The symbol \(\lim_{x \to \infty} f(x) \) means “the limit of \(f(x) \) as \(x \) approaches \(\infty \).” We say that \(\lim_{x \to \infty} f(x) = L \) if for every \(\varepsilon > 0 \) there is a number \(M \) such that, for all \(x \),

\[
\text{if } x > M, \text{ then } |f(x) - L| < \varepsilon.
\]

A similar definition applies to \(\lim_{x \to -\infty} f(x) = L \).

Problem 1. The limit \(\lim_{N \to \infty} \int_{N}^{\infty} a \cdot f(x) \cdot dx \), if it exists, is denoted by \(\int_{\infty}^{\infty} a \cdot f(x) \cdot dx \) (or by \(\int_{\infty}^{\infty} a \cdot f(x) \cdot dx \)), and called an “improper integral.”

(i) Find \(\int_{1}^{\infty} x^{-r} \cdot dx \) if \(r < -1 \).

(ii) Prove that \(\int_{1}^{\infty} \frac{1}{x^2} \cdot dx \) does not exist.

(iii) Does \(\int_{0}^{\infty} \frac{1}{1+x^2} \cdot dx \) exist?

The improper integral \(\int_{a}^{\infty} f \) is defined as \(\lim_{N \to -\infty} \int_{a}^{N} f \), as expected, but another kind of improper integral \(\int_{-\infty}^{\infty} f \) is defined as \(\int_{0}^{\infty} f + \int_{-\infty}^{0} f \), provided both improper integrals exist.

(iv) Prove that \(\int_{-\infty}^{\infty} \frac{1}{1+x^2} \cdot dx \) exists.

(v) Prove that \(\lim_{N \to -\infty} \int_{-N}^{N} x \cdot dx \) exists, but the improper integral \(\int_{-\infty}^{\infty} x \cdot dx \) does not exist.

(vi) (Not required) Prove that the improper integral \(\int_{\pi}^{\infty} \frac{\sin x}{x} \cdot dx \) exists, but \(\int_{\pi}^{\infty} \frac{|\sin x|}{x} \cdot dx \) does not exist.

Problem 2. There is another kind of improper integral in which the interval is bounded but the function is unbounded.

(i) If \(a > 0 \) and \(-1 < r < 0\), find \(\lim_{\varepsilon \to 0^+} \int_{a}^{\varepsilon} x^r \cdot dx \). This limit is denoted \(\int_{a}^{\infty} x^r \cdot dx \), even though the function \(f(x) = x^r \) is not bounded on \([0, a] \) (for \(-1 < r < 0\)), no matter how we define \(f(0) \).

(ii) Suppose that \(f \) is continuous on \([0, 1]\). Find

\[
\lim_{x \to 0^+} x \int_{x}^{1} \frac{f(t)}{t} \cdot dt.
\]

(iii) (Not required.) The integral \(\int_{0}^{\infty} \frac{1}{x^2 + \sqrt{x}} \cdot dx \) does not fall into any of the two kind of improper integrals previously described in these problems. Can you give it a meaning? (Break up the interval \((0, \infty)\) at 1.)
Problem 3. Determine if the following sequences of functions converge pointwise or uniformly on the given interval. In case that there is pointwise convergence, then you must also identify the limit function.

(i) \(f_n(x) = \frac{\sin nx}{n}, 0 \leq x \leq 1. \)

(ii) \(g_n(x) = \frac{1}{n} \exp(-nx), 0 \leq x < \infty. \)

(iii) \(h_n(x) = nx(1 - x^2)^n, 0 \leq x \leq 1. \)

Problem 4. Suppose that \(\{f_n\} \) is a sequence of functions which converges uniformly to \(f \) on the interval \([a, b]\). Prove that if each \(f_n \) is integrable on \([a, b]\), then the limit function \(f \) is also integrable on \([a, b]\).