
MATH 650. THE RADON-NIKODYM THEOREM

This note presents two important theorems in Measure Theory, the
Lebesgue Decomposition and Radon-Nikodym Theorem. They are not
treated in the textbook.

1. Closed subspaces

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.

Definition 1. A subspace of H is a subset of H such that, if it contains
x and y, then it also contains αx+βy, for every pair of complex numbers
α and β.
A closed subspace is a subspace which is also a closed subset of H,

that is, every Cauchy sequence in the subspace converges to a vector
in the subspace.

Exercise 1. Let H = L
2(X,µ). Show that the collection of simple

functions is a subspace of H, but not closed in general.

Example 1. Let H = L
2(X,µ), where X = [0, 1] and µ is Lebesgue

measure. The following are examples of subspaces of H.

(1) the set of all functions f ∈ H such that f(x) = f(−x) for
almost every x ∈ X.

(2) the set of all functions f such that
∫

f · µ = 0.
(3) the set of all functions f which are bounded on a subset of X

of measure µ(X).

The first two examples are closed subspaces, but the last one is not.

Example 2. Let H be the set of sequences of complex numbers {zn}
such that

∑

∞

n=1
|zn|

2 < ∞. Then the subset of H consisting of se-
quences {zn} with only finitely many non-zero terms is a subspace but
not a closed subspace.

2. Orthogonal Decomposition

A vector x is orthogonal to a subset A of H if the inner product
〈x, a〉 = 0 for every a ∈ A. The set of all vectors orthogonal to A is
denoted by A⊥.

Exercise 2. Let A be a subset of H.

(1) Show that A⊥ is a closed subspace.
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(2) If A is a closed subspace, then show that (A⊥)⊥ = A.

Proposition 1. If K is a closed subspace of H, if x is a vector and

if d = inf{‖y − x‖ | y ∈ K}, then there exists a unique vector y0 ∈ K
such that ‖y0 − x‖ = d.

Proof. Let yn be a sequence of vectors in K such that ‖x − yn‖ → d
as n → ∞. It follows from the parallelogram law (Exercise 3, §3.2)
applied to the vectors x− yn and x− ym that

‖yn − ym‖
2 = 2‖x− yn‖+ 2‖x− ym‖

2 − 4‖x− (yn + ym)/2‖
2

for every n and m. Since (yn + ym)/2 ∈ K, it follows that

‖x− (yn + ym)/2‖
2 ≥ d2

and hence that

‖yn − ym‖
2 ≤ 2‖x− yn‖

2 + 2‖x− ym‖
2 − 4d2.

As n → ∞ and m → ∞, the right side of this inequality tends to
2d2 + 2d2 − 4d2 = 0, so that {yn} is a Cauchy sequence, and so it
converges in H. If yn → y0, then y0 ∈ K (because K is a closed
subspace and yn ∈ K) and, by the continuity of the norm (Theorem
14, §3.2),

‖y0 − x‖ = lim
n
‖yn − x‖ = d.

If y1 is another vector in K such that ‖y1−x‖ = d, then (y1+y0)/2 ∈
K, so the definition of d implies ‖x− (y0+ y1)/2‖

2 ≥ d2. This and the
parallelogram law give

‖y1 − y0‖
2 = 2‖x− y0‖

2 + 2‖x− y1‖ − 4‖x− (y0 + y1)/2‖
2

≤ 2d2 + 2d2 − 4d2

Thus ‖y0 − y1‖ = 0 and so y0 = y1 by the properties of the norm. ¤

Theorem 1 (Othogonal Decomposition). Let K ⊂ H be a closed sub-

space. Then every vector x can be written in a unique way as a sum

x = Tx+ Px, where Tx ∈ K and Px ⊥ K.

Proof. Let Tx ∈ K be the vector obtained in Proposition 1, and let
Px = x − Tx. It has to be shown that Px ⊥ K, that is, that 〈x −
Tx, y〉 = 0 for all y in K. Let y ∈ K with ‖y‖ = 1. For every complex
number α, the vector Tx+αy ∈ K because K is a subspace. Therefore,
for all α,

‖x− Tx‖2 ≤ ‖x− Tx− αy‖2

by the minimizing property of Tx. This inequality simplifies to

0 ≤ |α|2 − α〈x− Tx, y〉 − α〈y, x− Tx〉.
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Taking in particular α = 〈x−Tx, y〉, it obtains that 0 ≤ −|〈x−Tx, y〉|2,
hence that x− Tx ⊥ K.
Uniqueness of the orthogonal decomposition is an easy exercise. ¤

Corollary 1. Let K be a closed subspace such that K 6= H. Then

there exists a non-zero vector x ∈ K⊥.

3. Riesz representation theorem

A linear functional on H is a map f : H → C such that

f(αx+ βy) = αf(x) + βf(y)

for every pair of vectors x and y and every pair of complex numbers α
and β.

Definition 2. A continuous linear functional on H is a linear func-
tional f : H → C which is continuous, that is, whenever xn → x in H,
then f(xn)→ f(x) in C.

Exercise 3. Let f : H → C be a linear functional and suppose that
there exists a constant C > 0 such that

|f(x)| ≤ C‖x‖

for every x ∈ H. Show that f is continuous.

Example 3. Let H = L
2(X,µ). Then

f 7→

∫

X

fdµ

is a linear functional. If the measure µ(X) < ∞, then it is also a
continuous linear functional. Indeed

∣

∣

∣

∣

∫

X

f · µ

∣

∣

∣

∣

≤ µ(X)‖f‖2,

by the Schwarz inequality (Theorem 7, §3.2).

More generally, if z ∈ H, then

x ∈ H 7→ 〈x, z〉

is a continuous linear functional on H. It turns out that every contin-
uous linear functional is of this form.

Theorem 2 (Riesz Represenation). If f is a continuous linear func-

tional on H, then there exists a unique vector z ∈ H such that

f(x) = 〈x, z〉

for every x ∈ H.
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Proof. If f(x) = 0 for every x ∈ H, then take z = 0. Assume thus f is
not identically 0. Let K = {x ∈ H | f(x) = 0}. Then K is a subspace
of H, and is also closed because f is continuous and K = f−1(0).
Because f 6≡ 0, the closed subspace K 6= H. Thus, by Corollary 1,

there exits a non-zero vector y ∈ H such that y ⊥ K. It may be
assumed that ‖y‖ = 1 (otherwise replace y by y/‖y‖).
Put u = (f(x))y− (f(y))x. Then u ∈ K because f(u) = f(x)f(y)−

f(y)f(x) = 0. Therefore 〈u, y〉 = 0. But

〈u, y〉 = 〈(f(x))y − (f(y))x, y〉 = f(x)− f(y)〈x, y〉

so that

f(x) = f(y)〈x, y〉.

Hence, f(x) = 〈x, z〉 with z = f(y)y.
To see that z is unique, note that if 〈x, z〉 = 〈x, z ′〉 for all x ∈ H,

then u = z − z′ is such that 〈x, u〉 = 0 for all x ∈ H, hence u = 0. ¤

4. The Lebesgue Decomposition Theorem

Let (X,F) be a measure space, and let µ and ν be two measures on
X.

Definition 3. The measure ν is said to be absolutely continuous with

respect to µ, in symbols ν ≺ µ, if ν(E) = 0 whenever µ(E) = 0.

Example 4. If f is a non-negative µ-integrable function on X, then
ν(E) =

∫

E
f ·µ defines a measure on X which is absolutely continuous

with respect to µ.

Exercise 4. Suppose that µ and ν are finite measures on (X,F) Then
ν is absolutely continuous with respect to µ if and only if for every
ε > 0 there exists δ > 0 such that ν(E) < ε for every E ∈ F such that
µ(E) < δ.

Definition 4. The measures µ and ν are singular, written µ ⊥ ν, if
there is an element E ∈ F such that µ(E) = 0 = ν(X \ E).

Example 5. Let X = R, F the Borel sets. Let µ be Lebesgue measure
and ν be the measure given by ν(E) = 1 if 0 ∈ E and ν(E) = 0 if 0 /∈ E.
Then µ and ν are singular.

Theorem 3 (Lebesgue Decomposition). Let (X,F) be a measurable

space, and let µ and ν be two finite measures on X. Then there exist

unique measures νa and νs such that ν = νa + νs, νa ≺ µ and νs ⊥ µ.
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Proof. Let H be the Hilbert space H = L
2(X, ν + µ). Since the mea-

sures ν and µ are finite, so is ν + µ. Moreover, if f ∈ H, then also
f ∈ L

2(X, ν). Therefore

f ∈ H 7→

∫

X

f · ν

is a continuous linear functional on H, because ν ≤ µ + ν and Exam-
ple 3. By Theorem 2, there exists g ∈ H such that

(†)

∫

f · ν =

∫

fg · (ν + µ),

for all f ∈ H. Then

(∗)

∫

f(1− g) · (µ+ ν) =

∫

f · µ.

This identity implies that g is real valued. Furthermore, g ≥ 0, for
otherwise, take f to be the characteristic function of the set {g(x) < 0}
for a contradiction. Likewise, g ≤ 0. Thus it may be assumed that
0 ≤ g(x) ≤ 1 for all x. The monotone convergence theorem implies
that (∗) holds for all f ≥ 0.
Let A = {g = 1} and B = X \ A. Then letting f = χA in (∗) gives

µ(A) = 0. For E ∈ F, set

νs(E) := ν(E ∩ A), and νa(E) := ν(E ∩B)

Then νs and νa are measures, ν = νs + νa, and νs ⊥ µ.
If E ∈ F and µ(E) = 0 and E ⊂ B, then

∫

E
(1−g)·(µ+ν) =

∫

E
µ = 0

by (∗) with (1−g) > 0 on E, so (µ+ν)(E) = 0 and ν(E) = νa(E) = 0.
Hence νa ≺ µ, and the existence part of the Lebesgue Decomposition
is proved.
To prove uniqueness, suppose that there is another decomposition

ν = ρ + σ, with ρ ≺ µ and σ ⊥ µ. Then ρ(A) = 0 because µ(A) = 0.
Thus for all E ∈ F

νs(E) = ν(E ∩ A) = σ(E ∩ A) ≤ σ(E)

Thus νs ≤ σ and ρ ≤ νa. Then σ − νs = νa − ρ is a measure both
absolutely continuous and singular with respect to µ, so it is 0. Hence
ρ = νa and σ = νs. ¤

Example 6. Let X = R, let µ be Lebesgue measure on [0, 2] and ν be
Lebesgue measure on [1, 3]. Then νa is Lebesgue measure on [1, 2] and
νs is Lebesgue measure on [2, 3].
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5. The Radon-Nikodym Theorem

Theorem 4 (Radon-Nikodym). Let (X,F, µ) be a finite measure space.
If ν is a finite measure on (X,F), absolutely continuous with respect to
µ, then there exists an integrable function h ∈ L

1(X,µ) such that

ν(E) =

∫

E

h · µ

for all E ∈ F. Any two such h are equal almost everywhere with respect

to µ.

Proof. Note that the Lebesgue decomposition theorem gives ν = νa+νs.
Since ν ≺ µ, it must be that ν = νa and so νs = 0. Let h = g/(1− g)
on B and h ≡ 0 on A. If E ∈ F, let f = hχE in (∗). Then, by (∗) and
(†),

∫

E

h · µ =

∫

B∩E

g · (µ+ ν) = ν(B ∩ E) = ν(E).

To prove uniqueness, let k be another µ-integrable function such
that ν(E) =

∫

E
k · µ, for all E ∈ F. Then

∫

E
(h − k) · µ = 0. Let

E1 = {k < h} and E2 = {k > h}. Integrating h − k over these sets it
obtains µ(E1) = µ(E2) = 0. Thus k = h µ-almost everywhere. ¤

The function h obtained in this theorem is called the Radon-Nikodym
derivative of ν with respect to µ, and it is usually denoted by dν/dµ.
The justification for this notation is that it satisfies familiar calculus
properties.

Example 7. Let X = [0, 1] and let f : X → X be a differentiable func-
tion whose derivative is bounded and nowhere zero. If µ is Lebesgue
measure on X, then ν(E) = µ(f−1E) is a measure on X which is abso-
lutely continuous with respect to µ, and the Radon-Nikodym derivative
dν/dµ is |f ′(x)|

6. Remarks and References

The proofs the Lebesgue Decomposition and Radon-Nikodym Theo-
rems given here, using the Riesz Representation Theorem as the main
tool, are due to J. von Neumann, see Dudley, Real Analysis and Prob-

ability, Chapman & Hall, New York, 1989.
There are stronger versions of these theorems. For instance, in the

Lebesgue Decomposition it suffices to assume that the measures are
σ-finite; in the Radon-Nikodym Theorem it suffices that µ be σ-finite
and ν be finite. See Dudley loc. cit.


