Foliations and the Higson Compactification

Alberto Candel joint work with J. A. Alvarez Lopez

CRM, Bellaterra July 14, 2010

- ▶ A compactification of a topological space, X, is a pair (X^{κ}, κ) consisting of a Hausdorff topological space X^{κ} and an embedding $\kappa: X \to X^{\kappa}$ with open, dense image.
- ► Thus if *X* admits a compactification, then it is locally compact.
- The complement of the image κ(X) in X^κ is called the corona or growth of the compactification, and denoted by κX.

- ▶ A compactification of a topological space, X, is a pair (X^{κ}, κ) consisting of a Hausdorff topological space X^{κ} and an embedding $\kappa: X \to X^{\kappa}$ with open, dense image.
- ► Thus if *X* admits a compactification, then it is locally compact.
- The complement of the image κ(X) in X^κ is called the corona or growth of the compactification, and denoted by κX.

- ▶ A compactification of a topological space, X, is a pair (X^{κ}, κ) consisting of a Hausdorff topological space X^{κ} and an embedding $\kappa: X \to X^{\kappa}$ with open, dense image.
- ► Thus if *X* admits a compactification, then it is locally compact.
- The complement of the image κ(X) in X^κ is called the corona or growth of the compactification, and denoted by κX.

- ▶ A compactification of a topological space, X, is a pair (X^{κ}, κ) consisting of a Hausdorff topological space X^{κ} and an embedding $\kappa: X \to X^{\kappa}$ with open, dense image.
- ► Thus if X admits a compactification, then it is locally compact.
- ▶ The complement of the image $\kappa(X)$ in X^{κ} is called the **corona** or **growth** of the compactification, and denoted by κX .

- ▶ A compactification of a topological space, X, is a pair (X^{κ}, κ) consisting of a Hausdorff topological space X^{κ} and an embedding $\kappa: X \to X^{\kappa}$ with open, dense image.
- ► Thus if X admits a compactification, then it is locally compact.
- ▶ The complement of the image $\kappa(X)$ in X^{κ} is called the **corona** or **growth** of the compactification, and denoted by κX .

- ▶ One point or Alexandroff compactification X^{∞} . The corona is a single point (if X is noncompact)
- ▶ Stone-Čech compactification X^{β} . The corona is a very complex space.
- ► Endpoint or Freudenthal compactification *X*^{end}. The corona is a totally disconnected space.

- ▶ One point or Alexandroff compactification X^{∞} . The corona is a single point (if X is noncompact)
- ▶ Stone-Čech compactification X^{β} . The corona is a very complex space.
- ► Endpoint or Freudenthal compactification X^{end}. The corona is a totally disconnected space.

- ▶ One point or Alexandroff compactification X^{∞} . The corona is a single point (if X is noncompact)
- ▶ Stone-Čech compactification X^{β} . The corona is a very complex space.
- ► Endpoint or Freudenthal compactification X^{end}. The corona is a totally disconnected space.

- ▶ One point or Alexandroff compactification X^{∞} . The corona is a single point (if X is noncompact)
- ▶ Stone-Čech compactification X^{β} . The corona is a very complex space.
- ► Endpoint or Freudenthal compactification X^{end}. The corona is a totally disconnected space.

- ▶ One method of constructing compactifications of a space X is via Banach subalgebras of $C_b(X)$, the Banach algebra of bounded continuous functions on X. To any such algebra, A, associate the evaluation mapping $e_A: X \to \prod_{f \in A} [\inf f, \sup f]$. If A contains the constant functions and generates the topology of X, then $(\overline{e_A(X)}, e_A)$ is a compactification of X (Čech).
- Another version is via the maximal ideal space of A (Stone).
- Another method uses ultrafilters of sets in a given ring of closed subsets of X (Wallman-Frink compactifications).
- ► There are some old open problems on the relationship between the two methods.

- ▶ One method of constructing compactifications of a space X is via Banach subalgebras of $C_b(X)$, the Banach algebra of bounded continuous functions on X. To any such algebra, A, associate the evaluation mapping $e_A: X \to \prod_{f \in A} [\inf f, \sup f]$. If A contains the constant functions and generates the topology of X, then $(\overline{e_A(X)}, e_A)$ is a compactification of X (Čech).
- ► Another version is via the maximal ideal space of A (Stone).
- Another method uses ultrafilters of sets in a given ring of closed subsets of X (Wallman-Frink compactifications).
- ► There are some old open problems on the relationship between the two methods.

- One method of constructing compactifications of a space X is via Banach subalgebras of $C_b(X)$, the Banach algebra of bounded continuous functions on X. To any such algebra, \mathcal{A} , associate the evaluation mapping $e_{\mathcal{A}}: X \to \prod_{f \in \mathcal{A}} [\inf f, \sup f]$. If \mathcal{A} contains the constant functions and generates the topology of X, then $(\overline{e_{\mathcal{A}}(X)}, e_{\mathcal{A}})$ is a compactification of X (Čech).
- Another version is via the maximal ideal space of A (Stone).
- Another method uses ultrafilters of sets in a given ring of closed subsets of X (Wallman-Frink compactifications).
- ► There are some old open problems on the relationship between the two methods.

- One method of constructing compactifications of a space X is via Banach subalgebras of $C_b(X)$, the Banach algebra of bounded continuous functions on X. To any such algebra, \mathcal{A} , associate the evaluation mapping $e_{\mathcal{A}}: X \to \prod_{f \in \mathcal{A}} [\inf f, \sup f]$. If \mathcal{A} contains the constant functions and generates the topology of X, then $(\overline{e_{\mathcal{A}}(X)}, e_{\mathcal{A}})$ is a compactification of X (Čech).
- Another version is via the maximal ideal space of A (Stone).
- Another method uses ultrafilters of sets in a given ring of closed subsets of X (Wallman-Frink compactifications).
- ► There are some old open problems on the relationship between the two methods.

- ▶ The Stone-Čech compactification corresponds to the algebra $C_b(X)$.
- ► The one-point compactification corresponds to the algebra generated by the functions that are constant on the complement of a compact subset of *X*.
- ▶ The endpoint compactification corresponds to the algebra generated by the (bounded, continuous) functions that are locally constant on the complement of a compact subset of *X*.
- ▶ If *X* is a dense leaf of compact foliated space *F*, the algebra generated by the continuous functions on *F* and the compactly supported functions on *F* corresponds to a compactification of *X* that is a foliated space and has *F* as corona.

- ▶ The Stone-Čech compactification corresponds to the algebra $C_b(X)$.
- ▶ The one-point compactification corresponds to the algebra generated by the functions that are constant on the complement of a compact subset of *X*.
- ► The endpoint compactification corresponds to the algebra generated by the (bounded, continuous) functions that are locally constant on the complement of a compact subset of X.
- ▶ If *X* is a dense leaf of compact foliated space *F*, the algebra generated by the continuous functions on *F* and the compactly supported functions on *F* corresponds to a compactification of *X* that is a foliated space and has *F* as corona.

- ▶ The Stone-Čech compactification corresponds to the algebra $C_b(X)$.
- ▶ The one-point compactification corresponds to the algebra generated by the functions that are constant on the complement of a compact subset of *X*.
- ► The endpoint compactification corresponds to the algebra generated by the (bounded, continuous) functions that are locally constant on the complement of a compact subset of X.
- ▶ If *X* is a dense leaf of compact foliated space *F*, the algebra generated by the continuous functions on *F* and the compactly supported functions on *F* corresponds to a compactification of *X* that is a foliated space and has *F* as corona.

- ▶ The Stone-Čech compactification corresponds to the algebra $C_b(X)$.
- ► The one-point compactification corresponds to the algebra generated by the functions that are constant on the complement of a compact subset of X.
- ► The endpoint compactification corresponds to the algebra generated by the (bounded, continuous) functions that are locally constant on the complement of a compact subset of X.
- ▶ If X is a dense leaf of compact foliated space F, the algebra generated by the continuous functions on F and the compactly supported functions on F corresponds to a compactification of X that is a foliated space and has F as corona.

- For a function f on X and a real number r > 0, let $\nabla_r f(x) = \sup\{|f(x) f(y)| | d(x, y) \le r\}$
- ▶ The Higson algebra of (X, d), denoted by $C_{\nu}(X)$, is the subalgebra of $C_b(X)$ generated by the functions f such that, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ on X.
- ▶ The Higson compactification of X is denoted by X^{ν} . The Higson algebra contains the algebra that determines the endpoint compactification of X, so the there is a continuous mapping $X^{\nu} \to X^{\text{end}}$ that is the identity on X.
- ► The Higson algebra and compactification was introduced by Higson in his work on index theorems. It was further studied by Higson and Roe (Analytic K-homology). Hurder has studied it in the context of index theorems for foliated spaces.

- ► For a function f on X and a real number r > 0, let $\nabla_r f(x) = \sup\{|f(x) f(y)| d(x, y) \le r\}$
- ▶ The Higson algebra of (X, d), denoted by $C_{\nu}(X)$, is the subalgebra of $C_b(X)$ generated by the functions f such that, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ on X.
- ▶ The Higson compactification of X is denoted by X^{ν} . The Higson algebra contains the algebra that determines the endpoint compactification of X, so the there is a continuous mapping $X^{\nu} \to X^{\text{end}}$ that is the identity on X.
- ► The Higson algebra and compactification was introduced by Higson in his work on index theorems. It was further studied by Higson and Roe (Analytic K-homology). Hurder has studied it in the context of index theorems for foliated spaces.

- ► For a function f on X and a real number r > 0, let $\nabla_r f(x) = \sup\{|f(x) f(y)| d(x, y) \le r\}$
- ▶ The Higson algebra of (X, d), denoted by $C_{\nu}(X)$, is the subalgebra of $C_b(X)$ generated by the functions f such that, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ on X.
- ▶ The Higson compactification of X is denoted by X^{ν} . The Higson algebra contains the algebra that determines the endpoint compactification of X, so the there is a continuous mapping $X^{\nu} \to X^{\text{end}}$ that is the identity on X.
- The Higson algebra and compactification was introduced by Higson in his work on index theorems. It was further studied by Higson and Roe (Analytic K-homology). Hurder has studied it in the context of index theorems for foliated spaces.

- ► For a function f on X and a real number r > 0, let $\nabla_r f(x) = \sup\{|f(x) f(y)| d(x, y) \le r\}$
- ▶ The Higson algebra of (X, d), denoted by $C_{\nu}(X)$, is the subalgebra of $C_b(X)$ generated by the functions f such that, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ on X.
- ▶ The Higson compactification of X is denoted by X^{ν} . The Higson algebra contains the algebra that determines the endpoint compactification of X, so the there is a continuous mapping $X^{\nu} \to X^{\text{end}}$ that is the identity on X.
- The Higson algebra and compactification was introduced by Higson in his work on index theorems. It was further studied by Higson and Roe (Analytic K-homology). Hurder has studied it in the context of index theorems for foliated spaces.

Structure of the Higson compactification

Let (X, d) be a non compact proper metric space.

- \triangleright X^{ν} is much larger than X^{end} . In fact, (for a non compact proper metric space X), no point of the Higson corona is a G_{δ} -set.
- Let x_n be a sequence of points in X diverging to ∞ and $r_n > 0$ a sequence of real numbers such that the metric balls $B(x_n, r_n)$ are mutually disjoint. Then the function

$$f(x) = \begin{cases} \frac{r_n - d(x, x_n)}{r_n} & \text{if } d(x, x_n) < r_n \\ 0 & \text{otherwise} \end{cases}$$

is a Higson function on X.

If $U \subset X^{\nu}$ is a neighborhood of a point p in the Higson corona νX , then $U \cap X$ contains metric balls of arbitrarily large radius. Conversely, if $W \subset X$ contains metric balls of arbitrarily large radius, then the closure of W in X^{ν} is a neighborhood of some point p in νX .

Structure of the Higson compactification

Let (X, d) be a non compact proper metric space.

- ▶ X^{ν} is much larger than X^{end} . In fact, (for a non compact proper metric space X), no point of the Higson corona is a G_{δ} -set.
- Let x_n be a sequence of points in X diverging to ∞ and $r_n > 0$ a sequence of real numbers such that the metric balls $B(x_n, r_n)$ are mutually disjoint. Then the function

$$f(x) = \begin{cases} \frac{r_n - d(x, x_n)}{r_n} & \text{if } d(x, x_n) < r_n \\ 0 & \text{otherwise} \end{cases}$$

is a Higson function on X.

If $U \subset X^{\nu}$ is a neighborhood of a point p in the Higson corona νX , then $U \cap X$ contains metric balls of arbitrarily large radius. Conversely, if $W \subset X$ contains metric balls of arbitrarily large radius, then the closure of W in X^{ν} is a neighborhood of some point p in νX .

Structure of the Higson compactification

Let (X, d) be a non compact proper metric space.

- \triangleright X^{ν} is much larger than X^{end} . In fact, (for a non compact proper metric space X), no point of the Higson corona is a G_{δ} -set.
- Let x_n be a sequence of points in X diverging to ∞ and $r_n > 0$ a sequence of real numbers such that the metric balls $B(x_n, r_n)$ are mutually disjoint. Then the function

$$f(x) = \begin{cases} \frac{r_n - d(x, x_n)}{r_n} & \text{if } d(x, x_n) < r_n \\ 0 & \text{otherwise} \end{cases}$$

is a Higson function on X.

If $U \subset X^{\nu}$ is a neighborhood of a point p in the Higson corona νX , then $U \cap X$ contains metric balls of arbitrarily large radius. Conversely, if $W \subset X$ contains metric balls of arbitrarily large radius, then the closure of W in X^{ν} is a neighborhood of some point p in νX .

- Let X be a foliated space, let F be a leaf of X, and let F^γ be a compactification of F with corona γF = F^γ \ F.
- The limit set of a point e in the corona γF, denoted by lim(e), is the cluster set of the inclusion mapping F → X at e, that is

$$\lim(e) = \bigcap_{U \in \mathcal{U}_e} \operatorname{Cl}_X(U \cap F),$$

- ► The limit set lim(e) is a closed subset of X, which may or may not be saturated (union of leaves).
- Let X be a foliated space whose leaves are endowed with a continuous complete metric (e.g. X is compact). If F is a leaf of X and e is a point in vF, then lim(e) is a saturated subset of X.

- Let X be a foliated space, let F be a leaf of X, and let F^γ be a compactification of F with corona γF = F^γ \ F.
- The limit set of a point e in the corona γF, denoted by lim(e), is the cluster set of the inclusion mapping F → X at e, that is

$$\lim(e) = \bigcap_{U \in \mathcal{U}_e} \operatorname{Cl}_X(U \cap F),$$

- ► The limit set lim(e) is a closed subset of X, which may or may not be saturated (union of leaves).
- Let X be a foliated space whose leaves are endowed with a continuous complete metric (e.g. X is compact). If F is a leaf of X and e is a point in vF, then lim(e) is a saturated subset of X

- Let X be a foliated space, let F be a leaf of X, and let F^γ be a compactification of F with corona γF = F^γ \ F.
- The limit set of a point e in the corona γF, denoted by lim(e), is the cluster set of the inclusion mapping F → X at e, that is

$$\lim(e) = \bigcap_{U \in \mathcal{U}_e} \operatorname{Cl}_X(U \cap F),$$

- The limit set lim(e) is a closed subset of X, which may or may not be saturated (union of leaves).
- Let X be a foliated space whose leaves are endowed with a continuous complete metric (e.g. X is compact). If F is a leaf of X and e is a point in vF, then lim(e) is a saturated subset of X

- Let X be a foliated space, let F be a leaf of X, and let F^γ be a compactification of F with corona γF = F^γ \ F.
- The limit set of a point e in the corona γF, denoted by lim(e), is the cluster set of the inclusion mapping F → X at e, that is

$$\lim(e) = \bigcap_{U \in \mathcal{U}_e} \operatorname{Cl}_X(U \cap F),$$

- The limit set lim(e) is a closed subset of X, which may or may not be saturated (union of leaves).
- Let X be a foliated space whose leaves are endowed with a continuous complete metric (e.g. X is compact). If F is a leaf of X and e is a point in νF, then lim(e) is a saturated subset of X.

Higson recurrence

A leaf, F, of a foliated space, X, is **Higson recurrent** if the limit point of each point in the Higson corona of F is X.

Theorem

Let X be a compact foliated space. The following are equivalent:

- 1. X is minimal (every leaf is dense).
- 2. There is a Higson recurrent leaf.
- 3. Every leaf is Higson recurrent.

Higson recurrence

A leaf, F, of a foliated space, X, is **Higson recurrent** if the limit point of each point in the Higson corona of F is X.

Theorem

Let *X* be a compact foliated space. The following are equivalent:

- 1. X is minimal (every leaf is dense).
- 2. There is a Higson recurrent leaf.
- 3. Every leaf is Higson recurrent.

Generic topology. End homogeneity

Ghys and later Cantwell and Conlon studied the generic topology of leaves of foliated spaces.

Theorem (Ghys)

Let X be a compact foliated space, μ an ergodic harmonic measure. Then there is a saturated set of full measure $Y\subset X$ such that:

- 1. every leaf in Y is compact, or
- 2. every leaf in Y has one end, or
- 3. every leaf in Y has two ends, or
- 4. every leaf in Y has a Cantor set of ends

Theorem (Cantwell-Conlon)

Let X be a compact foliated space with an end recurrent leaf. Then there is a residual saturated set $Y \subset X$ satisfying one of the properties (1), (2), (3) or (4) in Ghys' theorem.

Generic topology. End homogeneity

Ghys and later Cantwell and Conlon studied the generic topology of leaves of foliated spaces.

Theorem (Ghys)

Let X be a compact foliated space, μ an ergodic harmonic measure. Then there is a saturated set of full measure $Y \subset X$ such that:

- 1. every leaf in Y is compact, or
- 2. every leaf in Y has one end, or
- 3. every leaf in Y has two ends, or
- 4. every leaf in Y has a Cantor set of ends

Theorem (Cantwell-Conlon)

Let X be a compact foliated space with an end recurrent leaf. Then there is a residual saturated set $Y \subset X$ satisfying one of the properties (1), (2), (3) or (4) in Ghys' theorem.

Generic topology. End homogeneity

Ghys and later Cantwell and Conlon studied the generic topology of leaves of foliated spaces.

Theorem (Ghys)

Let X be a compact foliated space, μ an ergodic harmonic measure. Then there is a saturated set of full measure $Y \subset X$ such that:

- 1. every leaf in Y is compact, or
- 2. every leaf in Y has one end, or
- 3. every leaf in Y has two ends, or
- 4. every leaf in Y has a Cantor set of ends

Theorem (Cantwell-Conlon)

Let X be a compact foliated space with an end recurrent leaf. Then there is a residual saturated set $Y \subset X$ satisfying one of the properties (1), (2), (3) or (4) in Ghys' theorem.

Higson recurrence and homogeneity

- ▶ A topological space, X, is weakly homogeneous if for all x, y in X, every neighborhood of x contains an open subset homeomorphic to a neighborhood of y.
- ► Two spaces, *X* and *Y*, are weakly homogeneous if the disjoint union *X* ⊔ *Y* is weakly homogeneous.
- Two weakly homogeneous spaces have the same topological dimension.

Higson recurrence and homogeneity

- ▶ A topological space, *X*, is **weakly homogeneous** if for all *x*, *y* in *X*, every neighborhood of *x* contains an open subset homeomorphic to a neighborhood of *y*.
- ► Two spaces, *X* and *Y*, are weakly homogeneous if the disjoint union *X* ⊔ *Y* is weakly homogeneous.
- Two weakly homogeneous spaces have the same topological dimension.

Higson recurrence and homogeneity

- ▶ A topological space, *X*, is **weakly homogeneous** if for all *x*, *y* in *X*, every neighborhood of *x* contains an open subset homeomorphic to a neighborhood of *y*.
- ► Two spaces, *X* and *Y*, are weakly homogeneous if the disjoint union *X* ⊔ *Y* is weakly homogeneous.
- Two weakly homogeneous spaces have the same topological dimension.

- By Hector, and Epstein, Millet, and Tischler, the set of leaves without holonomy is a residual saturated set
- ▶ The proof of the theorem uses:
 - the general topological structure
 - the Higson recurrence of the leaves of a minimal foliated space,
 - the local stability of a foliated space that allows to lift, with small distortion, large pieces of leaves to nearby leaves.

- By Hector, and Epstein, Millet, and Tischler, the set of leaves without holonomy is a residual saturated set
- ► The proof of the theorem uses:
 - the general topological structure
 - the Higson recurrence of the leaves of a minimal foliated space,
 - the local stability of a foliated space that allows to lift, with small distortion, large pieces of leaves to nearby leaves.

- By Hector, and Epstein, Millet, and Tischler, the set of leaves without holonomy is a residual saturated set
- The proof of the theorem uses:
 - the general topological structure
 - the Higson recurrence of the leaves of a minimal foliated space,
 - the local stability of a foliated space that allows to lift, with small distortion, large pieces of leaves to nearby leaves.

- By Hector, and Epstein, Millet, and Tischler, the set of leaves without holonomy is a residual saturated set
- The proof of the theorem uses:
 - the general topological structure
 - the Higson recurrence of the leaves of a minimal foliated space,
 - the local stability of a foliated space that allows to lift, with small distortion, large pieces of leaves to nearby leaves.

- By Hector, and Epstein, Millet, and Tischler, the set of leaves without holonomy is a residual saturated set
- The proof of the theorem uses:
 - the general topological structure
 - the Higson recurrence of the leaves of a minimal foliated space,
 - the local stability of a foliated space that allows to lift, with small distortion, large pieces of leaves to nearby leaves.

Algebraic Characterization of Spaces

Theorem (Gelfand)

Two locally compact Hausdorff spaces, X and Y, are homeomorphic if and only if the Banach algebras $C_b(X)$ and $C_b(Y)$ are isomorphic.

In fact, an algebraic isomorphism $C_b(Y) \to C_b(X)$ induces a homeomorphism $X^\beta \to Y^\beta$ that sends X to Y.

▶ Let R be a Riemann surface. The Royden algebra of R, denoted by M(R), is the algebra generated by by the continuous functions f on R that have finite Dirichlet integral $D(f) < \infty$, where

$$D(f) = \int_{R} df \wedge \star df$$

Theorem (Nakai)

- Nakai and Lelong-Ferrand have extended this theorem to Riemannian manifolds and Lewis to domains in euclidean space.
- ► Recently, Bourdon has given an algebraic characterization of the property of two metric spaces being homeomorphic via a quasi-Mobius homeomorphism.

▶ Let R be a Riemann surface. The Royden algebra of R, denoted by M(R), is the algebra generated by by the continuous functions f on R that have finite Dirichlet integral $D(f) < \infty$, where

$$D(f) = \int_{R} df \wedge \star df$$

Theorem (Nakai)

- Nakai and Lelong-Ferrand have extended this theorem to Riemannian manifolds and Lewis to domains in euclidean space.
- ► Recently, Bourdon has given an algebraic characterization of the property of two metric spaces being homeomorphic via a quasi-Mobius homeomorphism.

▶ Let R be a Riemann surface. The Royden algebra of R, denoted by M(R), is the algebra generated by by the continuous functions f on R that have finite Dirichlet integral $D(f) < \infty$, where

$$D(f) = \int_{R} df \wedge \star df$$

Theorem (Nakai)

- Nakai and Lelong-Ferrand have extended this theorem to Riemannian manifolds and Lewis to domains in euclidean space.
- ► Recently, Bourdon has given an algebraic characterization of the property of two metric spaces being homeomorphic via a quasi-Mobius homeomorphism.

▶ Let R be a Riemann surface. The Royden algebra of R, denoted by M(R), is the algebra generated by by the continuous functions f on R that have finite Dirichlet integral $D(f) < \infty$, where

$$D(f) = \int_{R} df \wedge \star df$$

Theorem (Nakai)

- ▶ Nakai and Lelong-Ferrand have extended this theorem to Riemannian manifolds and Lewis to domains in euclidean space.
- ► Recently, Bourdon has given an algebraic characterization of the property of two metric spaces being homeomorphic via a quasi-Mobius homeomorphism.

- ▶ Two metric spaces, X and X', are coarsely quasi-isometric if there is a bi-Lipschitz bijection between some nets $A \subset X$ and $A' \subset X'$.
- ▶ R and Z ⊂ R are coarsely quasi-isometric.
- ▶ A map $f: X \to X'$ is large scale bi-Lipschitz if there are constants $\lambda \ge 1$ and c > 0 such that

$$(1/\lambda)d(x,y)-c\leq d'(f(x),f(y))\leq \lambda d(x,y)+c$$

▶ $f: X \to X'$ is a large scale bi-Lipschitz equivalence if there is a large scale bi-Lipschitz map $g: X' \to X$ such that $\sup_{x \in X} d(gf(x), x) < \infty$ and $\sup_{x' \in X'} d'(fg(x'), x') < \infty$.

- ▶ Two metric spaces, X and X', are coarsely quasi-isometric if there is a bi-Lipschitz bijection between some nets $A \subset X$ and $A' \subset X'$.
- ▶ R and Z ⊂ R are coarsely quasi-isometric.
- ▶ A map $f: X \rightarrow X'$ is large scale bi-Lipschitz if there are constants $\lambda \ge 1$ and c > 0 such that

$$(1/\lambda)d(x,y)-c\leq d'(f(x),f(y))\leq \lambda d(x,y)+c$$

▶ $f: X \to X'$ is a large scale bi-Lipschitz equivalence if there is a large scale bi-Lipschitz map $g: X' \to X$ such that $\sup_{x \in X} d(gf(x), x) < \infty$ and $\sup_{x' \in X'} d'(fg(x'), x') < \infty$.

- Two metric spaces, X and X', are coarsely quasi-isometric if there is a bi-Lipschitz bijection between some nets A ⊂ X and A' ⊂ X'.
- ▶ R and Z ⊂ R are coarsely quasi-isometric.
- ▶ A map $f: X \to X'$ is large scale bi-Lipschitz if there are constants $\lambda \ge 1$ and c > 0 such that

$$(1/\lambda)d(x,y)-c\leq d'(f(x),f(y))\leq \lambda d(x,y)+c$$

▶ $f: X \to X'$ is a large scale bi-Lipschitz equivalence if there is a large scale bi-Lipschitz map $g: X' \to X$ such that $\sup_{x \in X} d(gf(x), x) < \infty$ and $\sup_{x' \in X'} d'(fg(x'), x') < \infty$.

- ► Two metric spaces, X and X', are coarsely quasi-isometric if there is a bi-Lipschitz bijection between some nets A ⊂ X and A' ⊂ X'.
- ▶ R and Z ⊂ R are coarsely quasi-isometric.
- ▶ A map $f: X \to X'$ is large scale bi-Lipschitz if there are constants $\lambda \ge 1$ and c > 0 such that

$$(1/\lambda)d(x,y)-c\leq d'(f(x),f(y))\leq \lambda d(x,y)+c$$

▶ $f: X \to X'$ is a large scale bi-Lipschitz equivalence if there is a large scale bi-Lipschitz map $g: X' \to X$ such that $\sup_{x \in X} d(gf(x), x) < \infty$ and $\sup_{x' \in X'} d'(fg(x'), x') < \infty$.

- Two metric spaces, X and X', are coarsely quasi-isometric if there is a bi-Lipschitz bijection between some nets A ⊂ X and A' ⊂ X'.
- ▶ R and Z ⊂ R are coarsely quasi-isometric.
- ▶ A map $f: X \to X'$ is large scale bi-Lipschitz if there are constants $\lambda \ge 1$ and c > 0 such that

$$(1/\lambda)d(x,y)-c\leq d'(f(x),f(y))\leq \lambda d(x,y)+c$$

▶ $f: X \to X'$ is a large scale bi-Lipschitz equivalence if there is a large scale bi-Lipschitz map $g: X' \to X$ such that $\sup_{x \in X} d(gf(x), x) < \infty$ and $\sup_{x' \in X'} d'(fg(x'), x') < \infty$.

- ► As stated, the theorem is not very satisfactory because the conclusion is stronger than desired.
- ▶ Indeed, the algebraic isomorphism of Higson algebras induces induces a homeomorphism of Higson compactifications that sends $X \to X'$ (because the non- G_δ property of points in the Higson corona).
- ▶ The resulting map $X \to X'$ is in fact a homeomorphism. Coarse quasi-isometries $X \to X'$ are not necessarily defined on the whole space.
- ▶ The hypothesis of the metric spaces *X* and *X'* being length spaces is somewhat restrictive.

- ➤ As stated, the theorem is not very satisfactory because the conclusion is stronger than desired.
- ▶ Indeed, the algebraic isomorphism of Higson algebras induces induces a homeomorphism of Higson compactifications that sends $X \to X'$ (because the non- G_δ property of points in the Higson corona).
- ▶ The resulting map $X \to X'$ is in fact a homeomorphism. Coarse quasi-isometries $X \to X'$ are not necessarily defined on the whole space.
- ▶ The hypothesis of the metric spaces *X* and *X'* being length spaces is somewhat restrictive.

- ➤ As stated, the theorem is not very satisfactory because the conclusion is stronger than desired.
- ▶ Indeed, the algebraic isomorphism of Higson algebras induces induces a homeomorphism of Higson compactifications that sends $X \to X'$ (because the non- G_δ property of points in the Higson corona).
- ▶ The resulting map $X \to X'$ is in fact a homeomorphism. Coarse quasi-isometries $X \to X'$ are not necessarily defined on the whole space.
- ▶ The hypothesis of the metric spaces *X* and *X'* being length spaces is somewhat restrictive.

- ➤ As stated, the theorem is not very satisfactory because the conclusion is stronger than desired.
- ▶ Indeed, the algebraic isomorphism of Higson algebras induces induces a homeomorphism of Higson compactifications that sends $X \to X'$ (because the non- G_δ property of points in the Higson corona).
- ▶ The resulting map $X \to X'$ is in fact a homeomorphism. Coarse quasi-isometries $X \to X'$ are not necessarily defined on the whole space.
- ► The hypothesis of the metric spaces *X* and *X'* being length spaces is somewhat restrictive.

Coarse structures

These are structures that have been introduced by Roe and further studied by Higson and Roe, Block-Weinberger, Hurder.

- A coarse structure on a set X is a correspondence that assigns to any set S an equivalence relation (being close) on the set of mappings S → X such that
 - 1. if $p, q: S \to X$ are close and $h: S' \to S$ is any map, then $p \circ h$ and $q \circ h$ are close
 - 2. Finite unions of close maps are close.
 - 3. Any two constant maps $S \rightarrow X$ are close.
- A subset E ⊂ X × X is controlled if the projections p₁, p₂ : E → X are closed. A subset B is bounded if B × B is controlled.
- ▶ A metric space, (X, d), has a natural coarse structure given by declaring two maps $p, q : S \to X$ to be close if $\sup_{s \in S} d(p(s), q(s)) < \infty$.

Coarse structures

These are structures that have been introduced by Roe and further studied by Higson and Roe, Block-Weinberger, Hurder.

- A coarse structure on a set X is a correspondence that assigns to any set S an equivalence relation (being close) on the set of mappings S → X such that
 - 1. if $p, q: S \to X$ are close and $h: S' \to S$ is any map, then $p \circ h$ and $q \circ h$ are close
 - 2. Finite unions of close maps are close.
 - 3. Any two constant maps $S \rightarrow X$ are close.
- A subset E ⊂ X × X is controlled if the projections p₁, p₂ : E → X are closed. A subset B is bounded if B × B is controlled.
- ▶ A metric space, (X, d), has a natural coarse structure given by declaring two maps $p, q : S \to X$ to be close if $\sup_{s \in S} d(p(s), q(s)) < \infty$.

Coarse structures

These are structures that have been introduced by Roe and further studied by Higson and Roe, Block-Weinberger, Hurder.

- A coarse structure on a set X is a correspondence that assigns to any set S an equivalence relation (being close) on the set of mappings S → X such that
 - 1. if $p, q: S \to X$ are close and $h: S' \to S$ is any map, then $p \circ h$ and $q \circ h$ are close
 - 2. Finite unions of close maps are close.
 - 3. Any two constant maps $S \rightarrow X$ are close.
- A subset E ⊂ X × X is controlled if the projections p₁, p₂ : E → X are closed. A subset B is bounded if B × B is controlled.
- ▶ A metric space, (X, d), has a natural coarse structure given by declaring two maps $p, q : S \to X$ to be close if $\sup_{s \in S} d(p(s), q(s)) < \infty$.

- ▶ A map $f: X \rightarrow X'$ is a coarse map if it satisfies the following:
 - 1. Uniformly expansive: for each R > 0 there is an S > 0 such that if $f(x, z) \le R$, then $d'(f(x), f(z)) \le S$.
 - 2. Metric properness: if $B \subset X'$ is bounded, then $f^{-1}B \subset X$ is bounded.
- X and X' are coarsely equivalent if there are coarse maps f: X → X' and g: X' → X such that g ∘ f and f ∘ g are close to the identity mappings 1_X and 1_{X'} respectively.
- ▶ Being large scale bi-Lipschitz equivalent is weaker than being coarsely quasi-isometric.
- ▶ A metric space is coarsely quasi-convex if it is coarsely quasi-isometric to a length metric space.
- ► A coarse equivalence between coarsely quasi-convex metric spaces is a large scale Lipschitz equivalence.

- A map f : X → X' is a coarse map if it satisfies the following:
 - 1. Uniformly expansive: for each R > 0 there is an S > 0 such that if $f(x, z) \le R$, then $d'(f(x), f(z)) \le S$.
 - 2. Metric properness: if $B \subset X'$ is bounded, then $f^{-1}B \subset X$ is bounded.
- X and X' are coarsely equivalent if there are coarse maps f: X → X' and g: X' → X such that g ∘ f and f ∘ g are close to the identity mappings 1_X and 1_{X'} respectively.
- Being large scale bi-Lipschitz equivalent is weaker than being coarsely quasi-isometric.
- A metric space is coarsely quasi-convex if it is coarsely quasi-isometric to a length metric space.
- ► A coarse equivalence between coarsely quasi-convex metric spaces is a large scale Lipschitz equivalence.

- A map f : X → X' is a coarse map if it satisfies the following:
 - 1. Uniformly expansive: for each R > 0 there is an S > 0 such that if $f(x, z) \le R$, then $d'(f(x), f(z)) \le S$.
 - 2. Metric properness: if $B \subset X'$ is bounded, then $f^{-1}B \subset X$ is bounded.
- X and X' are coarsely equivalent if there are coarse maps f: X → X' and g: X' → X such that g ∘ f and f ∘ g are close to the identity mappings 1_X and 1_{X'} respectively.
- Being large scale bi-Lipschitz equivalent is weaker than being coarsely quasi-isometric.
- ► A metric space is **coarsely quasi-convex** if it is coarsely quasi-isometric to a length metric space.
- ► A coarse equivalence between coarsely quasi-convex metric spaces is a large scale Lipschitz equivalence.

- A map f : X → X' is a coarse map if it satisfies the following:
 - 1. Uniformly expansive: for each R > 0 there is an S > 0 such that if $f(x, z) \le R$, then $d'(f(x), f(z)) \le S$.
 - 2. Metric properness: if $B \subset X'$ is bounded, then $f^{-1}B \subset X$ is bounded.
- X and X' are coarsely equivalent if there are coarse maps f: X → X' and g: X' → X such that g ∘ f and f ∘ g are close to the identity mappings 1_X and 1_{X'} respectively.
- Being large scale bi-Lipschitz equivalent is weaker than being coarsely quasi-isometric.
- A metric space is coarsely quasi-convex if it is coarsely quasi-isometric to a length metric space.
- ► A coarse equivalence between coarsely quasi-convex metric spaces is a large scale Lipschitz equivalence.

- A map f : X → X' is a coarse map if it satisfies the following:
 - 1. Uniformly expansive: for each R > 0 there is an S > 0 such that if $f(x, z) \le R$, then $d'(f(x), f(z)) \le S$.
 - 2. Metric properness: if $B \subset X'$ is bounded, then $f^{-1}B \subset X$ is bounded.
- X and X' are coarsely equivalent if there are coarse maps f: X → X' and g: X' → X such that g ∘ f and f ∘ g are close to the identity mappings 1_X and 1_{X'} respectively.
- ▶ Being large scale bi-Lipschitz equivalent is weaker than being coarsely quasi-isometric.
- ▶ A metric space is **coarsely quasi-convex** if it is coarsely quasi-isometric to a length metric space.
- ► A coarse equivalence between coarsely quasi-convex metric spaces is a large scale Lipschitz equivalence.

- ▶ Let X be a coarse proper metric space. A bounded function $f: X \to \mathbf{R}$ is a Higson function if, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ in X. Let $\mathcal{B}_{\nu}(X)$ be the set of Higson functions on X endowed with the supremum norm.
- ▶ The Higson compactification X^{ν} of X was constructed as the maximal ideal space of the Higson algebra of continuous functions $C_{\nu}(X)$.
- ▶ It turns out that X^{ν} is also the maximal ideal space of the Banach algebra $\mathcal{B}_{\nu}(X)$ because any $f \in \mathcal{B}_{\nu}(X)$ has an extension to X^{ν} that is continuous on the points of the corona νX .
- ► There are isomorphisms

$$C(\nu X) \cong C_{\nu}(X)/C_0(X) \cong \mathcal{B}_{\nu}(X)/\mathcal{B}_0(X)$$

- ▶ Let X be a coarse proper metric space. A bounded function $f: X \to \mathbf{R}$ is a Higson function if, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ in X. Let $\mathcal{B}_{\nu}(X)$ be the set of Higson functions on X endowed with the supremum norm.
- ▶ The Higson compactification X^{ν} of X was constructed as the maximal ideal space of the Higson algebra of continuous functions $C_{\nu}(X)$.
- ▶ It turns out that X^{ν} is also the maximal ideal space of the Banach algebra $\mathcal{B}_{\nu}(X)$ because any $f \in \mathcal{B}_{\nu}(X)$ has an extension to X^{ν} that is continuous on the points of the corona νX .
- ► There are isomorphisms

$$C(\nu X) \cong C_{\nu}(X)/C_0(X) \cong \mathcal{B}_{\nu}(X)/\mathcal{B}_0(X)$$

- Let X be a coarse proper metric space. A bounded function $f: X \to \mathbf{R}$ is a Higson function if, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ in X. Let $\mathcal{B}_{\nu}(X)$ be the set of Higson functions on X endowed with the supremum norm.
- ▶ The Higson compactification X^{ν} of X was constructed as the maximal ideal space of the Higson algebra of continuous functions $C_{\nu}(X)$.
- ▶ It turns out that X^{ν} is also the maximal ideal space of the Banach algebra $\mathcal{B}_{\nu}(X)$ because any $f \in \mathcal{B}_{\nu}(X)$ has an extension to X^{ν} that is continuous on the points of the corona νX .
- ► There are isomorphisms

$$C(\nu X) \cong C_{\nu}(X)/C_0(X) \cong \mathcal{B}_{\nu}(X)/\mathcal{B}_0(X)$$

- Let X be a coarse proper metric space. A bounded function $f: X \to \mathbf{R}$ is a Higson function if, for each r > 0, $\nabla_r f(x) \to 0$ as $x \to \infty$ in X. Let $\mathcal{B}_{\nu}(X)$ be the set of Higson functions on X endowed with the supremum norm.
- ▶ The Higson compactification X^{ν} of X was constructed as the maximal ideal space of the Higson algebra of continuous functions $C_{\nu}(X)$.
- ▶ It turns out that X^{ν} is also the maximal ideal space of the Banach algebra $\mathcal{B}_{\nu}(X)$ because any $f \in \mathcal{B}_{\nu}(X)$ has an extension to X^{ν} that is continuous on the points of the corona νX .
- There are isomorphisms

$$C(\nu X) \cong C_{\nu}(X)/C_0(X) \cong \mathcal{B}_{\nu}(X)/\mathcal{B}_0(X)$$

Boundary extension of coarse mappings

Theorem

Let X and X' be proper metric spaces.

- 1. A map $f: X \to X'$ is coarse if and only if it has an extension $f^{\nu}: X^{\nu} \to X'^{\nu}$ that is continuous on the points of νX and sends νX into $\nu X'$.
- 2. Two coarse maps $f, g: X \to X'$ are close if and only if the extensions f^{ν} and g^{ν} given in (1) are equal on νX .
- 3. A map $f: X \to X'$ is a coarse equivalence if and only if it has an extension $f^{\nu}: X^{\nu} \to X'^{\nu}$ that sends νX bijectively onto $\nu X'$ and is continuous on the points of νX .

Boundary extension of coarse mappings

Theorem

Let X and X' be proper metric spaces.

- 1. A map $f: X \to X'$ is coarse if and only if it has an extension $f^{\nu}: X^{\nu} \to X'^{\nu}$ that is continuous on the points of νX and sends νX into $\nu X'$.
- 2. Two coarse maps $f, g: X \to X'$ are close if and only if the extensions f^{ν} and g^{ν} given in (1) are equal on νX .
- 3. A map $f: X \to X'$ is a coarse equivalence if and only if it has an extension $f^{\nu}: X^{\nu} \to X'^{\nu}$ that sends νX bijectively onto $\nu X'$ and is continuous on the points of νX .

Boundary extension of coarse mappings

Theorem

Let X and X' be proper metric spaces.

- 1. A map $f: X \to X'$ is coarse if and only if it has an extension $f^{\nu}: X^{\nu} \to X'^{\nu}$ that is continuous on the points of νX and sends νX into $\nu X'$.
- 2. Two coarse maps $f, g: X \to X'$ are close if and only if the extensions f^{ν} and g^{ν} given in (1) are equal on νX .
- 3. A map $f: X \to X'$ is a coarse equivalence if and only if it has an extension $f^{\nu}: X^{\nu} \to X'^{\nu}$ that sends νX bijectively onto $\nu X'$ and is continuous on the points of νX .

Theorem

Two proper metric spaces, X and X', are coarsely equivalent if and only if there is an algebraic isomorphism $C(\nu X') \to C(\nu X)$ induced by a homomorphism $\mathcal{B}_{\nu}(X') \to \mathcal{B}_{\nu}(X)$ If X and X' are coarsely quasi-convex, then the above is equivalent to X and X' being coarsely quasi-isometric or large scale bi-Lipschitz equivalent.

In general, a homeomorphism of Higson coronas does not induce a coarse equivalence of underlying spaces.

Theorem

Two proper metric spaces, X and X', are coarsely equivalent if and only if there is an algebraic isomorphism $C(\nu X') \to C(\nu X)$ induced by a homomorphism $\mathcal{B}_{\nu}(X') \to \mathcal{B}_{\nu}(X)$ If X and X' are coarsely quasi-convex, then the above is equivalent to X and X' being coarsely quasi-isometric or large scale bi-Lipschitz equivalent.

In general, a homeomorphism of Higson coronas does not induce a coarse equivalence of underlying spaces.