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Harmonic measures

Harmonic measures for foliated spaces were introduced in foliation theory by Lucy
Garnett.

Suppose that (M,F) is a foliated space. If it is endowed with a Riemannian
metric along the leaves then there is a Laplace operator ∆ which acts on functions
f on M which are twice differentiable along the leaves of F and ∆f is continuous
on M .

Definition 1. A measure µ on M is a harmonic measure for the foliated space
(M,F) if ∫

∆f · µ = 0,

for every function f which is C2 along the leaves and such that ∆f = 0.
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of the following fundamental theorem:
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Unlike invariant measures for foliated spaces, harmonic measures are good because
of the following fundamental theorem:

Theorem. [Garnett] Every compact foliated space admits a harmonic (probabi-
lity) measure.

and because there is a good ergodic theory for them, etcetera.

There is a variety of characterization of harmonic measures. One of them is the
following local structure theorem:

Theorem. [Garnett] Locally in a foliation chart D × T for the foliated space
(M,F), a harmonic measure µ decomposes as

µ = h(x, t) vol(x)⊗ ν(t)

where “vol” is the Riemannian volume form on the leaves, ν is a measure on the



transversal T , and h is a measurable function such that x 7→ h(x, t) is a harmonic
function for ν-almost all t.



Group actions

Many examples of foliated spaces are given by group actions or homogeneous
spaces of such actions. Let G be a (connected) Lie group and K a compact
subgroup. If G acts continuously on a space M and the action is locally free, then
M is foliated with leaves the orbits of G, which are homogeneous spaces of G of
the form Stab(x)\G, and the quotient space M/K is foliated by double coset
spaces of the form Stab(x)\G/K.

Such type of structure is available for many two-dimensional foliated spaces and
their unit tangent bundles. The group G = SL(2,R) and K = SO(2).
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Many examples of foliated spaces are given by group actions or homogeneous
spaces of such actions. Let G be a (connected) Lie group and K a compact
subgroup. If G acts continuously on a space M and the action is locally free, then
M is foliated with leaves the orbits of G, which are homogeneous spaces of G of
the form Stab(x)\G, and the quotient space M/K is foliated by double coset
spaces of the form Stab(x)\G/K.

Such type of structure is available for many two-dimensional foliated spaces and
their unit tangent bundles. The group G = SL(2,R) and K = SO(2).

But in general the orbits of a Lie group action have different dimension.
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constant functions and which are G-invariant in the sense that it commutes with
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Let G be a (connected) Lie group, K is a compact subgroup, and X is the
homogeneous space G/K. A function f on X (or a K-invariant function on G) is
harmonic if Dh = 0 for all differential operators D on X which vanish on the
constant functions and which are G-invariant in the sense that it commutes with
the action of G.

Example. If G = SL(2,R), K = SO(2) then X = G/K is the hyperbolic plane.
The hyperbolic Laplacian ∆ on X is an example of an invariant differential operator
and any other invariant differential operator is a polynomial on ∆. Harmonic
functions on G are the lifts of the usual harmonic functions of complex analysis.

An important result on harmonic functions is due to Godement and it generalizes
the well-known mean value property for harmonic functions on the complex plane.



Theorem. [Godement] A function h on X (or K-invariant on G) is harmonic if
it is locally integrable and ∫

K

h(gk · x) · dk = h(g · o)

where dk is Haar measure on X and o is the canonical base point of X.



Suppose that G acts on a space M and that µ is a measure on M which is
quasi-invariant under this action. That is, µ and g∗µ have the same sets of
measure zero. Then there is the Jacobian cocycle j : M ×G → R∗ which is given
by the Radon-Nykodym derivative

j(x, g) =
dg−1

∗ µ

dµ
(x)
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Suppose that G acts on a space M and that µ is a measure on M which is
quasi-invariant under this action. That is, µ and g∗µ have the same sets of
measure zero. Then there is the Jacobian cocycle j : M ×G → R∗ which is given
by the Radon-Nykodym derivative

j(x, g) =
dg−1
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dµ
(x)

Definition. The measure µ on the G-space M is harmonic if it is quasi-invariant
and the mappings g 7→ j(x, g) given by the Jacobian cocycle are harmonic on G
for almost all x in M

Question. If G acts continuously on a compact space M , does M admit a
harmonic probability measure?



If so, what can be done with such measures? what dynamic, ergodic, geometric
properties do they have?



Semisimple Lie groups

If G is a semisimple Lie group with finite center then G admits a product
decomposition G = KAN (Iwasawa decomposition): K is a maximal compact
subgroup, the subgroup A is commutative, the subgroup N is nilpotent, and the
product AN is solvable, connected and simply connected. This decomposition
means that each element g of G can be written in a unique way as the product
g = kan, where k ∈ K, a ∈ A and n ∈ N .

If M is the centralizer of the Lie algebra of A in K, then the group P = MAN is
called the minimal parabolic subgroup of G. It is a solvable group (hence
amenable) and B = G/P = K/M is called the maximal boundary of the
symmetric space X = G/K. It is one of the Satake-Furstenberg compactifications
of the symmetric space X.
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amenable) and B = G/P = K/M is called the maximal boundary of the
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The example to keep in mind is G = SL(n,R), K = SO(n), A the diagonal



subgroup, N the subgroup of upper-triangular matrices with 1 on the diagonal. In
this case P is the group of upper triangular matrices in G and G/K can be
identified with the space of positive definite matrices of determinant 1.

When n = 2, G/K is the hyperbolic plane and G/P corresponds to its circle at
infinity.



subgroup, N the subgroup of upper-triangular matrices with 1 on the diagonal. In
this case P is the group of upper triangular matrices in G and G/K can be
identified with the space of positive definite matrices of determinant 1.

When n = 2, G/K is the hyperbolic plane and G/P corresponds to its circle at
infinity.

Invariant measures for a G-space M are harmonic. Another important example is
the following:

Example. Haar measure on K induces a measure β on B = G/P = K/M . It
is only quasi-invariant under the canonical action of G, and its Radon-Nykodym
derivative

P (b, g) =
dg−1

∗ m

dm
(b)

is the so called Poisson Kernel of B. The function g 7→ P (b, g) is harmonic on G
for all b ∈ B and the measure β is harmonic.
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Theorem 2. Let G be semisimple with finite center, maximal compact subgroup
K and minimal parabolic P . Let M be a G-space. Then there is a bijective
correspondence between harmonic measures µ on M and P -invariant measures π
on M .



Theorem 2. Let G be semisimple with finite center, maximal compact subgroup
K and minimal parabolic P . Let M be a G-space. Then there is a bijective
correspondence between harmonic measures µ on M and P -invariant measures π
on M .

Let β be the canonical measure on the boundary B = G/P and pick a probability
measure β′ on G projecting to β. The mapping

π 7→ π ∗ β′

establishes that bijection, where π ∗ β′ is the convolution∫
M

f(x) · (π ∗ β′)(x) =
∫

G

(∫
M

f(xg) · π(x)
)
· β′(g).
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If (N,F) is a compact Riemann surface lamination whose leaves are hyperbolic,
then the natural 3-dimensional foliation of the unit tangent bundle (for the
hyperbolic metric) of N is given by a locally free action of G = PSL(2,R). A
recent preprint of Bakhtin and Martinez establishes a bijective correspondence
between harmonic measures µ on N and P -invariant measures π on T1N .
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If (N,F) is a compact Riemann surface lamination whose leaves are hyperbolic,
then the natural 3-dimensional foliation of the unit tangent bundle (for the
hyperbolic metric) of N is given by a locally free action of G = PSL(2,R). A
recent preprint of Bakhtin and Martinez establishes a bijective correspondence
between harmonic measures µ on N and P -invariant measures π on T1N .

Furstenberg, and others, have studied the concept of stationary measures for
group actions which turns out to be related to the concept described here, and
essentially equivalent for actions of semisimple Lie groups.

Suppose that G acts on M and that ν is an admissible probability measure on G.
Given a measure µ on M we can define the convolution ν ∗ µ which is the
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measure on M acting on functions by∫
X

f(x) · (µ ∗ ν)(x) =
∫

G

(∫
X

f(xg) · µ(x)
)
· ν(g).

Definition 2. A measure µ on M is ν-stationary if µ ∗ ν = µ.

Theorem. [Furstenberg] Suppose that ν is an admissible measure on G. If G
acts continuously on a compact space M , then M admits a ν-stationary measure.

Furstenberg proved an structure theorem for stationary measures. This theorem
was based on his study of the boundary of symmetric spaces and the integral
representation of bounded ν-harmonic functions. (Note that the Radon-Nykodym
cocycle is harmonic, but only bounded in trivial cases.)





If G is semisimple with finite center and ν is an admissible measure on G, then
there is a compact homogeneous space Bν = G/Pν where a Poisson formula for
bounded ν-harmonic functions holds with respect to a K-invariant ν-harmonic
measure βν. This Bν is a covering space of the minimal boundary B.



If G is semisimple with finite center and ν is an admissible measure on G, then
there is a compact homogeneous space Bν = G/Pν where a Poisson formula for
bounded ν-harmonic functions holds with respect to a K-invariant ν-harmonic
measure βν. This Bν is a covering space of the minimal boundary B.

Theorem. [Furstenberg] Let G be semisimple with finite center, maximal
compact K, and admissible measure ν. Let Bν be the boundary associated to ν
as above and β′

µ a probability measure on G projecting to βµ. If M a continuous
G-space, then the mapping π 7→ π ∗ β′

ν establishes an affine bijection between
Pν-invariant probability measures π on M and ν-stationary measures on M .
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Mixing is an ergodic property which invariant measures may or may not have and
is shown to be equivalent to the vanishing of coefficients of the Koopman
representation of the group by the action on L2(X, µ) given by

Π(g)(f)(x) = f(xg).

To say that the action of P is mixing means that p 7→ 〈f1,Π(p)f2〉 converges to 0
as p →∞ in P .
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In general, if X is a G-space with quasi-invariant measure µ and Radon-Nykodym
cocycle j(x, g), the Koopman representation is given by

Π(g)(f)(x) = f(xg)j(x, g)1/2
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between ergodic and mixing for invariant measures, but in general not equivalent
to any of them.

Definition 3. Suppose that G acts on M with quasi-invariant measure µ. The
action is weakly mixing if the Koopman representation of G on L2(M,µ) has no
finite dimensional invariant subspaces.

(Note that ergodicity of an invariant measure means that the action has no
invariant one-dimensional subspaces other than the constants.)
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Theorem 3. Let G be semisimple with finite center and no compact factors. Let
M be a G-space with probability harmonic measure µ. If µ is ergodic and not
invariant, then the action of G on M is weakly mixing.



Structure of the Jacobian

The positive harmonic function j(x, ·) on G has an integral representation

j(x, g) =
∫

B(G)

P (b, g) · µx(b)

where µx is a probability measure on the boundary B(G) of G and P is the
Poisson kernel.



Theorem 4. Let G be semisimple with finite center and no compact factors. Let
B be its maximal boundary and β the canonical harmonic measure on B. Suppose
that µ is an ergodic harmonic measure for the G-space M . Then in the integral
representation µ ≡ {µx} above

• If µ is invariant, then µx = β for all x

• If µ is not invariant, then µx and β are mutually singularfor almost all x.



Theorem 4. Let G be semisimple with finite center and no compact factors. Let
B be its maximal boundary and β the canonical harmonic measure on B. Suppose
that µ is an ergodic harmonic measure for the G-space M . Then in the integral
representation µ ≡ {µx} above

• If µ is invariant, then µx = β for all x

• If µ is not invariant, then µx and β are mutually singularfor almost all x.

The assignment J : M →M1(B) given by J(x) = µx defines an equivariant map
of M into the space of probability measures on B (but the action of G on B is
not the standard one but a twisted one). The image JM is a G-space for this
action, and the push forward measure J∗µ is a harmonic measure on it.



The G-space M1(B) can be equivariantly identified with H1(G) (the space of
positive harmonic functions h on G such that h(e) = 1) where g ∈ G acts on
h ∈ H1(G) via

(h · g)(g′) 7→ h(gg′)
h(g)

.

The evaluation map ` given by

` : (h, g) ∈ H1(G)×G 7→ `(h, g) = h(g) ∈ R∗
+

is a cocycle for this action. It is in fact a universal cocycle for Jacobians of
harmonic measures on G-spaces.



The G-space M1(B) can be equivariantly identified with H1(G) (the space of
positive harmonic functions h on G such that h(e) = 1) where g ∈ G acts on
h ∈ H1(G) via

(h · g)(g′) 7→ h(gg′)
h(g)

.

The evaluation map ` given by

` : (h, g) ∈ H1(G)×G 7→ `(h, g) = h(g) ∈ R∗
+

is a cocycle for this action. It is in fact a universal cocycle for Jacobians of
harmonic measures on G-spaces.

Theorem 5. For any harmonic measure µ on any G-space M , the map M → JM
is G-equivariant and the push forward measure J∗µ on JM ⊂ B(G) has cocycle `.



Corollaries of these results on the structure of the Jacobian cocycle and the weakly
mixing property are:

Corollary 1. Let G be semisimple with finite center and no compact factors.
Suppose that M is a G-space with a harmonic probability measure µ which is
ergodic but not invariant.

• The von Neumann algebra of the action is a factor of type III.



Corollaries of these results on the structure of the Jacobian cocycle and the weakly
mixing property are:

Corollary 1. Let G be semisimple with finite center and no compact factors.
Suppose that M is a G-space with a harmonic probability measure µ which is
ergodic but not invariant.

• The von Neumann algebra of the action is a factor of type III.

• If M is compact and the action is quasi-conformal (for some metric structure
on M) then there exists a contracting fixed point.
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Let G be semisimple with finite center, let M be a G-space and let µ be a
harmonic probability measure on M .

An H-valued cocycle over the action of G on M is a mapping

α : M ×G → H

such that
α(x, g1g2) = α(xg1, g2) · α(x, g1).

There is a notion of equivalence (cohomology) of cocycles and the equivalence
classes constitute the cohomology space H1((M,G);H). (A group if H is
commutative.)



Example 1. The Jacobian cocycle j(x, g) of a quasi-invariant measure is a cocycle
j : M ×G → R∗

+ because of the chain rule for the Radon-Nykodym derivative.

For any G-space M with harmonic measure µ, the Jacobian cocycle of µ is induced
by the canonical cocycle ` via the equivariant map M → JM .



Conjecture 1. Let G be a semisimple Lie group with finite center and without
compact factors, and with rank ≥ 2. Let M be a G-space with ergodic probability
harmonic measure µ. If α : M ×G → GL(n) is a cocycle, then α is cohomologous
to a cocycle which is induced by a cocycle on (JM, J∗µ)
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The conjecture is true in two very special cases. One is when the image JM is a
point in M1(B). In this case the harmonic measure µ is invariant and the
conjecture is the Margulis-Zimmer superrigidity theorem.



Conjecture 1. Let G be a semisimple Lie group with finite center and without
compact factors, and with rank ≥ 2. Let M be a G-space with ergodic probability
harmonic measure µ. If α : M ×G → GL(n) is a cocycle, then α is cohomologous
to a cocycle which is induced by a cocycle on (JM, J∗µ)

The conjecture is true in two very special cases. One is when the image JM is a
point in M1(B). In this case the harmonic measure µ is invariant and the
conjecture is the Margulis-Zimmer superrigidity theorem.

The other case is when JM is contained in the subspace of Dirac measures. Then
JM = B(G) and J∗µ = β. The conjecture follows as a consequence of Zimmer’s
work on amenable actions.



The next conjecture is geometric and necessitates the concept of property (T) for
G-spaces. Such concept is defined as a representation theoretic property of the
pseudogroup of the action.

Conjecture 2. Let G be semisimle with finite center and no compact factors.
Suppose that M is a G-space with ergodic probability harmonic measure µ. If
(M,G, µ) has property (T), then almost all the orbits of the action have only one
end.



The next conjecture is geometric and necessitates the concept of property (T) for
G-spaces. Such concept is defined as a representation theoretic property of the
pseudogroup of the action.

Conjecture 2. Let G be semisimle with finite center and no compact factors.
Suppose that M is a G-space with ergodic probability harmonic measure µ. If
(M,G, µ) has property (T), then almost all the orbits of the action have only one
end.

If G has property T , then the action of G on a one point space M = {pt.}
satisfies the hypothesis and the conclusion of the theorem.


