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One of the basic problems that anyone that has studied foliations asked are:
what do the leaves of a foliation look like? The results presented below attempt
to address this general question.

A property that the leaves of a foliated space may or may not have is called
generic if the collection of all leaves having said property is a residual subset.

1 Geometry of leaves

A leaf of a compact foliated space has a well defined quasi-isometry type and
it is a natural question to ask which quasi-isometry types of (intrinsic) metric
spaces can appear as leaves of foliated spaces. There are two more or less
related concepts of quasi-isometry. The first one is that used in Riemannian
geometry, namely, two (Lipschitz) manifolds are quasi-isometric if there is a
Lipschitz homeomorphism f : X → Y. The more general concept is that in
which two metric spaces X, Y are coarsely quasi-isometric if there is a mapping
f : X → Y such that

1. there are constants K ≥ 1, A ≥ 0 so that

(1/K)d(x1, x2)− A ≤ d( f (x1), f (x2)) ≤ Kd(x1, x2) + A,

for all x1, x2 ∈ X, and
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2. f (X) is B-dense in Y, for some constant B ≥ 0.

This more general concept is also used in foliation theory when discussing
orbits of finitely generated pseudogroups endowed with the word metric given
by a finite generating system. It is well known and elementary that an orbit
of the holonomy pseudogroup of a compact foliated space is coarsely quasi-
isometric to the corresponding leaf.

If G is a finitely generated group, then a choice of generating system en-
dows the Cayley graph of G with a right invariant metric. If H is a subgroup of
G, not necessarily normal, then the coset space G/H is a metric space with the
induced distance. Such spaces G/H are called discrete homogeneous spaces. With
this definition the problem of coarse quasi-isometry appearance of the leaves
of a foliated space has the following answer.

Theorem 1.1. Let (X, F) be a compact foliated space. Then there exists a finitely
generated group G such that every leaf of X is coarsely quasi-isometric to a discrete
homogeneous space of G.

Conversely, if G/H is a discrete homogeneous spaces, then there is a compact foli-
ated space with a leaf coarsely quasi-isometric to G/H.

This is rather elementary and its main application is as technical tool in
some of the results presented below. Furthermore, a result attributed to Gro-
mov states that a Riemannian manifold is quasi-isometric to a leaf of a com-
pact foliated space if and only it is complete and of bounded geometry. (I don’t
know a reference for a proof; a statement is given in Cass [5].) Whether a
complete Riemannian manifold of bounded geometry is isometric to a leaf of a
compact foliated space is another problem which will be discussed in the talk
of J. A. Álvarez López at this conference.

The question also arises as to how many different quasi-isometry types can
occur among the leaves of a given foliated space. A study of the relation “be-
ing quasi-isometric” among the leaves of a foliated space shows that its equiv-
alence classes are Baire sets, and so basic topological dynamics provides the
following answer.

Theorem 1.2. Let (X, F) be a transitive foliated space, either compact or with all
the leaves of uniformly bounded geometry. Then either there are uncountable many
(coarse) quasi-isometry types of leaves, or else there exists a residual set of leaves which
are all (coarsely) quasi-isometric.

(A foliated space is said to be transitive if it has a dense leaf; it is said to be
minimal if every one of its leaves is dense.)

A further study of the equivalence relation “being quasi-isometric” sheds
more light on the problem. It happens that the second possibility of the previ-
ous statement is rather restrictive.

Theorem 1.3. Let (X, F) be a minimal foliated space, either compact or with all the
leaves of uniformly bounded geometry. Then there is a residual set of quasi-isometric
leaves if and only if there is a residual set of quasi-symmetric leaves.
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Roughly speaking, a metric space is (coarsely) quasi-symmetric if it has suf-
ficiently many (coarse) quasi-isometries of uniformly bounded distortion. Ex-
amples of quasi-symmetric spaces are the symmetric spaces of Lie groups, and
examples of coarse quasi-symmetric spaces are finitely generated groups en-
dowed with a word metric associated to a finite generating system.

The following corollary is a basic consequence of this result.

Corollary 1.4. Let (X, F) be a two-dimensional compact foliated space, which has all
leaves dense and which admits no invariant transverse measure. If there is a simply
connected leaf, then there is a residual set of leaves quasi-isometric to the Poincaré disk.

The geometric structure of quasi-symmetric spaces is very homogeneous,
similar to that of finitely generated groups endowed with a word metric. For
instance, the end-point set of a quasi-symmetric space is either empty, a sin-
gleton, a two-point space, or a Cantor set. This has the following practical
consequence.

Corollary 1.5. In a minimal, compact foliated space with more than one leaf, if there
is a leaf without holonomy whose end space is not a point, two points or a Cantor set,
there there are uncountable many coarsely quasi-isometric types of leaves.

2 Quasi-isometry invariants

On a slightly different direction, another natural question to ask is what kind
of quasi-isometry invariants of metric spaces are generic for the leaves of a
foliated space, i.e., the same on a residual set. Well-known examples of such
invariants appearing in foliation theory are the order of growth and the num-
ber of ends of leaves. A multitude of examples are the asymptotic invariants
described in Gromov [10].

Quasi-isometry invariants are best understood in relation to the Gromov-
Hausdorff space. This space G has for points isometry classes [L, x] of pointed
metric spaces, and is endowed with a topology in which a sequence [Ln, xn]
converges to [L, x] is for each R > 0, the closed balls B(xn, R) in Ln converge to
the closed ball B(x, R) in L, with respect to the Gromov-Hausdorff distance. It
is thus a sort of uniform convergence on compact sets for non-compact metric
spaces. The Gromov-Hausdorff space does not have a foliated structure, but,
given a foliated space X, there is a canonical mapping X → G which sends the
point x ∈ X to the pointed metric space [Lx, x], where Lx is the leaf containing
x.

Theorem 2.1. Let X be a foliated space. The canonical mapping x ∈ X 7→ [Lx, x] ∈ G

is continuous on the subfoliated space of X consisting of leaves without holonomy.

(A well-known result of Epstein, Millet and Tischler [8] and of Hector[11]
says that the union of leaves with no holonomy is a dense Gδ-set in X, hence
residual.)
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A quasi-isometry invariant can be thought of as a function on the Gromov-
Hausdorff space G which is constant on the equivalence classes of the obvious
equivalence relation [L, x] ∼ [L, y] on G. It turns out that in all the known
examples such function is moreover Borel measurable. Therefore, basic topo-
logical dynamics gives the result that for a transitive foliated space X and one
such Borel quasi-isometry invariant J with values in a complete separable met-
ric space, there is a residual saturated subset of X so that all the leaves in such
set have the same invariant J.

Examples where this applies are the following.

Example 2.2. One application of this fact is to the order of growth of the leaves
of a foliated space.

Example 2.3. A less trivial example is the number of ends. In this case, a sepa-
rate argument, having to do with recurrence, is needed to obtain the full state-
ment of the results of Ghys [9] and Cantwell and Conlon [4].

Example 2.4. An example of a slightly different nature is the spectrum of a
leaf of a foliated space endowed with a metric tensor. Here the asymptotic
invariant takes values in the space of closed subsets of the line. The result is
that, in a minimal foliated space, all leaves without holonomy have the same
spectrum. This is a theorem of S. Hurder.

A large number of quasi-isometry invariants of metric spaces amenable to
study fit into homotopy functors. Let F be a functor from the category of
metric spaces to a category with limits A. If F is continuous (in a reason-
able sense), then a quasi-isometry invariant of a space X can be defined as
F∞(X) = limK F(X \ K), where K runs over all compact subsets K of X. For
example, the space of ends is related to one particular functor, namely, to π0.

Theorem 2.5. Let F be a continuous functor with values in the category of vector
spaces. Then F∞(L) are isomorphic for a residual set of leaves L of a given foliated
space.

3 Compactifications

Other type of quasi-isometry invariants are played by compactifications of the
leaves. A relevant compactification of a leaf, from the point of view of carrying
quasi-isometric information, is the Higson-Roe compactification (see Roe [15]
and Dranishnikov and Ferry [7]). This compactification of a proper metric
space is constructed by considering the algebra of bounded continuous func-
tions whose gradient decays to zero at infinity (in contrast with the end-point
compactification, which is related to the algebra of bounded continuous func-
tions whose gradient is zero outside a compact subset).

Its study has two closely related aspects; one that relates to recurrence, and
studies the limit sets of points in the Higson corona, and the other to asymp-
totic invariants.
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A leaf L of a foliated space X is Higson recurrent if the limit set of each
point of the Higson corona of L is dense in X.

Theorem 3.1. Let (X, F) be a compact foliated space. Then the limit sets of every
point of the Higson corona of a leaf is a union of leaves. Furthermore, X is minimal if
and only if there is a Higson recurrent leaf.

In certain sense, the Higson corona of a metric space is to its geometry what
the end-point set is to its topology; the Higson corona keeps track of asymptotic
geometric properties. This can be made slightly more precise as follows.

Theorem 3.2. Let (X, F) be a minimal, compact foliated space. Then the Higson
coronas of any two leaves without holonomy are weakly homogeneous; in particular,
they have the same topological dimension.

(That two spaces A and B are weakly homogeneous means that for any a ∈
A and b ∈ B, every neighborhood of a contains an open subset hoemomorphic
to a neighborhood of b, and viceversa.)

Regarding asymptotic invariants, there is one related to the Higson com-
pactification, namely, the asymptotic dimension introduced in Gromov [10].
It was shown in Dranishniknov, Keesling and Uspenkij [6] that this invariant
gives a rough idea of the size of the Higson corona of a proper metric space.

Theorem 3.3. The asymptotic dimension of the leaves of a foliated space is essentially
constant.

4 Equicontinuous foliated spaces

From a different point of view, it is also natural to try to find dynamical prop-
erties of a foliated space implying that all the leaves are quasi-isometric. The
example that comes to mind is the case of Riemannian foliation, for it follows
from Molino’s theory [14] that the holonomy covers of all the leaves are quasi-
isometric via diffeomorphism. The topological analog of Riemannian folia-
tion is a foliated space whose holonomy pseudogroup is equicontinuous (see
Ghys [14] and also Kellum [12]).

The analysis of the structure of these foliated spaces is the topic of [2]. Such
analysis shows that the holonomy pseudogroup of an equicontinuous foliated
space has properties similar to those of a group of isometries. However, due
to the very general topological structure being studied, some further require-
ments are needed to realize quasi-isometries between leaves. One such partic-
ular requirement is the quasi-analyticity of the holonomy pseudogroup.

Theorem 4.1. Let (X, F) be a compact, equicontinuous foliate space, with connected
leaf space and whose holonomy pseudogroup is quasi-analytic. Then the holonomy
covers of all the leaves of X are quasi-isometric.

Disregarding the quasi-analytic condition, the following is available. The
new tool needed is the concept of normal bundle to the leaves.

5



Theorem 4.2. All the universal covers of an equicontinuous foliated space with con-
nected leaf space are quasi-isometric.

The results of [2] permit to give, in combination with the solution to the
local version of Hilbert’s 5th problem, a purely topological characterization of
Riemannian foliations, which is accomplished in [3]. Earlier work in this direc-
tion was that of Kellum [12, 13] who studied this problem of characterizing Rie-
mannnian pseudogrops for certain pseudogroups of uniformly Lipschitz dif-
feomorphisms of Riemannian manifolds, and who broguht the local Hilbert’s
5th problem to the fore. (The relevance of Hilbert’s 5th problem to these is-
sues is already noticed in Ghys [14].) A recent result, proved by Tarquini [17],
states that equicontinuous transversely conformal foliations are Riemannian;
in the case of dense leaves, this result of Tarquini follows easily from the main
theorem in [3]. Also, Sacksteder work [16] can be interpreted as giving a char-
acterization of Riemannian pseudogroups of one-dimensional manifolds.
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