MATH 650. THE RADON-NIKODYM THEOREM

This note presents two important theorems in Measure Theory, the
Lebesgue Decomposition and Radon-Nikodym Theorem. They are not
treated in the textbook.

1. CLOSED SUBSPACES
Let H be a Hilbert space with inner product (-,-) and norm || - ||.

Definition 1. A subspace of H is a subset of H such that, if it contains
x and y, then it also contains ax+ [y, for every pair of complex numbers
a and .

A closed subspace is a subspace which is also a closed subset of H,
that is, every Cauchy sequence in the subspace converges to a vector
in the subspace.

Exercise 1. Let H = L£L2*(X, ). Show that the collection of simple
functions is a subspace of H, but not closed in general.

Example 1. Let H = L2(X, ), where X = [0,1] and p is Lebesgue
measure. The following are examples of subspaces of H.
(1) the set of all functions f € H such that f(x) = f(—=x) for
almost every x € X.
(2) the set of all functions f such that [ f-pu = 0.
(3) the set of all functions f which are bounded on a subset of X
of measure p(X).

The first two examples are closed subspaces, but the last one is not.

Example 2. Let H be the set of sequences of complex numbers {z,}
such that > °7 |z, < oo. Then the subset of H consisting of se-
quences {z,} with only finitely many non-zero terms is a subspace but
not a closed subspace.

2. ORTHOGONAL DECOMPOSITION

A vector x is orthogonal to a subset A of H if the inner product
(x,a) = 0 for every a € A. The set of all vectors orthogonal to A is
denoted by A*.

Exercise 2. Let A be a subset of H.

(1) Show that At is a closed subspace.
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(2) If A is a closed subspace, then show that (A+)t = A.

Proposition 1. If K is a closed subspace of H, if x is a vector and
if d =inf{||ly — z|| | y € K}, then there exists a unique vector yo € K
such that ||yo — z|| = d.

Proof. Let y, be a sequence of vectors in K such that ||z — y,|| — d
as n — oo. It follows from the parallelogram law (Exercise 3, §3.2)
applied to the vectors z — y,, and z — y,, that

g = yml* = 2ll2 = yall + 2|2 = ymll® — 4z = (g + ) /2])*
for every n and m. Since (y, + ym)/2 € K, it follows that

|z = (Yo + ym)/2|* > &
and hence that
1Y — ymll” < 2] — ynl? + 2]|2 — yml® — 4d°.

As n — oo and m — oo, the right side of this inequality tends to
2d? + 2d* — 4d* = 0, so that {y,} is a Cauchy sequence, and so it
converges in H. If y, — o, then yy € K (because K is a closed
subspace and y, € K) and, by the continuity of the norm (Theorem
14, §3.2),

o — all = lim |1y, — o] = d
If y; is another vector in K such that ||y; — x| = d, then (y1+y0)/2 €

K, so the definition of d implies ||z — (yo + y1)/2||*> > d*. This and the
parallelogram law give

I —woll? = 2l|z—woll® + 2llz — |l — 4llz — (o + 11)/2I
< 2d® + 2d% — 4d?

Thus ||yo — y1|| = 0 and so yo = y1 by the properties of the norm. O

Theorem 1 (Othogonal Decomposition). Let K C H be a closed sub-
space. Then every vector x can be written in a unique way as a sum
xr=Tx+ Px, where Tx € K and Px 1. K.

Proof. Let Tx € K be the vector obtained in Proposition 1, and let
Pz = x — Tx. It has to be shown that Pz L K, that is, that (x —
Tz,y) =0 for all y in K. Let y € K with ||y|| = 1. For every complex
number «, the vector Tx+ay € K because K is a subspace. Therefore,
for all a,

lz = Ta|® < [lo = T — ay|®
by the minimizing property of Tx. This inequality simplifies to

0 < |af2 - alz — Ta,y) — aly, z — Ta),
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Taking in particular o = (x—T,y), it obtains that 0 < —|(z—T'z, y)|?,
hence that + — Tz 1 K.
Uniqueness of the orthogonal decomposition is an easy exercise. [

Corollary 1. Let K be a closed subspace such that K # H. Then
there exists a non-zero vector v € K+.

3. RIESZ REPRESENTATION THEOREM

A linear functional on H is a map f : H — C such that
flax + By) = af (x) + Bf(y)

for every pair of vectors x and y and every pair of complex numbers «

and [.

Definition 2. A continuous linear functional on H is a linear func-
tional f : H — C which is continuous, that is, whenever z,, — z in H,
then f(x,) — f(z) in C.

Exercise 3. Let f : H — C be a linear functional and suppose that
there exists a constant C' > 0 such that

|f(z)| < Clz||
for every x € H. Show that f is continuous.

Example 3. Let H = L*(X, x). Then

fH/deu

is a linear functional. If the measure u(X) < oo, then it is also a
continuous linear functional. Indeed

/ f-u‘ < NI e
X

by the Schwarz inequality (Theorem 7, §3.2).

More generally, if z € H, then
r € Hw (x,2)

is a continuous linear functional on H. It turns out that every contin-
uous linear functional is of this form.

Theorem 2 (Riesz Represenation). If f is a continuous linear func-
tional on H, then there exists a unique vector z € H such that

flx) = (z,2)

for every x € H.
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Proof. 1f f(x) = 0 for every x € H, then take z = 0. Assume thus f is
not identically 0. Let K = {x € H | f(z) = 0}. Then K is a subspace
of H, and is also closed because f is continuous and K = f~1(0).

Because f # 0, the closed subspace K # H. Thus, by Corollary 1,
there exits a non-zero vector y € H such that y L K. It may be
assumed that ||y|| = 1 (otherwise replace y by y/||y||)-

Put u = (f(z))y — (f(y))z. Then u € K because f(u) = f(z)f(y) —
f(y)f(x) =0. Therefore (u,y) = 0. But

(w,y) = ((f(2)y — (f(W)z,y) = f(z) = f(y){z,y)
so that
f(x) = f(y){z,y).

Hence, f(z) = (z,2) with z = f(y)y.
To see that z is unique, note that if (z,z) = (z,2’) for all x € H,
then u = z — 2’ is such that (z,u) =0 for all x € H, hence v =0. O

4. THE LEBESGUE DECOMPOSITION THEOREM

Let (X,J) be a measure space, and let g and v be two measures on
X.

Definition 3. The measure v is said to be absolutely continuous with
respect to i, in symbols v < pu, if v(E) = 0 whenever p(E) = 0.

Example 4. If f is a non-negative p-integrable function on X, then
v(E) = [, f-p defines a measure on X which is absolutely continuous
with respect to p.

Exercise 4. Suppose that p and v are finite measures on (X, F) Then
v is absolutely continuous with respect to p if and only if for every
e > 0 there exists 0 > 0 such that v(E) < € for every F € F such that
u(E) < 6.

Definition 4. The measures p and v are singular, written p L v, if
there is an element E € F such that u(F) =0=v(X \ £).

Example 5. Let X = R, F the Borel sets. Let u be Lebesgue measure
and v be the measure given by v(F) = 1if0 € Fandv(E) =0if0 ¢ FE.
Then p and v are singular.

Theorem 3 (Lebesgue Decomposition). Let (X,F) be a measurable
space, and let p and v be two finite measures on X. Then there exist
unique measures v, and vs such that v = v, +vs, vy < i and vs L p.
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Proof. Let H be the Hilbert space H = L?(X,v + ). Since the mea-
sures v and p are finite, so is v + u. Moreover, if f € H, then also
f € L% X,v). Therefore

feH»—>/Xf-u

is a continuous linear functional on H, because v < u + v and Exam-
ple 3. By Theorem 2, there exists g € H such that

) [tv=[15-w+m.

for all f € H. Then

(+) /f<1—9)'(M+V):/f'M-

This identity implies that ¢ is real valued. Furthermore, g > 0, for
otherwise, take f to be the characteristic function of the set {g(z) < 0}
for a contradiction. Likewise, ¢ < 0. Thus it may be assumed that
0 < g(x) < 1 for all . The monotone convergence theorem implies
that () holds for all f > 0.

Let A= {g =1} and B = X \ A. Then letting f = x4 in (%) gives
w(A) =0. For E € F, set

vs(E) :==v(ENA), and vo(E) :=v(EN B)

Then v, and v, are measures, v = v + v,, and v, L p.

If £ e Fand u(E) =0and E C B, then [,(1—g)-(u+v) = [, =0
by () with (1—g) > 0on E, so (u+v)(E) =0and v(E) = v,(F) = 0.
Hence v, < u, and the existence part of the Lebesgue Decomposition
is proved.

To prove uniqueness, suppose that there is another decomposition
v=p+o,with p < gpand 0 L u. Then p(A) = 0 because u(A) = 0.
Thus for all £ € &F

vs(E)=v(ENA)=0(ENA) <o(E)

Thus vs < 0 and p < v,. Then 0 — vy = v, — p is a measure both
absolutely continuous and singular with respect to pu, so it is 0. Hence
p =1, and 0 = v;. ]

Example 6. Let X = R, let u be Lebesgue measure on [0, 2] and v be
Lebesgue measure on [1,3]. Then v, is Lebesgue measure on [1, 2] and
vs is Lebesgue measure on (2, 3].
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5. THE RADON-NIKODYM THEOREM

Theorem 4 (Radon-Nikodym). Let (X, F, i) be a finite measure space.
If v is a finite measure on (X, F), absolutely continuous with respect to
u, then there exists an integrable function h € LY(X, p) such that

V(E)—-/;h.ﬂ

forall E € F. Any two such h are equal almost everywhere with respect
to p.

Proof. Note that the Lebesgue decomposition theorem gives v = v,+v;.
Since v < u, it must be that v = v, and so v, = 0. Let h = g/(1 — g)
on Band h=0on A. If £ € F, let f = hyg in (x). Then, by (*) and

(T)?
/Eh-/uL:/BQEg-(,uvLu):y(BﬂE):u(E).

To prove uniqueness, let k& be another pu-integrable function such
that v(E) = [,k - p, forall E € F Then [,(h—k)-pu = 0. Let
E, = {k < h} and Ey = {k > h}. Integrating h — k over these sets it
obtains p(E;) = u(Ey) = 0. Thus k = h p-almost everywhere. O

The function h obtained in this theorem is called the Radon-Nikodym
derivative of v with respect to p, and it is usually denoted by dv/dpu.
The justification for this notation is that it satisfies familiar calculus
properties.

Example 7. Let X = [0,1] and let f : X — X be a differentiable func-
tion whose derivative is bounded and nowhere zero. If u is Lebesgue
measure on X, then v(E) = u(f~'E) is a measure on X which is abso-
lutely continuous with respect to p, and the Radon-Nikodym derivative

dv/du is | f'(z)|
6. REMARKS AND REFERENCES

The proofs the Lebesgue Decomposition and Radon-Nikodym Theo-
rems given here, using the Riesz Representation Theorem as the main
tool, are due to J. von Neumann, see Dudley, Real Analysis and Prob-
ability, Chapman & Hall, New York, 1989.

There are stronger versions of these theorems. For instance, in the
Lebesgue Decomposition it suffices to assume that the measures are
o-finite; in the Radon-Nikodym Theorem it suffices that p be o-finite
and v be finite. See Dudley loc. cit.



