense subset of D whose points can be
joined by d-continuous paths in UR,r(x).

Lemma 6.5. The relation EXd is minimal.

Proof. This follows from Hypothesis 3-(ii) and (16). �

Lemma 6.6. If r < s, then Er(x) ⊂ Es(x) for all x ∈ X .

Proof. If y ∈ Er(x) and R > 0, then Uφ(R,s),s−r(y) ∩ Uφ(R,s),r(x) 6= ∅. So
y ∈

⋂
R>0 UR,s = Es(x) by Hypothesis 1-(ii),(v). �

Lemma 6.7. Int(Er(x)) = ∅ for all x ∈ X and r > 0.

Proof. Suppose that Int(Er(x)) 6= ∅. Then, for each y ∈ X , the intersection
Es(y) ∩ Er(x) 6= ∅ for some s > 0, by Lemma 6.5 and (16). Therefore y ∈
Er+s(x) by (14). So X = EXd (x) by (16), contradicting Hypothesis 3-(i). �

Proposition 6.8. The relation EXd is turbulent.
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Proof. The relation EXd is minimal because of Lemma 6.5. Each equivalence class
of EXd is meager because of Lemmas 6.6 and 6.7 and (16). Finally, the local
equivalence classes ofEXd are somewhere dense because of Hypothesis 3-(iii). �

Theorem 5.4, and Propositions 6.4 and 6.8 have the following immediate con-
sequence.

Proposition 6.9. For any Polish S∞-space Y , the relationEXd is genericallyEYS∞-
ergodic.

Remark 12. It is easy to somewhat weaken Hypothethis 3-(ii) to treat generic tur-
bulence.

Remark 13. If we also assume that, for all r > 0 and residually many x, y ∈ X ,
there exists s0 > 0 such that Es(y) \ Er(x) is dense in Es(y) for all s > s0,
then the proof of [8, Theorem 8.2] can be adapted to show that EXd 6≤B EYG for
any Polish group G and any Polish G-space Y . However the proof is not given
because, in the applications, this is proved in [1].

7. THE SUPREMUM METRIC RELATION

A concrete case of Example 6.3 is C(R), the space of real valued continu-
ous functions on R endowed with the compact-open topology, and the supremum
metric relation, d∞, which is induced by the supremum norm, ‖ ‖∞, defined by
‖f‖∞ = supx∈R |f(x)|. For each R > 0, let dR be the pseudo-metric on C(R)
induced by the semi-norm ‖ ‖R given by ‖f‖R = sup|x|<R |f(x)|. Clearly, this
family of pseudo-metrics satisfies the conditions (17) and (18), and induces the
compact-open topology of C(R). Moreover d∞ = supR>0 dR. In this case, each
UR,r (respectively, Er) consists of the pairs (f, g) that satisfy ‖f − g‖R < r (re-
spectively, |f(x)− g(x)| < r for all x ∈ R).

The following notation will be used: E∞ = E
C(R)
d∞

, andB∞(f, r) = Bd∞(f, r)
for each f ∈ C(R) and r > 0. Two functions, f, g ∈ C(R), are in the same
equivalence class of E∞ if and only if f − g is bounded; in particular, the bounded
functions of C(R) form an equivalence class of E∞.

Theorem 1.1 for (d∞, E∞) follows from Propositions 6.4 and 6.8–6.9 once Hy-
potheses 1–3 are shown in this case.

Remark 14. Let Cb(R) ⊂ C(R) be the subset of bounded continuous functions.
The sum of functions makes the space C(R) into a Polish group, and Cb(R) into a
subgroup. The orbit relation of the action of Cb(R) on C(R) given by translation
is E∞. Therefore, by virtue of Theorem 1.1-(iii) for (d∞, E∞), there is no Polish
topology on Cb(R) with respect to which this action is continuous.

For instance, consider the restriction of the compact-open topology to Cb(R).
Then the action of Cb(R) on C(R) is continuous, Cb(R) is metrizable because
C(R) is completely metrizable, andCb(R) is separable because it containsC0(R),
which is dense in C(R) and separable (by the Stone-Weierstrass theorem). But
Cb(R) is not completely metrizable with the compact-open topology; in particular,
it is not closed in C(R).
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Consider now the topology on Cb(R) induced by ‖ ‖∞. Then the action of
Cb(R) on C(R) is continuous, and Cb(R) is completely metrizable; indeed, it is a
Banach algebra with ‖ ‖∞. However Cb(R) is not separable with ‖ ‖∞, which can
be shown as follows. For each x ∈ {±1}Z, let x̃ ∈ Cb(R) be the function whose
graph is the union of segments between all consecutive points in the graph of x.
Then {B∞(x̃, 1) | x ∈ {±1}Z } is an uncountable family of disjoint open subsets
of Cb(R). So Cb(R) is not second countable, and therefore it is not separable.

According to Example 6.3, the sets UR,r satisfy Hypothesis 1 and induce d∞.
In this case, the inclusion (14) becomes the equality

Er ◦ Es = Er+s (20)

for all r, s > 0; this holds because, if g ∈ Er+s(f), then

f +
s

r + s
(g − f) ∈ Er(g) ∩ Es(f) .

It is well known that C(R) is Polish (Hypothesis 2-(i)). The following lemma
shows that Hypothesis 2-(ii) is satisfied in this case.

Lemma 7.1. UR,r ◦ Es = Es ◦ UR,r = UR,r+s for all R, r, s > 0.

Proof. If S ≥ R, then

dR(f, h) ≤ dR(f, g) + dR(g, h) ≤ dR(f, g) + dS(g, h)

for all f, g, h ∈ C(R), because dR ≤ dS . This implies that UR,r ◦ US,s and
US,s ◦UR,r are both contained in UR,r+s, which in turn implies that UR,r ◦Es and
Es ◦ UR,r are both contained in UR,r+s.

To prove the reverse inclusions, let f ∈ C(R) and g ∈ UR,r+s(f). Then

h0 = f +
s

r + s
(g − f) ∈ UR,s(f) ∩ UR,r(g) ,

h1 = f +
r

r + s
(g − f) ∈ UR,r(f) ∩ UR,s(g) .

By continuity, h0 ∈ US,s(f) and h1 ∈ US,s(g) for some S > R. Let λ : R→ [0, 1]
be any continuous function supported in [−S, S] such that λ ≡ 1 on [−R,R]. Then

f + λ(h0 − f) ∈ Es(f) ∩ UR,r(g) ,

g + λ(h1 − g) ∈ UR,r(f) ∩ Es(g) ,

which implies that g ∈ (UR,r ◦ Es)(f) ∩ (Es ◦ UR,r)(f). �

Corollary 7.2. If R,S, r, s > 0, then UR,r ◦ US,s = Umin{R,S},r+s.

Proof. The inclusion “⊂” is (19), and “⊃” follows from Lemma 7.1. �

By (20) and Lemma 7.1, and because the sets UR,r are open in Example 6.3, the
following lemma implies Hypothesis 2-(iii) in this case.

Lemma 7.3. If T, r, s, t > 0, f ∈ C(R) and g ∈ Es(f) are such that UT,t′(g) ⊂
UT,s(f) for some t′ > t, then

UT,t+r(g) ∩ Er+s(f) = Er(UT,t(g) ∩ Es(f)) .
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Proof. The inclusion “⊃” follows from (14) and Lemma 7.1. To prove “⊂”, let h ∈
UT,t+r(g)∩Er+s(f). By (20) and Lemma 7.1, there are some g0 ∈ Er(h)∩UT,t(g)
and f0 ∈ Er(h) ∩ Es(f). By continuity, g0 ∈ UT ′,t(g) ⊂ UT ′,s(f) for some
T ′ > T . Let λ : R → [0, 1] be any continuous function supported in [−T ′, T ′]
such that λ ≡ 1 on [−T, T ]. Then

f0 + λ(g0 − f0) ∈ Er(h) ∩ UT,t(g) ∩ Es(f) ,

obtaining that h ∈ Er(UT,t(g) ∩ Es(f)). �

The fact that E∞ has more than one class (Hypothesis 3-(i)) is obvious because
d∞(f, g) = ∞ if f is bounded and g unbounded. Hypotheses 3-(ii),(iii) is a con-
sequence of the following lemmas.

Lemma 7.4. For every f, g ∈ C(R) and every R, r > 0, if s > dR′(f, g) for some
R′ > R, then UR,r(f) ∩ Es(g) 6= ∅.

Proof. Let λ : R → [0, 1] be a continuous function supported in [−R′, R′] such
that λ ≡ 1 on [−R,R]. Then g + λ(f − g) ∈ UR,r(f) ∩ Es(g). �

Lemma 7.5. For every R, r > 0 and every f ∈ C(R), the set UR,r(f) ∩ E∞(f)
is d∞-path connected.

Proof. For every g ∈ UR,r(f) ∩E∞(f), the mapping t 7→ tf + (1− t)g defines a
d∞-continuous path in UR,r(f) ∩ E∞(f) from g to f . �

Remark 15. The symmetric relations over C(R) with fibers the balls B∞(f, r)
cannot be used instead of the relationsEr to show that d∞ is of type I. For instance,
each ball B∞(f, r) is not Gδ in C(R); otherwise it would be Polish, and therefore
it would be a Baire space with the induced topology. But ∅ is residual in B∞(f, r)
for all r > 0, as the following argument shows. Take sequences 0 < rn ↑ r and
0 < Rn ↑ ∞. For each n, let Un be the set of functions g ∈ B∞(f, r) such that

sup
|x|>Rn

|f(x)− g(x)| > rn .

It is easy to check that the sets Un are open and dense in B∞(f, r) and their inter-
section is empty.

8. THE GROMOV SPACE

Let M be a metric space and let dM , or simply d, be its distance function. The
Hausdorff distance between two non-empty subsets, A,B ⊂M , is given by

Hd(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.

Observe that Hd(A,B) = Hd(A,B), and Hd(A,B) = 0 if and only if A = B.
Also, it is well known and easy to prove that Hd satisfies the triangle inequality,
and its restriction to the family of non-empty compact subsets ofM is finite valued,
and moreover complete if M is complete.

Let M and N be arbitrary non-empty metric spaces. A metric on M t N is
called admissible if its restrictions to M and N are dM and dN , where M and N
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are identified with their canonical injections in M t N . The Gromov-Hausdorff
distance (or GH distance) between M and N is defined by

dGH(M,N) = inf
d
Hd(M,N) ,

where the infimum is taken over all admissible metrics d on M t N . It is well
known that dGH(M,N) = dGH(M,N), where M and N denote the completions
ofM andN , dGH(M,N) = 0 ifM andN are isometric, dGH satisfies the triangle
inequality, and dGH(M,N) <∞ if M and N are compact.

There is also a pointed version of dGH which satisfies analogous properties:
the (pointed) Gromov-Hausdorff distance (or GH distance) between two pointed
metric spaces, (M,x) and (N, y), is defined by

dGH(M,x;N, y) = inf
d

max{d(x, y), Hd(M,N)} , (21)

where the infimun is taken over all admissible metrics d on M tN .
If X is any metric space and f : M → X and g : N → X are isometric

injections, then it is also well known that

dGH(M,N) ≤ HdX
(f(M), g(N)) ,

dGH(M,x;N, y) ≤ max{dX(f(x), g(y)), HdX
(f(M), g(N))} ; (22)

indeed, these inequalities follow by considering, for each ε > 0, the unique admis-
sible metric dε on M tN satisfying

dε(u, v) = dX(f(u), g(v)) + ε

for all u ∈M and v ∈ N .
A metric space, or its distance function, is called proper (or Heine-Borel) if ev-

ery open ball has compact closure. This condition is equivalent to the compactness
of the closed balls, which means that the distance function to a fixed point is a
proper function. Any proper metric space is complete and locally compact, and its
cardinality is not greater than the cardinality of the continuum. Therefore it may
be assumed that their underlying sets are subsets of R. With this assumption, it
makes sense to consider the setM∗ of isometry classes, [M,x], of pointed proper
metric spaces, (M,x). The set M∗ is endowed with a topology introduced by
M. Gromov [6, Section 6], [5], which can be described as follows.

For a metric space X , two subspaces, M,N ⊂ X , two points, x ∈ M and
y ∈ N , and a real number R > 0, let HdX ,R(M,x;N, y) be given by

HdX ,R(M,x;N, y) = max
{

sup
u∈BM (x,R)

dX(u,N), sup
v∈BN (y,R)

dX(v,M)
}
.

Then, forR, r > 0, letUR,r ⊂M∗×M∗ denote the subset of pairs ([M,x], [N, y])
for which there is an admissible metric, d, on M tN so that

max{d(x, y), Hd,R(M,x;N, y)} < r .

The following lemma is obtained exactly like (22).
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Lemma 8.1. For ([M,x], [N, y]) ∈ M∗ ×M∗ to be in UR,r it suffices that there
exists a metric space, X , and isometric injections, f : M → X and g : N → X ,
such that

max
{
dX(f(x), g(y)), HdX ,R(f(M), f(x); g(N), g(y))

}
< r .

The following notation will be used: for a relation E onM∗ and [M,x] ∈M∗,
E([M,x]) will be simply written as E(M,x), and for a metric relation d onM∗
and [M,x], [N, y] ∈M∗, d([M,x], [N, y]) will be denote by d(M,x;N, y).

The sets UR,r obviously satisfy Hypothesis 1-(i)–(iv), and the following lemma
shows that they also satisfy Hypothesis 1-(v).

Lemma 8.2. IfR, r, s > 0, thenUS,r◦US,s ⊂ UR,r+s, where S = R+2 max{r, s}.

Proof. Let [M,x], [N, y] ∈M∗ and [P, z] ∈ US,r(N, y)∩US,s(M,x). Then there
are admissible metrics, d on M t P and d̄ on N t P , such that d(x, z) < r,
r0 := Hd,S(M,x;P, z) < r, d̄(y, z) < s and s0 := Hd̄,S(N, y;P, z) < s. Let d̂
be the admissible metric on M tN such that

d̂(u, v) = inf
{
d(u,w) + d̄(w, v) | w ∈ P

}
for all u ∈M and v ∈ N . Then

d̂(x, y) ≤ d(x, z) + d̄(z, y) < r + s .

For each u ∈ BM (x,R), there is some w ∈ P such that d(u,w) < r0. Then

dP (z, w) ≤ d(z, x) + dM (x, u) + d(u,w) < r +R+ r0 < S .

So there is some v ∈ N such that d̄(w, v) < s0, and we have

d̂(u, v) ≤ d(u,w) + d̄(w, v) < r0 + s0 .

Hence d̂(u,N) < r0 + s0 for all u ∈ BM (x,R). Similarly, d̂(v,M) < r0 + s0

for all v ∈ BN (y,R). Therefore Hd̂,R(M,x;N, y) ≤ r0 + s0 < r + s. Then
[N, y] ∈ UR,r+s(M,x). �

Since the sets UR,r satisfy Hypothesis 1, they form a base of entourages of a
metrizable uniformity onM∗. Endowed with the induced topology,M∗ is what is
called the Gromov space in this paper. It is well known thatM∗ is a Polish space
(see e.g. Gromov [6] or Petersen [16]); in particular, a countable dense subset is
defined by the pointed finite metric spaces with Q-valued metrics.

Some relevant subspaces ofM∗ are defined by the following classes of metric
spaces: proper ultrametric spaces, proper length spaces, connected complete Rie-
mannian manifolds, connected locally compact simplicial complexes, connected
locally compact graphs and finitely generated groups (via their Cayley graphs).

The following (generalized) dynamics can be considered onM∗:
The canonical metric relation: The canonical partition Ecan is defined by

varying the distinguished point; i.e., Ecan consists of the pairs of the form
([M,x], [M,y]) for any proper metric space M and all x, y ∈ M . There
is a canonical map M → M∗, x 7→ [M,x], which defines an embedding
Isom(M)\M →M∗ whose image isEcan(M,x) for any x ∈M . Observe
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that M∗/Ecan can be identified to the set of isometry classes of proper
metric spaces.

The GH metric relation: It is defined by the pointed GH distance dGH . The
notation EGH = EM∗dGH

will be used. Since Ecan ⊂ EGH , the quotient set
M∗/EGH can be identified to the set of classes of proper metric spaces
defined by the relation of being at finite GH distance.

The Lipschitz metric relation: The Lipschitz partition, ELip, is defined by
the existence of pointed bi-Lipschitz bijections. It is induced by the Lip-
schitz metric relation, dLip, which is defined by using the infimum of the
logarithms of the dilatations of bi-Lipschitz bijections.

The QI metric relation: The quasi-isometric partition (or QI partition),EQI ,
is the smallest equivalence relation overM∗ that contains EGH ∪ ELip. It
is induced by the quasi-isometric metric relation (or QI relation), dQI , de-
fined as the largest metric relation over M∗ smaller than both dGH and
dLip (cf. [17, Lemma 6]). The quotient set M∗/EQI can be identified to
the set of quasi-isometry classes of proper metric spaces.

The dilation flow: It is the multiplicative flow defined by λ·[M,x] = [λM, x],
where λM denotes M with its metric multiplied by λ. This flow is used to
define the asymptotic and tangent cones.

The purpose of this paper is to study the GH and QI metric relations.
Some technical results and concepts related to the definition ofM∗, which will

be used in the next section, are given presently.

Lemma 8.3. Let [M,x], [N, y] ∈ M∗ and r > 0. If d is an admissible metric on
M tN such that d(x, y) < r and Hd(M,N) < r, then d is proper.

Proof. For every v ∈ N ,

dN (y, v) ≤ d(x, y) + d(x, v) < r + d(x, v) ,

and so
Bd(x,R) ⊂ BM (x,R) tBN (y,R+ r)

for all R > 0. The statement follows from this because M and N are proper. �

Lemma 8.4. Let [M,x], [N, y], [P, z] ∈ M∗ and R, r > 0. Suppose that the
pointed metric spaces (BP (z,R + 2r), z) and (BN (y,R + 2r), y) are isometric,
and that there is an admissible metric, d, on M t N such that d(x, y) < r and
Hd,R(M,x;N, y) < r. Then there exists a proper admissible metric, d′, on M tP
such that d′(x, z) < r and Hd′,R(M,x;P, z) < r.

Proof. Let A = BM (x,R + 2r), B = BN (y,R + 2r) and C = BP (z,R + 2r),
and let φ : (B, y) → (C, z) be an isometry. Let d′ be the admissible metric on
M t P satisfying

d′(u,w) = inf{ dM (u, u′) + d(u′, v) + dP (φ(v), w) | u′ ∈ A & v ∈ B }

for u ∈ M and w ∈ P . Observe that d′(u, φ(v)) = d(u, v) for u ∈ A and v ∈ B;
in particular, d′(x, z) < r.
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For each u ∈ BM (x,R), there is some v ∈ N such that d(u, v) < r. Since

dN (y, v) ≤ d(y, x) + dM (x, u) + d(u, v) < R+ 2r ,

we get d′(u, φ(v)) = d(u, v) < r, and therefore d′(u, P ) < r. Similarly, d′(w,M) <
r for all w ∈ BP (z,R), obtaining Hd′,R(M,x;P, z) < r.

For any S > 0 and w ∈ P ∩Bd′(x, S), there is some v ∈ B such that d(x, v) +
dP (φ(v), w) < S. So

dP (z, w) ≤ dP (z, φ(v)) + dP (φ(v), w) < R+ 2r + S ,

obtaining
Bd′(x, S) ⊂ BM (x, S) tBP (z,R+ 2r + S) .

Hence Bd′(x, S) is compact since M and P are proper. This shows that d′ is
proper. �

9. THE GH METRIC RELATION

The relations UR,r on M∗, defined in Section 8, satisfy Hypothesis 1 of Sec-
tion 6. Consider the family of symmetric relations Er ⊂ M∗ ×M∗, for r > 0,
whose fibers are Er(M,x) =

⋂
R>0 UR,r(M,x). The notation BGH(M,x; r) =

BdGH
([M,x], r) will be used.

Lemma 9.1. If 0 < r < s, then

BGH(M,x; r) ⊂ Er(M,x) ⊂ BGH(M,x; s) .

Proof. The first inclusion is obvious. To prove the second one, let [N, y] ∈ Er(M,x).
For each R > 0 there exists an admissible metric, dR, on M t N such that
dR(x, y) < r and HdR,R(M,x;N, y) < r. Let ω be a free ultrafilter of [0,∞).
Then there is a unique admissible metric, d, on M tN such that

d(u, v) = lim
R→ω

dR(u, v) +
s− r

2
for all u ∈M and v ∈ N . For each ε > 0 there exists Ω ∈ ω such that

d(u, v) < dR(u, v) +
s− r

2
+ ε ,

for all R ∈ Ω. Then

d(x, y) ≤ dR(x, y) +
s− r

2
+ ε <

s+ r

2
+ ε ,

for all R ∈ Ω, and, because this holds for each ε > 0,

d(x, y) ≤ s+ r

2
< s .

Next, for every u ∈ M , if R ∈ Ω is > d(x, u), then dR(u,N) < r, and
so d(u,N) < s as before. Similarly, d(v,M) < s for all v ∈ N . Therefore
Hd(M,N) < s. �

Corollary 9.2. The metric relation overM∗ defined by the sets UR,r is dGH .
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By Propositions 6.4 and 6.8–6.9, and Corollary 9.2, the case of (dGH , EGH) in
Theorem 1.1 follows by showing that the sets UR,r also satisfy Hypotheses 2–3. It
was already noted thatM∗ is Polish (Hypothesis 2-(i)).

Lemma 9.3. If R, r, s > 0, then UR+2r+s,s ◦ UR,r ⊂ Es ◦ UR,r.

Proof. Let S = R+ 2r+ s. If [M,x] ∈M∗ and [N, y] ∈ US,s ◦UR,r(M,x), then
there is [P, z] ∈ UR,r(M,x) ∩ US,s(N, y). This means that there are admissible
metrics, d onM tP and d̄ onN tP , such that d(x, z) < r,Hd,R(M,x;P, z) < r,
d̄(y, z) < s and Hd̄,S(N, y;P, z) < s. Moreover, because of Lemma 8.4, d̄ may
be assumed to be a proper metric. The subset

P ′ = (N \BN (y, S)) tBP (z, S) ⊂ N t P
is closed and so it becomes a proper metric space when endowed with the metric
induced by d̄.

Claim 6. The metric space [P ′, z] satisfies dGH(N, y;P ′, z) < s.

Since N \ P ′ ⊂ BN (y, S) and P ′ \N = BP (z, S), the Hausdorff distance

Hd̄(N,P
′) = max

{
sup

v∈BN (y,S)
d̄(v, P ′), sup

w∈BP (z,S)
d̄(w,N)

}
≤ Hd̄,S(N, y;P, z) < s ,

and so Claim 6 follows from (22).
From Claim 6 and Corollary 9.2, it follows that [P ′, z] ∈ Es(N, y).

Claim 7. BP ′(z,R+ 2r) = BP (z,R+ 2r).

The inclusion “⊃” of this identity is obviously true. To prove that the reverse
inclusion “⊂” is also true, it suffices to note that BP ′(z,R + 2r) ∩N = ∅, which
is true because, if there is v ∈ BP ′(z,R+ 2r) ∩N , then

dN (y, v) ≤ d̄(y, z) + d̄(z, v) < s+R+ 2r = S ,

which contradicts that BN (y, S) ∩ P ′ = ∅.
From Claim 7 and Lemma 8.4, it follows that [P ′, z] ∈ UR,r(M,x). Hence

[N, y] ∈ Es ◦ UR,r(M,x). �

A subset A of a metric space X is called a net1 if there is an ε > 0 such that
dX(u,A) ≤ ε for all u ∈ X , and it is called separated if there is some δ > 0 such
that dX(a, b) ≥ δ for all a, b ∈ A with a 6= b; the terms ε-net and δ-separated are
also used in these cases.

A separated subset of a metric space is discrete and therefore closed. Hence,
every separated subset of a proper metric space is a proper metric space when
endowed with the induced metric.

If A ⊂ X is an ε-net of a metric space (X, dX), then HdX
(X,A) ≤ ε. So, if

A is endowed with the induced metric from (X, dX), then dGH(X,x;A, x) ≤ ε

1This term is used by Gromov with this meaning [6, Definition 2.14]. Other authors use it with
other meanings.
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for every x ∈ A by (22); thus, by Lemma 9.1, [A, x] ∈ Eδ(X,x) for any δ > ε if
moreover X is proper and A separated.

Lemma 9.4. Let ε > 0. For every metric space M and every ε-separated subset
S ⊂M , there exists an ε-separated ε-net of M that contains S.

Proof. By Zorn’s lemma, the family of ε-separated subsets of M that contain S,
ordered by inclusion, has a maximal element. It is easily checked that that maximal
element is an ε-net. �

The following is some kind of reverse of Lemma 8.2.

Lemma 9.5. If R, r, s > 0, then UR,r+s ⊂ UR,s ◦ UR,r.

Proof. Let [M,x] ∈ M∗ and [N, y] ∈ UR,r+s(M,x). Then there is an admissible
metric, d, on M tN such that d(x, y) < r0 + s0 and Hd,R(M,x;N, y) < r0 + s0

for some r0 ∈ (0, r) and s0 ∈ (0, s). By Lemma 8.4, d may be assumed to be a
proper metric.

Take any ε > 0 such that r0 + 2ε < r and s0 + 2ε < s. By Lemma 9.4, there
are ε-separated ε-nets, A of BM (x,R) and B of BN (y,R), such that x ∈ A and
y ∈ B.

For each u ∈ BM (x,R), there is some v ∈ N such that d(u, v) < r0 +s0. Then
there is some v′ ∈ B so that dN (v, v′) ≤ ε. So

d(u, v′) ≤ d(u, v) + dN (v, v′) < r0 + s0 + ε ,

giving d(u,B) < r0+s0+ε. Similarly, d(v,A) < r0+s0+ε for all v ∈ BN (y,R).
Let Σ denote the set of pairs (u, v) ∈ A × B such that d(u, v) < r0 + s0 + ε

and min{dM (x, u), dN (y, v)} < R; in particular, (x, y) ∈ Σ. The set Σ is finite
becauseA andB are separated and d is proper. For each (u, v) ∈ Σ, let Iu,v denote
an Euclidean segment of length d(u, v), whose metric is denoted by du,v. Let h :⊔

(u,v)∈Σ ∂Iu,v →M tN be a map that restricts to a bijection h : ∂Iu,v → {u, v}
for all (u, v) ∈ Σ. Then let

P̂ = (M tN) ∪h
⊔

(u,v)∈Σ

Iu,v .

The space M , N and each Iu,v may be viewed as subspaces of P̂ ; in particular,
∂Iu,v ≡ {u, v} in P̂ . Let P̂ be endowed with the metric d̂ whose restriction to
M tN is d, whose restriction to each Iu,v is du,v, and such that

d̂(w,w′) = min
{
du,v(w, u) + dM (u, u′) + du′,v′(u′, w′),

du,v(w, v) + dN (v, v′) + du′,v′(v′, w′)
}

for (u, v), (u′, v′) ∈ Σ, w ∈ Iu,v and w′ ∈ Iu′,v′ .
Let P ⊂ P̂ be the finite subset consisting of the points w ∈ Iu,v with (u, v) ∈ Σ

and
du,v(w, u) =

r0 + ε

r0 + s0 + 2ε
d(u, v) .

Let z be the unique point in P ∩ Ix,y, and consider the restriction of d̂ to P .
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If (u, v) ∈ Σ and w is the unique point in P ∩ Iu,v, then

d̂(u,w) ≤ du,v(u,w) <
r0 + ε

r0 + s0 + 2ε
d(u, v) < r0 + ε .

So d̂(x, z) < r0 + ε < r, d̂(u, P ) < r0 + ε for all u ∈ A, and d̂(w,M) < r0 + ε

for all w ∈ P . Since A is an ε-net in BM (x,R), it also follows that d̂(u, P ) <
r0 + 2ε for all u ∈ BM (x,R). Similarly, d̂(y, z) < s, d̂(v, P ) < s0 + 2ε for all
v ∈ BN (y,R), and d̂(w,N) < s0 + ε for all w ∈ P . Thus

Hd̂,R(M,x;P, z) ≤ r0 + 2ε < r , Hd̂,R(N, y;P, z) ≤ s0 + 2ε < s ,

obtaining [P, z] ∈ UR,r(M,x) ∩ UR,s(N, y) by Lemma 8.1. Therefore [N, z] ∈
UR,s ◦ UR,r(M,x). �

The following corollary gives Hypothesis 2-(ii).

Corollary 9.6. UT,r ◦ Es ⊂ Es ◦ UR,r for R, r, s > 0 and

T = R+ 2r + s+ 2 max{r, s} .

Proof. Let S = R+ 2r + s. By Lemmas 8.2, 9.3 and 9.5,

UT,r ◦ Es ⊂ UT,r ◦ UT,s ⊂ US,r+s ⊂ US,s ◦ UR,r ⊂ Es ◦ UR,r . �

In this case, Hypothesis 2-(iii) is the statement of the next lemma.

Lemma 9.7. For all r, s > 0, [M,x] ∈ M∗, [N, y] ∈ Es(M,x), and any neigh-
borhood V of [N, y] in M∗, there is another neighborhood W of [N, y] in M∗
such that

Er(W ) ∩ Er(Es(M,x)) ⊂ Er(V ∩ Es(M,x)) .

Proof. By Lemma 8.4, there is some S > 0 and some open neighborhood W of
[N, y] inM∗ such that, for all [N ′, y′] ∈M∗ and [N ′′, y′′] ∈W , if (BN ′(y′, S), y′)
is isometric to (BN ′′(y′′, S), y′′), then [N ′, y′] ∈ V . Since [N, y] ∈ UT,s(M,x)
for T = S + s+ r, we can also assume that W ⊂ UT,s(M,x).

For any [P, z] ∈ Er(W ) ∩ Er(Es(M,x)), there are some [N1, y1] ∈ W and
[N2, y2] ∈ Es(M,x) such that [P, z] ∈ Er(N1, y1) ∩ Er(N2, y2). There are
admissible metrics, d1 on M t N1 and d̄1 on N1 t P , so that d1(x, y1) < s,
Hd1,T (M,x;N1, y1) < s, d̄1(y1, z) < r and Hd̄1,T

(N1, y1;P, z) < r. Take a
sequence Tn ↑ ∞ in R with T0 > T ; set also T−1 = T . For each n ∈ N,
let (N2,n, y2,n) denote an isometric copy of (N2, y2). Then there are admissible
metrics, d2,n on M t N2,n and d̄2,n on N2,n t P , such that d2,n(x, y2,n) < s,
Hd2,n,Tn(M,x;N2,n, y2,n) < s, d̄2,n(y2,n, z) < r andHd̄2,n,Tn

(N2,n, y2,n;P, z) <
r.

Let d denote the metric on M t N1 t (
⊔∞
n=0N2,n) t P which extends d1, d̄1,

d2,n and d̄2,n for all n ∈ N, and such that

d(u,w) = inf{ d1(u, v1) + d̄1(v1, w),

d2,n(u, v2,n) + d̄2,n(v2,n, w) | v1 ∈ N1, v2,n ∈ N2,n, n ∈ N
}
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for u ∈M and w ∈ P ,

d(v1, v2,n) = inf
{
d1(v1, u) + d2,n(u, v2,n),

d̄1(v1, w) + d̄2,n(w, v2,n) | u ∈M, w ∈ P
}

for v1 ∈ N1 and v2,n ∈ N2,n, and

d(v2,m, v2,n) = inf
{
d2,m(v2,m, u) + d2,n(u, v2,n),

d̄2,m(v2,m, w) + d̄2,n(w, v2,n) | u ∈M, w ∈ P
}

for v2,m ∈ N2,m and v2,n ∈ N2,n with m 6= n. By Lemma 8.4, we can assume
that the metrics d1, d̄1, d2,n and d̄2,n are proper for all n ∈ N, and therefore d is
proper as well. The set

N ′ = BN1(y1, T ) t

( ∞⊔
n=0

(
BN2,n(y2,n, Tn) \BN2,n(y2,n, Tn−1)

))
is closed in M tN1 t (

⊔∞
n=0N2,n)t P , and therefore it becomes a proper metric

space with the restriction of d.
Then Hd(M,x;N ′, y1) < s and Hd(N ′, y1;P, z) < r, as in Claim 6, and so

dGH(M,x;N ′, y1) < s and dGH(N ′, y1;P, z) < r by (22), which in turn im-
plies [N ′, y1] ∈ Es(M,x) ∩ Er(P, z) by Lemma 9.1. On the other hand, like in
Claim 7, it follows that BN ′(y1, S) = BN1(y1, S), obtaining [N ′, y1] ∈ V because
[N1, y1] ∈W . Therefore [P, z] ∈ Er(V ∩ Es(M,x)). �

The fact thatEGH has more than one class (Hypothesis 3-(i)) is obvious because
any bounded metric space is at infinite GH distance from any unbounded one.

Hypothesis 3-(ii) is a consequence of the following result.

Lemma 9.8. For all [M,x], [N, y] ∈ M∗ and R, r > 0, there is some s > 0 such
that UR,r(M,x) ∩ Es(N, y) 6= ∅.

Proof. Let A and B denote the balls of radius R + 2r in M and N with centers x
and y, respectively. For any s0 > dGH(A, x;B, y), let d be an admissible metric
onAtB such that d(x, y) < s0 andHd(A,B) < s0. Then let d′ be the admissible
metric on M tN satisfying

d′(u, v) = inf{ dM (u, u′) + d(u′, v′) + dN (v′, v) | u′ ∈ A & v′ ∈ B }

for all u ∈ M and v ∈ N . Like in the proof of Lemma 8.4, it follows that d′ is
proper, and its restriction to A tB equals d; in particular, d′(x, y) < s0.

Let A′ and B′ denote the balls of radius R+ 2r+ s0 in M and N with centers x
and y, respectively. The set N ′ = A′ t (N \B′) is closed in M tN , and therefore
it becomes a proper metric space with the restriction of d′. Take any

s > max{s0, R+ 2r + d′(x,N \B′)} .

If N \B′ 6= ∅, then

d′(u, v) ≤ dM (u, x) + d′(x, v) < R+ 2r + d′(x, v)
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for all v ∈ N \B′ and u ∈ A′, obtaining

Hd′(A′, N \B′) ≤ R+ 2r + d′(x,N \B′) < s .

It follows that Hd′(N,N ′) < s, and therefore dGH(N, y;N ′, x) < s by (22), ob-
taining [N ′, x] ∈ Es(N, y) by Lemma 9.1. Like in Claim 7, we also getBN ′(x,R+
2r) = A, and therefore [N ′, x] ∈ UR,r(M,x) by Lemma 8.4. �

The proof of Hypothesis 3-(iii) is as follows. Let R, r > 0 and [M,x] ∈ M∗,
and take any S > R and s > 0 such that s < r and R+ 2 max{s, r− s} < S. Let
D denote the set of points [N, y] ∈ M∗ such that there is some admissible metric,
d, on M t N so that d(x, y) < s, Hd,S(M,x;N, y) < s and Hd(M,N) < ∞.
Thus D ⊂ US,s(M,x) ∩ EGH(M,x).

Lemma 9.9. D is dense in US,s(M,x) ∩ EGH(M,x).

Proof. It has to be shown that, for every T, t, t′ > 0 and [N, y] ∈ US,s(M,x) ∩
BGH(M,x; t′), the intersection UT,t(N, y)∩D 6= ∅. Let (N1, y1) and (N2, y2) be
two isometric copies of (N, y). There are admissible metrics, d1 on M t N1 and
d2 on M tN2, such that d1(x, y1) < s, Hd1,R(M,x;N1, y1) < s, d2(x, y2) < t′

and Hd2(M,N2) < t′. Let d̂ denote the metric on M tN1tN2 whose restrictions
to M tN1 and M tN2 are d1 and d2, respectively, and such that

d̂(v1, v2) = inf{ d1(v1, u) + d2(u, v2) | u ∈M }

for all v1 ∈ N1 and v2 ∈ N2. Moreover, d2 is proper by Lemma 8.3, and d1 can be
assumed to be proper by Lemma 8.4, obtaining that d̂ is proper as well. With

T ′ = max{S, T}+ 2 max{s, t}+ t′ + s ,

let A = BM (x, T ′ + 2t′), B1 = BN1(y1, T
′) and B2 = BN2(y2, T

′), and define
N ′ = B1 t (N2 \ B2). Since N ′ is closed in M t N1 t N2, it becomes a proper
metric space with the restriction of d̂. We have d̂(x, y1) = d1(x, y1) < s. With
arguments used in Claims 6 and 7, we get Hd̂,R(M,x;N ′, y1) < s and

Hd̂(M,N ′) < max
{
Hd1(A,B1), t′

}
<∞ .

It follows that [N ′, y1] satisfies the condition to be in D with the restriction of d̂ to
the subset M tN ′ of M tN1 tN2. On the other hand, since d̂(y1, y2) ≤ t′ + s,
with the arguments of Claim 7, we also get

BN ′(y1, T + 2t) = BN1(y1, T + 2t) ≡ BN (y, T + 2t) ,

and therefore [N ′, y1] ∈ UT,t(N, y) by Lemma 8.4. �

Let E be the set of points [M,x] ∈ D such that M is separated (in itself). From
Lemma 9.4, it easily follows that E is dGH -dense in D. Take any ε > 0 such that
s + 2ε < r and R + 2 max{s + ε, r − s − ε} < S. Let A be a separated ε-net of
M that contains x, whose existence is guaranteed by Lemma 9.4, and consider the
restriction of dM toA. Observe that [A, x] ∈ Er−s−ε(M,x) because r−s−ε > ε.
Then the proof of Hypothesis 3-(iii) is completed by the following lemma.
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Lemma 9.10. Any point of E can be joined to [A, x] by a dGH -continuous path in
UR,r(M,x).

Proof. For any [N, y] ∈ E , there is some admissible metric, d, on M t N such
that d(x, y) < s, s0 := Hd,S(M,x;N, y) < s and s1 := Hd(M,N) < ∞.
Moreover d is proper by Lemma 8.3. Observe that Hd,S(A, x;N, y) < s0 + ε and
Hd(A,N) ≤ s1 + ε.

Let Σ be the family of pairs (u, v) ∈ A ×N such that d(u, v) ≤ s1 + ε and, if
u ∈ BA(x, S) or v ∈ BN (y, S), then d(u, v) ≤ s0 + ε; in particular, (x, y) ∈ Σ.
Like in the proof of Lemma 9.5, define Iu,v and du,v for each (u, v) ∈ Σ, as well
as h :

⊔
(u,v)∈Σ → A tN ,

P̂ = (A tN) ∪h
⊔

(u,v)∈Σ

Iu,v ,

and the metric d̂ on P̂ . Since d is proper and A and N are separated, the d-balls in
AtN are finite. Therefore, any ball in P̂ is contained in a finite union of segments
Iu,v, and so P̂ is proper.

For each t ∈ I = [0, 1], let Pt ⊂ P̂ be the subset consisting of the points
w ∈ Iu,v with du,v(w, u) = t d(u, v) for (u, v) ∈ Σ, and let zt denote the unique
point of Pt ∩ Ix,y. Each Pt is a discrete subspace of P̂ , and therefore it becomes
a proper metric space with the restriction of d̂. Moreover (P0, z0) = (A, x) and
(P1, z1) = (N, y). For all t, t′ ∈ I , (u, v) ∈ Σ, w ∈ Pt ∩ Iu,v and w′ ∈ Pt′ ∩ Iu,v,

d̂(w,w′) = du,v(w,w′) = d(u, v) |t− t′|

≤

{
(s1 + ε) |t− t′| for arbitrary (u, v) ∈ Σ
(s0 + ε) |t− t′| if u ∈ BA(x, S) or v ∈ BN (y, S) .

(23)

Thus d̂(zt, zt′) ≤ (s0 + ε) |t − t′| and Hd̂(Pt, Pt′) ≤ (s1 + ε) |t − t′|. By (22), it
follows that [Pt, zt] ∈ EGH(M,x) for all t ∈ I , and the mapping t 7→ [Pt, zt] is
dGH -continuous.

From (23), it also follows that d̂(u, Pt) ≤ (s0 + ε)t for all u ∈ BA(x, S) and
t ∈ I . Moreover the ball BPt(zt, S) is contained in the union of the segments Iu,v
for (u, v) ∈ Σ with u ∈ BA(x, S) or v ∈ BN (y, S). So d̂(w,Pt) ≤ (s0 + ε)t for
all w ∈ BP (zt, S) by (23). It follows that

Hd̂,S(A, x;Pt, zt) ≤ (s0 + ε)t < s+ ε ,

obtaining

[Pt, zt] ∈ US,s+ε(A, x) ⊂ US,s+ε ◦ Er−s−ε(M,x) ⊂ UR,r(M,x)

by Lemmas 8.1 and 8.2. �

Hypotheses 1-3 have just been proved, and that suffices to obtain Theorem 1.1
for (dGH , EGH).
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Remark 16. Like in Remark 15, it can be proved that ∅ is residual inBGH(M,x; r)
for all r > 0 if M is unbounded. In this case, for sequences 0 < rn ↑ r and
0 < Rn ↑ ∞, consider the sets Un consisting of the points [N, y] ∈ BGH(M,x; r)
such that

Hd

(
M \BM (x,Rn), N \BN (y,Rn)

)
> rn

for every admissible metric, d, on M tN .

10. THE QI METRIC RELATION

Consider the notation of Sections 8 and 9.

Proposition 10.1. The fibers of EQI are meager inM∗.

The proof of Proposition 10.1 requires an analysis of dQI , which in turn requires
an analysis of dGH and dLip.

Recall that a map between metric spaces, φ : M → N , is called bi-Lipschitz if
there is some λ ≥ 1 such that

1
λ
dM (u, v) ≤ dN (φ(u), φ(v)) ≤ λ dM (u, v)

for all u, v ∈M . The term λ-bi-Lipschitz may be also used in this case.
Recall also that a (coarse) quasi-isometry of M to N is a bi-Lipschitz bijection

φ : A → B for nets A ⊂ M and B ⊂ N . The existence of a quasi-isometry
of M to N is equivalent to the existence of a finite sequence of metric spaces,
M = M0, . . . ,M2k = N , such that dGH(M2i−2,M2i−1) < ∞ and there is a bi-
Lipschitz bijectionM2i−1 →M2i for all i ∈ {1, . . . , k}. A pointed (coarse) quasi-
isometry is defined in the same way, by using a pointed bi-Lipschitz bijection be-
tween nets that contain the distinguished points. The existence of a pointed quasi-
isometry has an analogous characterization involving pointed Gromov-Hausdorff
distances and pointed bi-Lipschitz bijections.

As noted in Section 8, dLip is the metric equivalence relation over M∗ de-
fined by setting dLip(M,x;N, y) equal to the infimum of all r ≥ 0 such that
there is a pointed er-bi-Lipschitz bijection φ : (M,x) → (N, y); in particular,
dLip(M,x;N, y) =∞ if there is no such a φ. On the other hand, dQI(M,x;N, y)
equals the infimum of all sums

k∑
i=1

dGH(M2i−2, x2i−2;M2i−1, x2i−1) + dLip(M2i−1, x2i−1;M2i, x2i)

for finite sequences [M,x] = [M0, x0], . . . , [M2k, x2k] = [N, y] in M∗. For
[M,x] ∈ M∗ and r > 0, the notation BLip(M,x; r) = BdLip([M,x], r) and
BQI(M,x; r) = BdQI

([M,x], r) will be used.

Lemma 10.2. If [N, y] ∈ UR,r(M,x) and BM (x, q) \ BM (x, p) 6= ∅ for r > 0
and R ≥ q > p > 2r, then BN (y, q + 2r) \BN (y, p− 2r) 6= ∅.
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Proof. By hypothesis, there is some admissible metric d onMtN so that d(x, y) <
r and Hd,R(M,x;N, y) < r, and there is some u ∈M such that p < d(x, u) < q.
Since Hd,R(M,x;N, y) < r, there is some v ∈ N so that d(u, v) < r. Then

dN (y, v) ≤ d(x, u) + d(y, x) + d(u, v) < q + 2r ,

and, similarly, dN (y, v) > p− 2r, completing the proof. �

Corollary 10.3. If dGH(M,x;N, y) < r and BM (x, q) \BM (x, p) 6= ∅ for r > 0
and q > p > 2r, then BN (y, q + 2r) \BN (y, p− 2r) 6= ∅.

Lemma 10.4. If dLip(M,x;N, y) < r and BM (x, q) \ BM (x, p) 6= ∅ for some
r > 0 and q > p > 0, then BN (y, erq) \BN (y, e−rp) 6= ∅.

Proof. By hypothesis, there is some pointed er-bi-Lipschitz bijection φ : (M,x)→
(N, y), and there is some u ∈M such that p < d(x, u) < q. Then

dN (y, φ(u)) ≤ erdM (x, u) < erq ,

and, similarly, dN (y, φ(u)) > e−rp, showing the result. �

Proof of Proposition 10.1. Recall that the pointed compact spaces define a class
of EGH , which is meager inM∗ by Theorem 1.1-(i) for (dGH , EGH). Moreover
any metric space bi-Lipschitz equivalent to a bounded one is also bounded. So the
pointed compact metric spaces also form a class of EQI . Thus, to prove Proposi-
tion 10.1, it is enough to consider the fiber EQI(M,y) for any unbounded proper
metric space M . Hence there are sequences pn, qn ↑ ∞ such that qn > pn > 0
and BM (x, qn) \BM (x, pn) 6= ∅.

Claim 8. Let r, s > 0 and n ∈ N so that pn > 2r and 2s < e−r(qn − 2r). If
[N, y] ∈ BQI(M,x; r), then

BN (y, er(qn + 2r) + 2s) \BN (y, e−r(pn − 2r)− 2s) 6= ∅ . (24)

To prove this assertion, fix any S > er(qn + 2r). Since [N, y] ∈ BQI(M,x; r),
there is a finite sequence, [M,x] = [M0, x0], . . . , [M2k, x2k] in M∗, for some
positive integer k, such that [M2k, x2k] ∈ US,s(N, y) and

k∑
i=1

dGH(M2i−2, x2i−2;M2i−1, x2i−1) + dLip(M2i−1, x2i−1;M2i, x2i) < r .

Take r1, . . . , r2k > 0 such that
∑2k

j=1 rj < r and

rj >

{
dGH(Mj−1, xj−1;Mj , xj) if j is odd
dLip(Mj−1, xj−1;Mj , xj) if j is even

for j ∈ {1, . . . , 2k}. Let r̄j =
∑j

a=1 ra. Arguing by induction on j, using Corol-
lary 10.3 and Lemma 10.4, it follows that

BMj (xj , er̄j (qn + 2r̄j)) \BM2k
(x2k, e−r̄j (qn − 2r̄j)) 6= ∅
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for all j. So

BM2k
(x2k, e

r(qn + 2r)) \BM2k
(x2k, e−r(qn − 2r)) 6= ∅ .

Then (24) follows by Lemma 10.2, completing the proof of Claim 8.
Since EQI(M,x) =

⋃∞
r=1BQI(M,x; r), the result follows from the following

claim.

Claim 9. BQI(M,x; r) is nowhere dense inM∗ for each r > 0.

Let [N, y] ∈ BQI(M,x; r). Given S, s > 0, there is some n ∈ N such that
pn > 2r and S < e−r(qn − 2r)− 2s. Thus (24) is satisfied with these [N, y], r, s
and n. Let

N ′ = N \
(
BN (y, er(qn + 2r) + 2s) \BN (y, e−r(qn − 2r)− 2s)

)
.

With the restriction of dN ,N ′ is a proper metric space withBN ′(y, S) = BN (y, S),
obtaining [N ′, y] ∈ US,s. But [N ′, y] 6∈ BQI(M,x; r) by Claim 8 because

BN ′(y, er(qn + 2r) + 2s) \BN ′(y, e−r(pn − 2r)− 2s) = ∅ .

So US,s(N, y) 6⊂ BQI(M,x; r). Then Claim 9 follows since s can be chosen
arbitrarily small, and S arbitrarily large by choosing n arbitrarily large. �
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