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Compactifications

I A compactification of a topological space, X , is a pair
(Xκ, κ) consisting of a Hausdorff topological space Xκ and
an embedding κ : X → Xκ with open, dense image.

I Thus if X admits a compactification, then it is locally
compact.

I The complement of the image κ(X ) in Xκ is called the
corona or growth of the compactification, and denoted by
κX .
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Examples

I One point or Alexandroff compactification X∞. The corona
is a single point (if X is noncompact)

I Stone-Čech compactification Xβ. The corona is a very
complex space.

I Endpoint or Freudenthal compactification X end. The
corona is a totally disconnected space.
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I Stone-Čech compactification Xβ. The corona is a very
complex space.

I Endpoint or Freudenthal compactification X end. The
corona is a totally disconnected space.



Examples

I One point or Alexandroff compactification X∞. The corona
is a single point (if X is noncompact)
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Methods of constructing compactifications

I One method of constructing compactifications of a space
X is via Banach subalgebras of Cb(X ), the Banach algebra
of bounded continuous functions on X . To any such
algebra, A, associate the evaluation mapping
eA : X →

∏
f∈A[inf f , sup f ]. If A contains the constant

functions and generates the topology of X , then
(eA(X ), eA) is a compactification of X (Čech).

I Another version is via the maximal ideal space of A
(Stone).

I Another method uses ultrafilters of sets in a given ring of
closed subsets of X (Wallman-Frink compactifications).

I There are some old open problems on the relationship
between the two methods.
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Examples of algebras and compactifications

I The Stone-Čech compactification corresponds to the
algebra Cb(X ).

I The one-point compactification corresponds to the algebra
generated by the functions that are constant on the
complement of a compact subset of X .

I The endpoint compactification corresponds to the algebra
generated by the (bounded, continuous) functions that are
locally constant on the complement of a compact subset of
X .

I If X is a dense leaf of compact foliated space F , the
algebra generated by the continuous functions on F and
the compactly supported functions on F corresponds to a
compactification of X that is a foliated space and has F as
corona.
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The Higson compactification

Consider a metric space (X , d).

I For a function f on X and a real number r > 0, let
∇r f (x) = sup{|f (x)− f (y) | d(x , y) ≤ r}

I The Higson algebra of (X , d), denoted by Cν(X ), is the
subalgebra of Cb(X ) generated by the functions f such
that, for each r > 0, ∇r f (x) → 0 as x →∞ on X .

I The Higson compactification of X is denoted by X ν .
The Higson algebra contains the algebra that determines
the endpoint compactification of X , so the there is a
continuous mapping X ν → X end that is the identity on X .

I The Higson algebra and compactification was introduced
by Higson in his work on index theorems. It was further
studied by Higson and Roe (Analytic K-homology). Hurder
has studied it in the context of index theorems for foliated
spaces.
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Structure of the Higson compactification
Let (X , d) be a non compact proper metric space.

I X ν is much larger than X end. In fact, (for a non compact
proper metric space X ), no point of the Higson corona is a
Gδ-set.

I Let xn be a sequence of points in X diverging to ∞ and
rn > 0 a sequence of real numbers such that the metric
balls B(xn, rn) are mutually disjoint. Then the function

f (x) =


rn − d(x , xn)

rn
if d(x , xn) < rn

0 otherwise

is a Higson function on X .
I If U ⊂ X ν is a neighborhood of a point p in the Higson

corona νX , then U ∩ X contains metric balls of arbitrarily
large radius. Conversely, if W ⊂ X contains metric balls of
arbitrarily large radius, then the closure of W in X ν is a
neighborhood of some point p in νX .
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Limit Sets

I Let X be a foliated space, let F be a leaf of X , and let F γ

be a compactification of F with corona γF = F γ \ F .
I The limit set of a point e in the corona γF , denoted by

lim(e), is the cluster set of the inclusion mapping F ↪→ X at
e, that is

lim(e) =
⋂

U∈Ue

ClX (U ∩ F ),

where Ue denotes the collection of open neighborhoods of
e in F γ .

I The limit set lim(e) is a closed subset of X , which may or
may not be saturated (union of leaves).

I Let X be a foliated space whose leaves are endowed with
a continuous complete metric (e.g. X is compact). If F is a
leaf of X and e is a point in νF , then lim(e) is a saturated
subset of X .



Limit Sets

I Let X be a foliated space, let F be a leaf of X , and let F γ

be a compactification of F with corona γF = F γ \ F .
I The limit set of a point e in the corona γF , denoted by

lim(e), is the cluster set of the inclusion mapping F ↪→ X at
e, that is

lim(e) =
⋂

U∈Ue

ClX (U ∩ F ),

where Ue denotes the collection of open neighborhoods of
e in F γ .

I The limit set lim(e) is a closed subset of X , which may or
may not be saturated (union of leaves).

I Let X be a foliated space whose leaves are endowed with
a continuous complete metric (e.g. X is compact). If F is a
leaf of X and e is a point in νF , then lim(e) is a saturated
subset of X .



Limit Sets

I Let X be a foliated space, let F be a leaf of X , and let F γ

be a compactification of F with corona γF = F γ \ F .
I The limit set of a point e in the corona γF , denoted by

lim(e), is the cluster set of the inclusion mapping F ↪→ X at
e, that is

lim(e) =
⋂

U∈Ue

ClX (U ∩ F ),

where Ue denotes the collection of open neighborhoods of
e in F γ .

I The limit set lim(e) is a closed subset of X , which may or
may not be saturated (union of leaves).

I Let X be a foliated space whose leaves are endowed with
a continuous complete metric (e.g. X is compact). If F is a
leaf of X and e is a point in νF , then lim(e) is a saturated
subset of X .



Limit Sets

I Let X be a foliated space, let F be a leaf of X , and let F γ

be a compactification of F with corona γF = F γ \ F .
I The limit set of a point e in the corona γF , denoted by

lim(e), is the cluster set of the inclusion mapping F ↪→ X at
e, that is

lim(e) =
⋂

U∈Ue

ClX (U ∩ F ),

where Ue denotes the collection of open neighborhoods of
e in F γ .

I The limit set lim(e) is a closed subset of X , which may or
may not be saturated (union of leaves).

I Let X be a foliated space whose leaves are endowed with
a continuous complete metric (e.g. X is compact). If F is a
leaf of X and e is a point in νF , then lim(e) is a saturated
subset of X .



Higson recurrence

A leaf, F , of a foliated space, X , is Higson recurrent if the limit
point of each point in the Higson corona of F is X .

Theorem
Let X be a compact foliated space. The following are
equivalent:

1. X is minimal (every leaf is dense).
2. There is a Higson recurrent leaf.
3. Every leaf is Higson recurrent.
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Generic topology. End homogeneity

Ghys and later Cantwell and Conlon studied the generic
topology of leaves of foliated spaces.

Theorem (Ghys)
Let X be a compact foliated space, µ an ergodic harmonic
measure. Then there is a saturated set of full measure Y ⊂ X
such that:

1. every leaf in Y is compact, or
2. every leaf in Y has one end, or
3. every leaf in Y has two ends, or
4. every leaf in Y has a Cantor set of ends

Theorem (Cantwell-Conlon)
Let X be a compact foliated space with an end recurrent leaf.
Then there is a residual saturated set Y ⊂ X satisfying one of
the properties (1), (2), (3) or (4) in Ghys’ theorem.
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Higson recurrence and homogeneity

I A topological space, X , is weakly homogeneous if for all
x , y in X , every neighborhood of x contains an open
subset homeomorphic to a neighborhood of y .

I Two spaces, X and Y , are weakly homogeneous if the
disjoint union X t Y is weakly homogeneous.

I Two weakly homogeneous spaces have the same
topological dimension.
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Theorem
Let X be a minimal, compact foliated space. Then the Higson
corona of any two leaves without holonomy are weakly
homogeneous.

I By Hector, and Epstein, Millet, and Tischler, the set of
leaves without holonomy is a residual saturated set

I The proof of the theorem uses:
I the general topological structure
I the Higson recurrence of the leaves of a minimal foliated

space,
I the local stability of a foliated space that allows to lift, with

small distortion, large pieces of leaves to nearby leaves.
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Algebraic Characterization of Spaces

Theorem (Gelfand)
Two locally compact Hausdorff spaces, X and Y , are
homeomorphic if and only if the Banach algebras Cb(X ) and
Cb(Y ) are isomorphic.
In fact, an algebraic isomorphism Cb(Y ) → Cb(X ) induces a
homeomorphism Xβ → Y β that sends X to Y .



Algebraic characterization of geometric structures
I Let R be a Riemann surface. The Royden algebra of R,

denoted by M(R), is the algebra generated by by the
continuous functions f on R that have finite Dirichlet
integral D(f ) < ∞, where

D(f ) =

∫
R

df ∧ ?df

Theorem (Nakai)
Two Riemann surfaces, R and R′, are quasi-conformally
equivalent if and only if the Royden algebras M(R) and M(R′)
are algebraically isomorphic.

I Nakai and Lelong-Ferrand have extended this theorem to
Riemannian manifolds and Lewis to domains in euclidean
space.

I Recently, Bourdon has given an algebraic characterization
of the property of two metric spaces being homeomorphic
via a quasi-Mobius homeomorphism.
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Algebraic Characterization of coarsely quasi-isometric
spaces

I Two metric spaces, X and X ′, are coarsely quasi-isometric
if there is a bi-Lipschitz bijection between some nets A ⊂ X
and A′ ⊂ X ′.

I R and Z ⊂ R are coarsely quasi-isometric.
I A map f : X → X ′ is large scale bi-Lipschitz if there are

constants λ ≥ 1 and c > 0 such that

(1/λ)d(x , y)− c ≤ d ′(f (x), f (y)) ≤ λd(x , y) + c

I f : X → X ′ is a large scale bi-Lipschitz equivalence if there
is a large scale bi-Lipschitz map g : X ′ → X such that
supx∈X d(gf (x), x) < ∞ and supx ′∈X ′ d ′(fg(x ′), x ′) < ∞.

These concepts were introduced by Gromov and developed by
many others.
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supx∈X d(gf (x), x) < ∞ and supx ′∈X ′ d ′(fg(x ′), x ′) < ∞.
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Theorem
Let (X , d) and (X ′, d ′) be proper, length metric spaces. An
algebraic isomorphism Cν(X ′) → Cν(X ) induces a large scale
bi-Lipschitz equivalence X → X ′.

I As stated, the theorem is not very satisfactory because the
conclusion is stronger than desired.

I Indeed, the algebraic isomorphism of Higson algebras
induces induces a homeomorphism of Higson
compactifications that sends X → X ′ (because the non-Gδ

property of points in the Higson corona).
I The resulting map X → X ′ is in fact a homeomorphism.

Coarse quasi-isometries X → X ′ are not necessarily
defined on the whole space.

I The hypothesis of the metric spaces X and X ′ being length
spaces is somewhat restrictive.



Theorem
Let (X , d) and (X ′, d ′) be proper, length metric spaces. An
algebraic isomorphism Cν(X ′) → Cν(X ) induces a large scale
bi-Lipschitz equivalence X → X ′.

I As stated, the theorem is not very satisfactory because the
conclusion is stronger than desired.

I Indeed, the algebraic isomorphism of Higson algebras
induces induces a homeomorphism of Higson
compactifications that sends X → X ′ (because the non-Gδ

property of points in the Higson corona).
I The resulting map X → X ′ is in fact a homeomorphism.

Coarse quasi-isometries X → X ′ are not necessarily
defined on the whole space.

I The hypothesis of the metric spaces X and X ′ being length
spaces is somewhat restrictive.



Theorem
Let (X , d) and (X ′, d ′) be proper, length metric spaces. An
algebraic isomorphism Cν(X ′) → Cν(X ) induces a large scale
bi-Lipschitz equivalence X → X ′.

I As stated, the theorem is not very satisfactory because the
conclusion is stronger than desired.

I Indeed, the algebraic isomorphism of Higson algebras
induces induces a homeomorphism of Higson
compactifications that sends X → X ′ (because the non-Gδ

property of points in the Higson corona).
I The resulting map X → X ′ is in fact a homeomorphism.

Coarse quasi-isometries X → X ′ are not necessarily
defined on the whole space.

I The hypothesis of the metric spaces X and X ′ being length
spaces is somewhat restrictive.



Theorem
Let (X , d) and (X ′, d ′) be proper, length metric spaces. An
algebraic isomorphism Cν(X ′) → Cν(X ) induces a large scale
bi-Lipschitz equivalence X → X ′.

I As stated, the theorem is not very satisfactory because the
conclusion is stronger than desired.

I Indeed, the algebraic isomorphism of Higson algebras
induces induces a homeomorphism of Higson
compactifications that sends X → X ′ (because the non-Gδ

property of points in the Higson corona).
I The resulting map X → X ′ is in fact a homeomorphism.

Coarse quasi-isometries X → X ′ are not necessarily
defined on the whole space.

I The hypothesis of the metric spaces X and X ′ being length
spaces is somewhat restrictive.



Coarse structures

These are structures that have been introduced by Roe and
further studied by Higson and Roe, Block-Weinberger, Hurder.

I A coarse structure on a set X is a correspondence that
assigns to any set S an equivalence relation (being close)
on the set of mappings S → X such that

1. if p, q : S → X are close and h : S′ → S is any map, then
p ◦ h and q ◦ h are close

2. Finite unions of close maps are close.
3. Any two constant maps S → X are close.

I A subset E ⊂ X × X is controlled if the projections
p1, p2 : E → X are closed. A subset B is bounded if B × B
is controlled.

I A metric space, (X , d), has a natural coarse structure
given by declaring two maps p, q : S → X to be close if
sups∈S d(p(s), q(s)) < ∞.
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The coarse category
The following concepts can be introduced in the general context
of coarse space. Let (X , d) and (X ′, d ′) be metric spaces.

I A map f : X → X ′ is a coarse map if it satisfies the
following:

1. Uniformly expansive: for each R > 0 there is an S > 0 such
that if f (x , z) ≤ R, then d ′(f (x), f (z)) ≤ S.

2. Metric properness: if B ⊂ X ′ is bounded, then f−1B ⊂ X is
bounded.

I X and X ′ are coarsely equivalent if there are coarse maps
f : X → X ′ and g : X ′ → X such that g ◦ f and f ◦ g are
close to the identity mappings 1X and 1X ′ respectively.

I Being large scale bi-Lipschitz equivalent is weaker than
being coarsely quasi-isometric.

I A metric space is coarsely quasi-convex if it is coarsely
quasi-isometric to a length metric space.

I A coarse equivalence between coarsely quasi-convex
metric spaces is a large scale Lipschitz equivalence.
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Higson algebra of bounded functions

I Let X be a coarse proper metric space. A bounded
function f : X → R is a Higson function if, for each r > 0,
∇r f (x) → 0 as x →∞ in X . Let Bν(X ) be the set of Higson
functions on X endowed with the supremum norm.

I The Higson compactification X ν of X was constructed as
the maximal ideal space of the Higson algebra of
continuous functions Cν(X ).

I It turns out that X ν is also the maximal ideal space of the
Banach algebra Bν(X ) because any f ∈ Bν(X ) has an
extension to X ν that is continuous on the points of the
corona νX .

I There are isomorphisms

C(νX ) ∼= Cν(X )/C0(X ) ∼= Bν(X )/B0(X )
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Boundary extension of coarse mappings

Theorem
Let X and X ′ be proper metric spaces.

1. A map f : X → X ′ is coarse if and only if it has an
extension f ν : X ν → X ′ν that is continuous on the points of
νX and sends νX into νX ′.

2. Two coarse maps f , g : X → X ′ are close if and only if the
extensions f ν and gν given in (1) are equal on νX.

3. A map f : X → X ′ is a coarse equivalence if and only if it
has an extension f ν : X ν → X ′ν that sends νX bijectively
onto νX ′ and is continuous on the points of νX.
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Algebraic characterization of quasi-isometric spaces

Theorem
Two proper metric spaces, X and X ′, are coarsely equivalent if
and only if there is an algebraic isomorphism C(νX ′) → C(νX )
induced by a homomorphism Bν(X ′) → Bν(X )
If X and X ′ are coarsely quasi-convex, then the above is
equivalent to X and X ′ being coarsely quasi-isometric or large
scale bi-Lipschitz equivalent.

I In general, a homeomorphism of Higson coronas does not
induce a coarse equivalence of underlying spaces.
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